
Approximating Center Points with Iterated Radon Points∗

K. L. Clarkson† David Eppstein‡ Gary L. Miller§ Carl Sturtivant¶

Shang-Hua Teng‖

Abstract

We give a practical and provably good Monte Carlo algorithm for approximating center
points. Let P be a set of n points in IRd. A point c ∈ IRd is a β-center point of P if every closed
halfspace containing c contains at least βn points of P . Every point set has a 1/(d + 1)-center
point; our algorithm finds an Ω(1/d2)-center point with high probability. Our algorithm has
a small constant factor and is the first approximate center point algorithm whose complexity
is subexponential in d. Moreover, it can be optimally parallelized to require O(log2 d log log n)
time. Our algorithm has been used in mesh partitioning methods and can be used in the
construction of high breakdown estimators for multivariate datasets in statistics. It has the
potential to improve results in practice for constructing weak ε-nets. We derive a variant of our
algorithm whose time bound is fully polynomial in d and linear in n, and show how to combine
our approach with previous techniques to compute high quality center points more quickly.

1 Introduction

A center point of a set P of n points in IRd is a point c of IRd such that every hyperplane passing
through c partitions P into two subsets each of size at most nd/(d + 1) [9, 27]. This balanced
separation property makes the center point useful for efficient divide-and-conquer algorithms in
geometric computing [1, 18, 20, 27] and large-scale scientific computing [19, 23]. Recently, Donoho
and Gasko [8] have suggested center points as estimators for multivariate datasets. They showed
such points as estimators are robust and have a high “breakdown point.” Note that we are not

∗The preliminary version of this paper appeared in the 9th ACM Symp. Computational Geometry, (1993).
†AT&T Bell Laboratories, Murray Hill, NJ 07974.
‡Department of Information and Computer Science, University of California, Irvine, CA 92717. Supported by NSF

grant CCR-9258355. Work performed in part while visiting Xerox Palo Alto Research Center.
§School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213. Supported in part by National

Science Foundation grant CCR-91-96113.
¶Department of Computer Science, University of Minnesota, Minneapolis, MN 55455. Part of the work was done

while the author was a visiting professor at Carnegie Mellon University.
‖Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139. Supported in part

by AFOSR F49620-92-J-0125 and Darpa N00014-92-J-1799. Part of the work was done while the author was at Xerox
Palo Alto Research Center and Carnegie Mellon University. Current address: Department of Computer Science,
University of Minnesota, Minneapolis, MN 55455.

1

referring here to the center of mass, or centroid. For brevity hereafter we will call a center point
just a center.

The existence of a center of any point set follows from a classical theorem due to Helly [6].
However, finding an exact center seems to be a difficult task. It is possible to compute centers by
solving a set of Θ(nd) linear inequalities, using linear programming. The only improved results are
that a center in two dimensions can be computed in O(n log5 n) time, and in three dimensions in
O(n2 log7 n) time [5]; the two-dimensional result has been very recently improved to linear time [14].

For most applications, it suffices to have an approximate center, a point c such that every closed
halfspace containing c contains at least n(1

d+1 − ε) points of P .
Such a center may be found with high probability by taking a random sample of P and com-

puting an exact center of that sample. In order to achieve probability 1− δ of computing a correct
approximate center, a sample of size Θ((1/ε2)(d log O(1)/ε + log 1/δ)) is required ([VC71]; see also
[13, 17, 23] and §6.). Hence the time to compute such an approximate center is O((d2/ε2)(d/ log d/ε+
log 1/δ))d [3]. This bound is constant in that it does not depend on n, but it has a constant fac-
tor exponential in d. Alternatively, a deterministic linear-time sampling algorithm can be used in
place of random sampling [15, 23], but one must again compute a center of the sample using linear
programming in time exponential in d.

This exponential dependence on d is a problem even when d is as small as three or four. For ex-
ample, the experimental results show that the sampling algorithm must choose a sample of about five
hundred to eight hundred points in three dimensions. The sampling algorithm thus solves a system
of

(
500
3

)
≈ 20 million linear inequalities. Many of our applications, e.g., in mesh partitioning [18],

require an approximate center in four or more dimensions, for which the number of sample points
and inequalities required is even larger. The aforementioned application (Donoho and Gasko [8]) of
centers in multivariate statistical estimation also calls for efficient computation of centers in higher
dimensions. The seemingly efficient sampling algorithm is too expensive for practical applications!

In this paper, we give a practical and provably good method for computing centers, from which
we derive several center approximation algorithms. A version of this method was originally proposed
as a heuristic to replace the linear programming based sampling algorithm by Miller and Teng [17]
and has been implemented as a subroutine in their geometric mesh partitioning algorithm [11, 18].
The experimental results are encouraging. Our algorithm can also be used as part of a method for
quickly computing weak ε-nets with respect to convex sets [1] and in other geometric applications
of centers.

The simplest form of our algorithm runs in O((d log n+log 1/δ)log d) time and uses randomization
to find an Ω(1/d2)-center (see Section 2 for the definition) with probability 1 − δ. It does not use
linear programming and has a small constant factor, making it suitable for practical applications. It
can be efficiently parallelized in O(log2 d log log n) time on distributed- and shared-memory parallel
machines. We next describe a slightly more complicated form of the algorithm which takes time
polynomial in both d and log 1/δ and again computes Ω(1/d2)-centers. To the best of our knowledge,
it is the first approximate center algorithm whose complexity is fully polynomial in both d and n.
Finally, we show how to combine our algorithm with the linear programming sampling method to
compute (1

d+1 − ε)-centers with probability 1− δ, in time (d/ε)O(d) log 1/δ.
It is worthwhile to point out that our algorithms when specialized to one dimension yield a simple

and fast algorithm for approximating the median, see Section 4.
Michelangelo Grigni has noted that a method of Valiant [24] on constructing short monotone

2

formulae for the majority function is very close to our construction (Algorithm 2) of approximate
median, and Valiant’s analysis can also be adapted to give a proof of Theorem 4.3. Weide also
proposed basically the same algorithm for low-storage on-line median approximation.[26]

The outline of this paper is as follows. Section 2 reviews some fundamental geometrical facts, and
introduces the Radon point of a set of points. Section 3 gives our basic algorithm, based on iterated
computation of Radon points. This algorithm is analyzed first in one dimension, in Section 4, then
in general in Section 5. Section 6 discusses the use of random sampling to eliminate dependence
on the number of input points. Section 7 gives our polynomial-time variant. Section 8 shows how
to combine our approach with the linear programming algorithm. Section 9 discusses the precision
needed for floating point arithmetic to succeed in computing centers using our algorithms.

2 Centers and Their Relatives

Let P be a finite set of points in IRd. A hyperplane h in IRd divides P into three subsets: P+ = h+∩P ,
P− = h− ∩ P , and P ∩ h. The splitting ratio of h over P , denoted by φh(P), is defined as

φh(P) = max
(
|P+|
|P |

,
|P−|
|P |

)
For each 0 < β ≤ 1/2, a point c ∈ IRd is a β-center of P if every hyperplane containing c

(1− β)-splits P . A (1
d+1)-center is simply called a center.

Proposition 2.1 ([6]) Each point set P ⊂ IRd has a center.

This fact, first observed by Danzer et al.[6], is a corollary of Helly’s Theorem (to be given below).
(See also [18, 23]; Edelsbrunner’s text [9] gives proofs for the results in this section.)

Theorem 2.2 (Helly) Suppose K is a family of at least d + 1 convex sets in IRd, and K is finite
or each member of K is compact. Then if each d + 1 members of K have a common point, there is
a point common to all members of K.

The proof that centers exist is roughly as follows: consider a set of d+1 halfspaces each containing
fewer than βn points of P , for β ≤ 1/(d+1). There must be points of P not in any of these halfspaces;
hence any set of d + 1 halfspaces containing more than n(1 − β) points of P must have a common
point. It follows from Helly’s Theorem that the family of halfspaces each containing more than
n(1− β) points of P has nonempty intersection. Any point in that intersection is a β-center.

This proof sketch implies that β-centers form a convex region, the intersection of a family of
halfspaces; it is not too hard to show that this region is the intersection of a finite family of halfspaces.

Theorem 2.3 ([6]) If P ⊂ IRd has n points, then its set of β-centers is the intersection of a family
of closed halfspaces whose members each contains at least n(1 − β) points of P , and has at least d
points of P in its bounding hyperplanes.

3

The linear programming algorithm, based on this result, seeks to find a point in the common
intersection of a family of no more than

(
n
d

)
< nd halfspaces. This problem is linear programming

in d dimensions, with less than nd inequality constraints; it can be solved in O(nd) time using a
deterministic algorithm [16, 4] or a randomized one [3]; the latter algorithm gives a much smaller
constant factor.

Another consequence of this theorem, discussed in Section 5, is that a candidate center needs only
be verified with respect to the orderings on the points induced by the normals to nd hyperplanes; if
for any given such ordering, the center properties hold for a candidate with probability 1− p, with
p < 1/nd, then the candidate is a center with non-zero probability.

Helly’s Theorem can be proven using another result important for this paper, Radon’s Theorem.

Theorem 2.4 (Radon) If P ⊂ IRd with |P | ≥ d + 2, then there is a partition (P1, P2) of P such
that the convex hull of P1 has a point common with the convex hull of P2.

Proof: Suppose P = {p1, . . . , pn} with n ≥ d + 2. Consider the system of d + 1 homogeneous linear
equations

n∑
i=1

αi = 0 =
n∑

i=1

αip
j
i (1 ≤ j ≤ d),

where pi = (p1
i , ..., p

d
i) in the usual coordinates of IRd. Since n ≥ d + 2, the system has a nontrivial

solution (α1, . . . , αn). Let U be the set of all i for which αi ≥ 0, and V the set for all j for which
αj < 0, and c =

∑
i∈U αi > 0. Then

∑
j∈V αj = −c and

∑
i∈U (αi/c)pi =

∑
j∈V (αj/c)pj .

Let P1 = {pi | i ∈ U}, and P2 = {pi | i ∈ V }. Then the partition (P1, P2) of P has the desired
property: the convex hull of P1 has a point common with the convex hull of P2. 2

Call the partition (P1, P2) of the theorem a Radon partition. We will call the point common to
the hulls of P1 and P2 a Radon point of P . These points are the basis of our algorithm.

Definition 2.5 (Radon points) Let P be a set of points in IRd. A point q ∈ IRd is a Radon point
[6] if P can be partitioned into 2 disjoint subsets P1 and P2 such that q is a common point of the
convex hull of P1 and the convex hull of P2.

Radon’s Theorem implies that any set P of more than d + 1 points has a Radon point. To
compute a Radon point, we need only to compute a Radon point for any d + 2 points of P . As in
the proof above, this requires a non-zero solution of a linear system of d + 2 variables and d + 1
equations, and so takes O(d3) time.

Why are Radon points useful in computing centers? A Radon point of a set of d + 2 points is a
2/(d + 2)-center of that set: any closed halfspace containing a Radon point r must contain a point
of P1 and a point of P2. Hence the splitting ratio of a hyperplane containing r is at most d/(d + 2).

3 The Basic Algorithm

We now describe our algorithm for approximate centers. The algorithm iteratively reduces the
point set by replacing groups of (d + 2) points by their Radon points. Such a reduction is guided
by a complete (d + 2)-way tree. We will show that the final point of this reduction process is an
approximate center with high probability.

4

Figure 1: The Radon point q of four points in IR2. When no point is in the convex hull of the other
three (the left figure), then the Radon point is the unique cross of two linear segments. Otherwise
(the right figure), the point that is in the convex hull of the other three is a Radon point.

5

Figure 2: The Radon point of five points in IR2. Two cases are similar to these of two dimensions.

6

Algorithm 1 (Iterated Radon Points):
Input: a set of points P ⊂ IRd

1. Construct a complete balanced (d + 2)-way tree T of L leaves (for an integer L that
is a power of (d + 2)).

2. For each leaf of T , choose a point from P uniformly at random, independent of other
leaves.

3. Evaluate tree T in a bottom-up fashion to assign a point in IRd to each internal node
of T such that the point of each internal node is a Radon point of the points with its
(d + 2) children.

4. Output the point associated with the root of T .

A complete (d+2)-way tree of L leaves has at most L(1/(d+2)+1/(d+2)2 + ...1/L) ≤ L/(d+1)
internal nodes. The above algorithm take O(d2L) time, with a small constant factor. Clearly,
our algorithm can be implemented in O(log2 d log L) time using O(d2L/(log2 d log L)) processors
in parallel. Our experimental results suggest that, independent of the size of original point set,
L = 800 is sufficient for three dimensions and L = 1000 for four dimensions. We will discuss these
experimental results at the end of Section 9.

4 Analysis: One Dimension

We wish to show that Algorithm 1 above finds a (1/d2)-center with small probability of error. We
first give a proof for one dimension and then extend it to higher dimensions.

In one dimension, the center of a point set is essentially the median. If the point set has an odd
number of points, then its median is the only center. Otherwise, every point in the closed interval
between the two medians is a center. Algorithm 1, when restricted to one dimension, gives the
following algorithm for approximating the median of a linearly ordered set.

Algorithm 2: (Fast Approximate Median)
Input: a set of real numbers P = {p1, . . . , pn}

1. Construct a complete balanced 3-way tree T of L leaves (for an integer L that is a
power of three).

2. For each leaf of T , choose an element from P uniformly at random, independent of
other leaves.

3. Evaluate tree T in a bottom-up fashion: at each internal node, keep the median of the
numbers of its three children.

4. Output the number associated with the root of T .

7

The rank of a number pi is the position that pi would take in the sorted list of values in P . By
induction, it can be shown that number associated with each node of the tree T belongs to P . The
operation of internal nodes is comparison based, only the relative ranks (not the values) matter.
Without loss of generality we assume that P is a permutation of the set {1/n, 2/n, ..., 1}.

We first note that the expected rank of the output of Algorithm 2 is n/2. This is because the
output of Algorithm 2 is always from P , and because the operation in each internal node of the
tree is symmetric with respect to the ranks. We now show that Algorithm 2 finds an approximate
median with high probability.

Let fh(x) be the probability that the output of Algorithm 2, when using a tree T of height h, is
no larger than x. Because the number of a leaf of the tree is chosen uniformly at random from the
set P , f0(x) ≤ x. We now express fh(x) in terms of fh−1(x).

Let r be the root of T and c1, c2, and c3 be its three children. Let I(v) be the number chosen
by the node v in T . We have that I(r) is the median of I(c1), I(c2), and I(c3). Thus, I(r) ≤ x
if and only if at least two of I(c1), I(c2), and I(c3) are less than x. Notice that each value I(ci)
(i ∈ {1, 2, 3}) is chosen as the output of Algorithm 2 on a tree of height h− 1, and that each value
I(ci) is independent of the other two such values. Hence,

fh(x) =
(

3
2

)
(fh−1(x))2(1− fh−1(x)) + (fh−1(x))3

= 3(fh−1(x))2 − 2(fh−1(x))3

≤ 3(fh−1(x))2.

By induction, we have

fh(x) ≤ 3(fh−1(x))2

≤ 3 · 32 · · · 32h−1
(f0(x))2

h

=
1
3
(3x)2

h

,

and we are done.
A number q is a β-median of a set P = {p1, . . . , pn} ⊂ IR if both |{pi < q}| ≤ (1 − β)n and

|{pi > q}| ≤ (1− β)n.

Theorem 4.1 For any β < 1/3, Algorithm 2 on a tree of height h, i.e., of sample size L = 3h,
outputs a β-median with probability of error at most (3β)2

h

.

For example, when β = 1/4, we have the following corollary.

Corollary 4.2 Algorithm 2 finds a 1/4-median in random O((log 1/δ)log2 3) time with probability of
error at most δ.

A better analysis can be used to show that Algorithm 2 finds a (1/2− ε)-median with very high
probability for all constant 0 < ε < 1/2. We use equality fh(x) = 3(fh−1(x))2 − 2(fh−1)3. Suppose

8

x = 1/2 − ε. We have f0(x) = x = 1/2 − ε and f1(1/2 − ε) = 1/2 − 3ε/2 + 2ε3. If ε < 1/4 then
2ε3 ≤ ε/8. So, f1(1/2 − ε) ≤ 1/2 − 11ε/8. If h1 ≥ log11/8(1/4ε), then fh1(1/2 − ε) ≤ 1/4. The
analysis above then shows that a total height of h1 + log2 log 1/δ + O(1) suffices to ensure a failure
probability of at most δ.

Theorem 4.3 (Approximating Median) Algorithm 2 finds a (1/2− ε)-median in random

O(log11/8(1/4ε) + (log 1/δ)log2 3)

time with probability of error at most δ.

5 Analysis: Higher Dimensions

Theorem 4.1 can be extended to higher dimensions. We start with some structural properties of
β-centers.

Let l be a line in IRd. The projection of a point p ∈ IRd onto l is a point q ∈ l such that the
line passing through p and q is perpendicular to l. By assigning a direction to l, we can introduce
a linear ordering among points on l. For a point set P = {p1, . . . , pn}, let rankl(pi) be the rank of
the projection of pi among all projections of P . If two lines l and l′ are parallel to each other and
have the same direction (in vector sense), then for all i : 1 ≤ i ≤ n, rankl(pi) = rankl′(pi).

Lemma 5.1 Let P = {p1, . . . , pn} be a point set in IRd. Then a point c is a β-center of P if and
only if for all lines l, the projection of c onto l is a β-median of the projections of P onto l.

Proof: Suppose c is a β-center of P . Let H be the hyperplane passing through c normal to l.
Clearly, the projection c′ of c onto l is the intersection of H and l. Notice that the projections of two
points is on the same side of c′ (on line l) if and only if they belongs to the same halfspace defined
by H. Therefore c′ is a β-median of the projections of P . The other direction of the lemma can be
proved similarly. 2

In order to check whether a point c is a β-center of P , we need only check the splitting ratio of the
O(nd−1) combinatorially distinct hyperplanes through c. Equivalently by Lemma 5.1, it is sufficient
to check O(nd−1) lines (normal to the set of hyperplanes above) to see whether the projection of c is
a β-median of the projections of P . Whereas, if c is unknown, then Theorem 2.3 implies that O(nd)
possible hyperplanes or normal lines need to be checked.

Corollary 5.2 For each point set P in IRd, there is a set of O(nd) lines such that a point c is a
β-center of P if and only if for each line l from this line set, the projection of c is a β-median of the
projections of P onto l.

We now study the projection of Algorithm 1 onto a given line. Suppose we have d + 2 points
p1, . . . , pd+2. Let r be the Radon point of p1, . . . , pd+2 and (P1, P2) be a corresponding Radon
partition. For each hyperplane H passing through r, each (open) halfspace of H contains at most
d points from {p1, . . . , pd+2}, because r belongs to the convex hull of both P1 and P2. Let l be the
line passing through the origin that is normal to H. From the discussion above, the projection of
r is between (inclusively) the second smallest and the second largest projections of P onto l. In

9

our analysis we will forget the higher-dimensional constraints on the problem and assume that any
point between the second-smallest and second-largest projections could be chosen in a worst-case
pattern of such choices. Therefore, with respect to a given line, Algorithm 1 can be emulated by the
following process in one dimension.

Algorithm 3: (Projection of Algorithm 1)
Input: a set of real numbers Q = {q1, . . . , qn}

1. Construct a complete balanced (d + 2)-way tree T of L leaves (for an integer L).

2. For each leaf of T , choose an element from P uniformly at random, independent of
other leaves.

3. Evaluate tree T in a bottom-up fashion: at each internal node, choose a number
arbitrarily between the second smallest and the second largest numbers of its d + 2
children.

4. Output the number associated with the root of T .

The following lemma is parallel with Theorem 4.1.

Lemma 5.3 Let βd = 1/
(
d+2
2

)
. For any β < βd, Algorithm 3 above on a tree of height h, (i.e.,

L = (d + 2)h), outputs a β-median with probability of error at most (β/βd)2
h

.

Proof: Because we only concern the relative ranks of the input set Q, without loss of generality, we
assume that Q is a permutation of the set {1/n, 2/n, ..., 1}.

Let fh(x) be the probability that the output of Algorithm 3, when using a tree T of height h, is
no larger than x. Because the number of a leaf of the tree is chosen uniformly at random from the
set Q, f0(x) ≤ x. We now express fh(x) in terms of fh−1(x).

The inputs to the root r of a tree of height h are from the outputs of d + 2 trees of height h− 1.
Let I(r) be the number chosen by the root. We have I(r) ≤ x only if at least two of its d + 2 inputs
are less than x. Therefore,

fh(x) = 1− (1− fh−1(x))d+2

− (d + 2)fh−1(x)(1− fh−1(x))d+1.

We can write the precise inclusion and exclusion form of the left hand side of the equation above.
But the following upper bound (also known as Bonferroni inequalities [21]) is good enough for our
analysis. There are in total

(
d+2
2

)
different pairs from the (d+2) distinct inputs. We call a pair (a, b)

good if both a ≤ x and b ≤ x. The probability that a pair is good is equal to (fh−1(x))2. Therefore,
fh(x), the probability that there exists at least such a pair is bounded above by

(
d+2
2

)
(fh−1(x))2 =

(fh−1(x))2/βd.
We have

fh(x) ≤ 1
βd

(fh−1(x))2

10

≤ 1
βd

· 1
β2

d

· · · 1
β2h−1

d

f0(x)2
h

= βd(x/βd)2
h

.

2

Therefore, for any β < βd, with very high probability (the error probability is doubly exponen-
tially small with respect to the height of the tree), the projection of the output of Algorithm onto
a line is a β-median of the projections of the input point set P onto the line. By Corollary 5.2, the
probability that the output of Algorithm 1 is not a β-center of P is at most nd(β/βd)2

h

.
The following theorem is the immediate result. We use as usual lg x ≡ log2 x.

Theorem 5.4 For β < βd, if Algorithm 1 is run with

h ≥ lg
[
(lg nd/δ)/ lg(βd/β)

]
,

a β-center is found with probability of error at most δ. For β < βd/2, this requires

L = (d + 2)h < (d lg n + lg(1/δ))log d+2,

giving a time bound of

O(d3)L/(d + 1) = O(d2(d lg n + lg(1/δ))lg d+2).

6 Random Sampling

Both the linear programming algorithm and Algorithm 1 have running times dependent on n, the
number of input points. It is possible to eliminate this dependence by computing the center of a
random sample of P ; applied to the linear programming algorithm, the resulting sampling algorithm
is only Monte Carlo, yielding an approximate center only with high probability. However, the
reduction in running time is quite substantial. Applied to Algorithm 1, the random sampling results
allow us to reduce the running time, in exchange for a β-center with smaller β.

Call S ⊂ P an ε-sample if for any halfspace H with |H ∩ P | ≥ 4εn,

|H ∩ S|
|S|

≤ |H ∩ P |
n

+ ε.

(This is a one-sided version of ε-approximations [25], sufficient for our purposes.)
We will show that a random sample, chosen without replacement, is an ε-sample with high

probability, for suitable ε and sample size. The sample is chosen by picking an element from the
set at random and putting it in the sample, with all elements equally likely. Choosing “without
replacement” means that the number of elements in the sample may be smaller than the number of
such sampling trials.

Before proving the ε-sample property for random samples, we note the relation to β-centers.

11

Lemma 6.1 A β-center of an ε-sample S of P is a (β − ε)-center of P , for β > 4ε.

Proof: Suppose c is a β-center of S. Any halfspace containing c contains β|S| points of S, and so
by the definition of ε-sample, contains at least (β − ε)n points of P . Therefore c is a (β − ε)-center
of P . 2

Lemma 6.2 A random sample using r trials is an ε-sample with probability at least 1 − e−ε2r
(
n
d

)
,

for ε < 1/18.

Proof: Consider a given halfspace H. Let β = |H ∩ P |/n + ε. The random variable |H ∩ S| is
binomially distributed, with r trials and with probability of success p = β−ε. It follows by standard
tail estimates [2] that

Prob{|H ∩ S| − pr > εr} < e−(εr)2/2pr+(εr)3/(pr)2 = e−ε2r(1/2p−ε/p2).

Since ε < β/4 and ε < 1/18, the probability that S fails the ε-sample condition for H is less than
e−ε2r. The lemma follows, since there are at most

(
n
d

)
distinct sets {S ∩H | H is a halfspace} [9]. 2

This result implies that sample size r = O(d log n)/ε2 is sufficient to give an ε-sample. This is not
the smallest possible sample size for an ε-sample, however: as shown in [25], the log n term can be
reduced to log(1/ε); we give a proof here for ε-samples, and an absolute bound, not an asymptotic
one.

Theorem 6.3 A random sample using a number of trials at least

3
ε2

(
d log

30
ε

+ log
1
δ

)
is an ε-sample with probability at least 1− δ, for εδ1/d ≤ 1/100, ε < 1/18, and d ≥ 2.

Proof: We prove the lemma inductively on n− r, with the result trivially holding for r = n. Let φ1

and φ2 be constants to be chosen later, and for given ε and δ, take a random sample R1 of P with
number of trials

3φ2
1

ε2

(
d log

30φ1

ε
+ log

2
δ

)
and then take a random sample R2 of R1 with number of trials

r2 =
φ2

2

ε2
log

(
r1

d

)
e

δ
.

As above, we choose random samples with replacement, choosing each element of the sample from
among those of the set with equal likelihood. Note that R2 is also a random sample of P . By the
previous lemma, R2 is an ε/φ2-sample of R1 with probability 1− δ/e. By the inductive hypothesis,
R1 is an ε/φ1-sample of P with probability 1− δ/φ1. It follows easily that R2 is an (ε/φ1 + ε/φ2)-
sample of P with probability at least 1 − δ/2 − δ/e > 1 − δ. We choose φ1 = 9 and φ2 = 9/8, so
that R2 is an ε-sample with probability 1− δ.

12

It remains only to verify that the number of trials r2 is as small as claimed. Using the standard
inequality

(
a
b

)
≤ (ae/b)b, we have

r2 ≤ φ2

ε2

(
d log

r1e

d
+ log

e

δ

)
≤ φ2

ε2

(
d + d log

[
3φ2

1

ε2
log

30φ1

εδ1/d

]
+ 1 + log

1
δ

)
=

dφ2

ε2

(
1 + 1/d + log

1
ε2δ1/d

+ log 3φ2
1 + log log

30φ1

εδ1/d

)
.

To have r2 ≤ 3
ε2

(
d log 30

ε + log 1
δ

)
, it suffices that

3 ≥ φ2
2

log 30
εδ1/d

(
1 + 1/d + 2 log

1
εδ1/d

+ log 3φ2
1 + log log

30φ1

εδ1/d

)
.

This bound holds for 1/εδ1/d = 100, and the expression on the right is decreasing in z = εδ1/d.
Taking its derivative and evaluating the constant terms, the derivative is for z > 0 is a positive
multiple of

4.66752972 + 1.61866664z − 11.19684392 ln(5.598421959 + z)− 2.0 ln(5.598421959 + z)z

up to a small relative error. This is negative for z = 100, and easily seen to be decreasing in z.
Hence R2 is an ε-sample with probability 1−δ, of size r2 that is within the bound of the theorem.

This completes the inductive step, and the proof. 2

We can now restate the analysis of Algorithm 1 to avoid any dependence on n in the time bound.
For a given failure probability δ and ε = βd/8, view the random sample chosen for the leaves in
Algorithm 1 as a sample of a random sample of size r, where r is chosen using the bounds of
Theorem 6.3 to be an ε-sample with probability of failure δ/2. The exact value of r can be obtained
from the theorem, and r = O(d4(d log d + log(1/δ)). Now run Algorithm 1 with h ≥ lg lg(2rd/δ) to
obtain a (3βd/8)-center with probability at least 1− δ.

The following theorem states the bounds asymptotically.

Theorem 6.4 For any δ, Algorithm 1 finds an (3βd/8)-center in random O((d5 log d+d4 log 1/δ)log2 d)
time, with probability of error at most δ.

7 A Polynomial Algorithm

Algorithm 1 is subexponentially dependent on d, but not polynomial. Moreover, the dependence on
δ involves an exponent of log d, showing that increasing the reliability of the algorithm is costly in
time. The problem is in the tree-like structure of the algorithm and in the branching factor of d + 2
in that tree. If n is small (e.g., after the sampling modification of the previous section is applied)
the number of leaves in the tree may end up being much larger than n itself. We now give the
polynomial-time Algorithm 4 without this excess. The structure of Algorithm 4 is a layered DAG
rather than a tree, with greater height, but with much smaller width.

13

Algorithm 4 applies the following scheme z = Θ(d + log log n) times to a set T , which is P
initially: independently choose n random samples of T each using d + 2 trials; replace T by the
Radon points of these subsets. After this loop, choose any point of the final T as a center.

With sufficiently large n (n = Ω(d4 log2 d)), this algorithm returns a βd/3e-center with probability
1− 1/n; it takes O(n(d4 + log log n)) time. (Recall that βd ≡ 1/

(
d+2
2

)
.)

Our analysis begins with a tail estimate for binomial distributions.

Lemma 7.1 ([2], A.12) Let X be a binomial random variable with n trials and success probabil-
ity p; Then for u > 1,

Prob{X ≥ upn} ≤ (e/u)upnepn.

Proof: Omitted. 2

Theorem 7.2 After z = Θ(d + log log n + logn 1/δ) iterations, Algorithm 4 returns an O(1/d2)-
center with probability at least 1 − δ, for any n = Ω(d4+ε + d2+ε log 1/δ). Algorithm 4 requires
O(nd3(d + log log n + logn 1/δ)) time.

Proof: As in Theorem 5.4, it is sufficient to analyze a similar algorithm, where P is the set of
values {1/n, 2/n, . . . , 1}, and a sample with d + 2 trials yields its second-smallest element for the
new version of T . (In fact, for the algorithm here, T is a multiset: two samples may yield the same
value, which will then have multiplicity greater than one.) We will find an upper bound for the
probability that the final T has any members less than k/n, for k = βdn/3e.

Let Ti denote T after iteration i, let Ui ≡ Ti ∩ {1/n . . . k/n}, and let ti ≡ |Ui|. Here T0 = S and
t0 = k. We want to bound the probability that tz > 0.

The key observation is that for a given value of ti−1, the events that two random subsets yield
numbers in 1/n . . . k/n are independent; thus ti given ti−1 is bounded by a binomial random variable
with n independent trials, each with success probability bounded above by pi−1 ≡ (ti−1/n)2/βd.

We can use Lemma 7.1 to bound the probability that ti > γti−1: let α ≡ 1/βdn, and put
u = γnpi−1 = γ/αti−1. Then by Lemma 7.1,

Prob{ti ≥ γti−1} ≤ (e/u)upi−1nepi−1n (1)
< (eαti−1/γ)γti−1 . (2)

Now put γ = 2eαti−1, and suppose γti−1 > d̂, where d̂ ≡ 1 + (d + 3) lg n + log 1/δ. Then

Prob{ti ≥ γti−1 = 2eαt2i−1} ≤ (1/2)1+(d+3) lg n+lg 1/δ ≤ δ/nd+3,

Let z′ be the smallest value such that tz′ ≤ d̂. Then inductively for i ≤ z′,

ti ≤ (2eαk)2
i−1k <

(
3
2

)2i−1

n,

and so z′ < lg[1 + log3/2(n/d̂)] = O(log log n). The probability that ti fails to be reduced by the
claimed amount is no more than z′δ/nd+3.

14

Thus ti is quite rapidly reduced, in z′ steps, to d̂; moreover, it subsequently stays below d̂ with
the same high probability, by applying (1) with γ = d̂/ti−1, so that ti ≤ d̂ for i ≥ z′ with failure
probability δ/nd+3.

It remains to show that ti actually becomes zero with high probability, for i not too large. The
probability that ti > 0 is no more than the expected value of ti, which is npi−1, and so

Prob{tz′+q > 0} ≤ (αd̂2)q,

which is less than δ/nd+3 for n/ log2 n = Ω(d4+ε +d2+ε log 1/δ) and q = Θ(d+logn 1/δ). (Note that
explicit upper bounds for q and z′ can be obtained.) Hence after z = O(d + logn 1/δ) iterations,
every point in T is a βd/3e-median point for a given line with probability at least 1− 2dδ/nd+3. By
Corollary 5.2, every such point is a βd/3e-center with probability at least 1− δ.

The time bound for Algorithm 4 follows from the bound on the number of iterations, and the
O(d3) work needed to find a Radon point. 2

Corollary 7.3 Algorithm 4 together with random sampling can be used to compute an 1/3e
(
d+2
2

)
-

center with probability at least 1− δ, in time O(d9 log d + d8 log 1/δ + d5+ε log2 1/δ).

8 High Quality Centerpoints

Our algorithms are very efficient, but only produce O(1/d2)-centers. The linear programming algo-
rithm can produce better centers, but much more slowly; in particular not only is there a constant
factor that depends exponentially on d, but there is also a nonconstant term of the form O(log 1/δ)d.
We now show how to combine our algorithm with linear programming to eliminate this term.

Suppose we wish to compute a (1
d+1 − ε)-center, for some ε < 1/(d + 1). We take a collection of

k random samples, each of size O(d/ε2 log 1/ε). The linear programming algorithm gives us a center
in each, which is a center of our original set with probability at least 1 − exp(Ω(−d3 log d)). If we
choose k = Θ(log 1/δ), we can show using Lemma 7.1 that with probability 1− δ/2, all but O(k/d2)
of the linear programming solutions are centers of the original set. We now find an Ω(1/d2)-center
of these k LP solutions with probability 1 − δ/2; this must then also be an approximate center of
our original set.

Theorem 8.1 In time O((d/ε2 log d/ε)d+O(1) log 1/δ) we can find a (1
d+1−ε)-center, with probability

1− δ.

9 Computation with floating point arithmetic

Up to now we have assumed that computation is done in exact arithmetic. This section has a few
remarks on the precision needed for approximate arithmetic to succeed in computing β-centers with
results nearly comparable to those for exact arithmetic.

We consider approximate arithmetic because it is much more commonly used than say, exact
rational arithmetic, and because it is faster. Also, exact arithmetic seems to be very expensive for
our algorithms: each iteration of Radon point calculation implies at least a constant factor increase

15

in bit complexity; this yields a bit complexity at least exponential in d for our algorithms, either
from the number of operations or the bit complexity of those operations.

Note that with approximate arithmetic, we cannot hope to obtain centers in the exact sense:
suppose P is a set of points in the plane that lie on a line. If q is a point near the (1/2)-center of
P , but off the line containing P , then q is only a 0-center: there is always a line between q and P ,
no matter how close q is to the (1/2)-center. Hence the idea of a center must be changed to allow
such a point q to be considered useful output. With this is mind, rather than find a β-center, we
will seek only a point that is within some small distance µ of a β-center; call such a point a µ-weak
β-center.

We will assume hereafter that all coordinates of all points in P have absolute value less than one.
This condition (and our bounds) then hold by appropriate scaling.

We relate the modified definition of a center to our analysis techniques by noting that q is µ-weak
β-center of P if and only if, for every line, its projection onto that line has that property also for the
projection of P onto that line. Our proofs consider lines normal to hyperplanes defined by points
of P . Our exact results above rely on the fact that if a point is a β-center for those O(nd) lines,
then it is a β-center for P . The analogous relation does not hold for µ-weak β-centers without some
conditions on P or stronger conditions on the computed centers.

The rest of this section considers various such conditions; after lemmas regarding solution of
linear systems, and the error properties of these algorithms as projected onto lines, we consider
bounds that can be obtained by requiring smaller failure probabilities for the algorithms for a given
projection line. This allows larger families of projection lines to be used, which allows bounds on µ.
Finally, we consider bounds based on assumptions about the bit complexity of the input.

To analyze the error properties of the algorithm that finds Radon points, we will be a bit more
specific about it. To restate some of the proof of Theorem 2.4, let P be a set of d+2 points, and let
A be a (d+1)×(d+2) matrix whose columns are the points of P . Let 1 denote the row (d+2)-vector
of 1’s, that is, row vector with d + 2 coordinates, each of which is 1. To find a Radon point of P ,
solve [

A
1

]
x = 0.

For a vector v, let ⊕(v) denote a vector with coordinate ⊕(v)i = vi if vi > 0, and 0 otherwise. Let
x+ = ⊕(x), where x solves the above equation, and let x− = ⊕(−x). Scale x so that 1x+ = 1.
In exact arithmetic Ax+ = Ax− is a Radon point, and is a convex combination of the points P+

corresponding to nonzero entries of x+, as well as a convex combination of the analogous points of
P−. In approximate arithmetic, we have only that Ax+ is close to the convex hull of P+ (within
machine precision), and may be close to the convex hull of P− if x is good solution to the above
linear system.

Let the unit roundoff of the arithmetic operations be u; each arithmetic operation is done with
a relative error bounded by u.

We will assume that x is found using Gaussian elimination, and use the following error bounds.[12]

Lemma 9.1 If the m × m linear system By = c is solved using Gaussian elimination, then for
computed vector ŷ there is a matrix F such that (B + F)y = c, and ‖F‖∞ < ιm‖B‖∞u + O(u2),
where ιm = O(m32m−1).

16

(Recall that for a matrix A, ‖A‖∞ ≡ supx ‖Ax‖∞/‖x‖∞. This is the maximum of the `1-norms of
the rows of A.)) With this lemma, we can begin to consider the error of one Radon point calculation.

Lemma 9.2 Let P , A, x, and x+ and x− be as above. Let v be a unit row d-vector. (Here ‖v‖2 = 1.)
Then vAx+ ≥ vp−O(u)vp for all p ∈ P+, and vAx+ ≥ vp−O(ιdd

√
du) for all p ∈ P−.

Proof: Using the previous lemma, the vectors x+ and x− satisfy([
A
1

]
+

[
E
e

])
(x+ − x−) = 0,

where e is a row (d + 2)-vector. Since ‖B‖∞ for a matrix B bounds the L1 norms of its rows, the
previous lemma implies that ‖E‖∞ and ‖e‖1 are both less than ιddu + O(u)2. We have ‖x+‖1 =
1 + O(u), and from (1 + e)x+ = (1 + e)x−, it is not hard to obtain

‖x−‖1 = 1 + O(dιdu). (3)

From
(A + E)x+ = (A + E)x−,

we obtain
Ax+ − Ax−

1x−
= Ax−(1− 1

1x−
) + E(x− − x+).

We have ‖Ax−‖∞ ≤ 1 + O(ιddu), and

‖E(x− − x+)‖∞ ≤ ‖E‖∞‖x− − x+‖∞ = O(ιddu),

and from (3), 1− 1
1x−

= O(ιddu). Hence∥∥∥∥Ax+ − Ax−
1x−

∥∥∥∥
∞

= O(ιddu).

It follows that vAx+ is within O(ιdd
√

du) of the projection of a point in the convex hull of P−. 2

Next we bound the error from computing Radon points iteratively, considering only projections.
We refer to β-centers produced by an algorithm with β equal to the value proven for the correspond-
ing exact algorithm. We will use a parameter h which is the depth of the Radon point calculation,
bounded by the tree-depth h of Agorithm 1, or the number of iterations of Algorithm 4.

Lemma 9.3 With P a set of n points in Rd and v a unit row d-vector, Algorithms 1 and 4 give a
point q such that vq is a O(ιdhd

√
du)-weak β-center for the values vP = {vp | p ∈ P}.

Proof: Let P ∗ be a set of d + 2 points. Suppose inductively that each value of vP ∗ is within η of a
value in vP ′, where P ′ is the set of points corresponding to P ∗ but computed with exact operations.
Let q be the computed Radon point of P ∗. Then the previous lemma says that vq is within O(u) of
the convex hull of vP ∗

+, and within O(ιdd
√

du) of the convex hull of vP ∗
−. Since the lower endpoint

of the convex hull of vP ∗
+ is within η of the corresponding values of vP ′, and similarly for vP ∗

−, the

17

value vq is within η + O(ιdd
√

du) of the second largest value of vP ′. Noting that a similar claim
holds for −v, it follows that the output has projected value within O(hιdd

√
du) of a β-center of vP .

2

We now have a µ = O(hιdd
√

du) result for the projections of P ; does this imply the result in d
dimensions, as for the exact case? Unfortunately, no; we need more conditions. The output point
of the algorithm is within µ of every hyperplane supporting a facet of the center polytope. (Recall
that such hyperplanes are defined by points of P .) The problem is that not all such output points
are necessarily within µ of the center polytope; in two dimensions, this could occur when the center
polygon has a vertex with a sharp angle. We next give three ways of handling this problem. One
approach uses a collection of evenly distributed projection lines to force the computed point into an
approximation of the β-center polytope. A different approach uses a collection of projection lines
derived from the input points. Another approach relies on the input representation: when the points
of P are given with bounded-precision rational coordinates, the angles or corners of the β-center
polytope can’t be too sharp.

Theorem 9.4 If the failure probabilities of Algorithms 1 and 4 are no more than ηd, η > 0, for a
given projection line, then these algorithms yield O(ιdhd

√
du(1 + η) +

√
dη)-weak β-centers.

Proof: It is not hard to show that there is a collection L of O(1/η)d−1 lines through the origin
that are evenly distributed, in the following sense: take any line ` through the origin; there is a line
`′ ∈ L such that the angle between ` and `′ is no more than η.

Suppose for a given η we have such a collection L, and our algorithms have found a point q
satisfying the bounds of the previous lemma, for all lines in L. (Here v is a unit vector in line `.) We
show that q is close to a β-center. Let q′ be the closest β-center to q, and let H be the hyperplane
through q′ normal to q − q′. We know that there is a line ` ∈ L whose angle with q − q′ is no more
than η. Let v be a row unit vector in L; by the previous lemma, there is a β-center a such that
vq ≤ va + O(ιdd2

√
du). Let w = (q − q′)T /‖q − q′‖2, a row vector. Since H separates the β-center

polytope from q, we have w(a− q′) ≤ 0. Using the Euclidean norm,

‖q − q′‖ = w(q − q′)
= v(q − q′) + (w − v)(q − q′)
= v(q − a) + v(a− q′) + (w − v)(q − q′)

≤ O(ιdd2
√

du) + v(a− q′) + (w − v)(q − q′)

= O(ιdhd
√

du) + w(a− q′) + (v − w)(a− q′) + (w − v)(q − q′)

≤ O(ιdhd
√

du) + ‖a− q′‖‖v − w‖+ ‖q − q′‖‖v − w‖.

Both a and q′ are β-centers, and so have coordinates all less than 1 in absolute value. So ‖a− q′‖ ≤√
d, and since ‖v − w‖ < η, we have

‖q − q′‖ ≤ O(ιdhd
√

du) + ‖a− q′‖‖v − w‖
1− ‖v − w‖

≤ O(ιdhd
√

du(1 + η) +
√

dη).

2

18

This theorem suggests that we need to increase the running time of the algorithms by a factor
of of about d log(1/η), and so achieve an accuracy near machine precision, the overhead is about
d log(1/u). If such accuracy is desired and this factor is larger than d2, the following theorem is of
interest; in combination with the previous theorem, it suggests that we must multiply the number
of operations by about d min{d, log(1/η)}.

Theorem 9.5 If the failure probabilities of Algorithms 1 and 4 are no more than 1/nd2
, for a given

projection line, then these algorithms yield O(ιdd3hu)-weak β-centers with high probability.

Proof: The analyses of this paper generally rely on projection lines perpendicular to hyperplanes
through d input points. The theorem follows from considering a much larger class L(P) of projection
lines, defined as follows: for each hyperplane H through d input points, include in L(P) the projection
line normal to H. Also include projection lines found as follows: project the remaining input points
orthogonally onto H, giving a point set PH . Include in L(P) the lines of L(PH), constructed
recursively within H. (Here k points in a k-flat yield the line that is contained in that k-flat and
perpendicular to the (k − 1)-flat containing the points.) The number of projection lines in L(P) is
no more than

(
n
d

)(
n

d−1

)
· · ·

(
n
3

)
< nd2

.
Suppose now that Algorithms 1 or 4 are run so that an output point q is a O(ιdd3

√
du)-weak

center with respect to every projection line of L(P). Suppose q is separated from the appropriate
center polytope by a hyperplane H through d points of P . The distance d(q, H) of q to H satisfies
d(q, H) = O(ιdd3

√
du). The squared distance of q to the center polytope is no more than d(q, H)2

plus the squared distance of the projection of q onto H to the projection of the center polytope onto
H. The result follows by induction on dimension; this induction yields a distance bound within

√
d

times the distance bound of the previous lemma. 2

Finally, here is a bound that does not require a decrease in failure probability, with a correspond-
ing increase in the number of operations. The bound does, however, depend on the bit complexity
of the input.

Theorem 9.6 Let P be a set of n points in Rd, where the coordinates of P are rational and the
total bit complexity of P is σ. Algorithms 1 and 4 return a ιdd

2hu22(dO(1)σ)u-weak β-center of P
with high probability.

Proof: Suppose q is an output point of Algorithms 1 or 4, and q∗ is the closest β-center to q. It is a
standard result of optimization theory that the vector c = q − q∗ is a positive linear combination of
outward unit normal vectors to d or fewer hyperplanes that determine the center polytope. These
hyperplanes each separate q from the center polytope. By the lemma just above we know that q
is close to each such hyperplane. (Here we assume nondegeneracy of the input, easily insured by
adding d + 1 affinely independent points.) That is, c = Bz, where z is a column vector, and the
matrix B has columns that are unit vectors each normal to some hyperplane determining the center
polytope. As remarked, by the lemma just above we have ‖cT B‖∞ = O(ιddh

√
du). We have

cT c = cT (BB−1)((BT)−1BT)c
= cT B(BT B)−1BT c

≤ ‖cT B‖2‖(B
T B)−1BT c‖2

19

≤ ‖cT B‖∞‖(B
T B)−1BT c‖∞

≤ ‖cT B‖∞‖(B
T B)−1‖∞‖B

T c‖∞
= O(ι2dd

4h2u2)‖(BT B)−1‖∞.

We can assume that the columns of B are linearly independent, and so BT B has an inverse. The
columns of B are solutions of linear systems with coefficients from coordinates of P ; hence by
standard bounds applied twice, [22, §3.2]

‖(BT B)−1‖∞ = 2dO(1)σ.

2

10 Final Remarks

In this paper, we have present provably good algorithms for centerpoint computation that has
direct impact on practical applications. Gilbert and Teng [11] have implemented our center point
algorithms as a subroutine of a geometric-mesh-partitioning toolbox. The toolbox is written in
Matlab. It includes both edge and vertex separators, recursive bipartition, nested dissection ordering,
visualizations and demos, and some sample meshes. The complete toolbox is available by anonymous
ftp from machine ftp.parc.xerox.com as file /pub/gilbert/meshpart.uu.

Our experiment with a large class of two and three dimensional mesh data showed that Algorithm
1, using 800 sample points, finds 0.4-centers in three dimensions with 95 percent probability. Similar
results are obtained for four dimensions (with 1000 sample points). We have also implemented
Algorithm 4 of Section 7. Our experiments showed that 600 sample points and 6 levels of Radon
reduction achieves comparable quality for four dimensions.

Matlab uses double precision. Our experiments indicated that our Radon-reduction algorithms
are robust numerically. It is worthwhile to point out that for applications such as geometric mesh
partitioning [18], it is sufficient to use weak-centers in the sense that the theory of partitioning holds
if a large proportion of hyperplanes passing through the weak-center evenly splits the point set.
Thus, our numerical analysis of Section 9 provides a theoretical justification for our experimental
observation.
Acknowledgments We would like to thank Mic Grigni for pointing out that Valiant’s method in
[24] adapts to our approximate median algorithm, Dan Spielman for helpful discussions, and the
anonymous referees.

References

[1] N. Alon, I. Bárány, Z. Füredi, and D. J. Kleitman. Point selections and weak ε-nets for convex
hulls. Manuscript, 1991.

[2] N. Alon, J. Spencer, and P. Erdős. The Probabilistic Method. Wiley, New York, 1992.

[3] K. L. Clarkson. A Las Vegas algorithm for linear programming when the dimension is small.
In Proc. 29th IEEE Symp. on Foundations of Computer Science, pages 452–456, 1988. Revised

20

version: Las Vegas algorithms for linear and integer programming when the dimension is small
(preprint).

[4] B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems
in fixed dimension. 4th ACM Symp. Discrete Algorithms (1993) 281–289.

[5] R. Cole, M. Sharir, and C. K. Yap. On k-hulls and related problems. SIAM J. Comput. 16
(1987) 61–77.

[6] L. Danzer, J. Fonlupt, and V. Klee. Helly’s theorem and its relatives. Proceedings of Symposia
in Pure Mathematics 7, Amer. Math. Soc. (1963) 101–180.

[7] M. E. Dyer. On a multidimensional search procedure and its application to the Euclidean one-
centre problem. SIAM J. Comput. 13 (1984) 31–45.

[8] D. L. Donoho and M. Gasko. Breakdown properties of location estimates based on halfspace
depth and projected outlyingness. The Annals of Statistics 20 (4) (1992) 1803–1827.

[9] H. Edelsbrunner. Algorithms in Combinatorial Geometry. Springer-Verlag, 1987.

[10] A. M. Frieze, G. L. Miller, and S.-H. Teng. Separator based divide and conquer in computational
geometry. 4th ACM Symp. Parallel Algorithms and Architectures (1992) 420–430.

[11] J. R. Gilbert, G. L. Miller, and S.-H. Teng. Geometric Mesh Partitioning: Implementation and
Experiments. In IPPS, to appear 1995.

[12] P. E. Gill, W. Murray, and M. H. Wright. Numerical Linear Algebra and Optimization. Addison-
Wesley, New York, 1991.

[13] D. Haussler and E. Welzl. Epsilon nets and simplex range queries. Discrete Comput. Geom. 2
(1987) 127–151.

[14] S. Jadhav and A. Mukhopadhay. Computing a center of a finite planar set of points in linear
time. 9th ACM Symp. Computational Geometry (1993) 83-90.

[15] J. Matoušek. Approximations and optimal geometric divide-and-conquer. 23rd ACM Symp.
Theory of Computing (1991) 512–522.

[16] N. Megiddo. Linear programming in linear time when the dimension is fixed. SIAM J. Comput.
12 (1983) 759–776.

[17] G. L. Miller and S.-H. Teng. Centers and point divisions. Manuscript, Carnegie Mellon Univer-
sity, 1990.

[18] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Automatic mesh partitioning. In
A. George, J. Gilbert, and J. Liu, editors, Sparse Matrix Computations: Graph Theory Issues
and Algorithms, IMA Volumes in Mathematics and its Applications. Springer-Verlag, 1993.

[19] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Finite element meshes and geometric
separators. SIAM J. Scientific Computing, to appear, 1995.

21

[20] G. L. Miller, S.-H. Teng, W. Thurston, and S. A. Vavasis. Separators for sphere-packings and
nearest neighborhood graphs. submitted to J. ACM, 1995.

[21] J. Spencer. Ten Lectures on the Probabilistic Method, SIAM, Philadelphia, 1987.

[22] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York, 1986.

[23] S.-H. Teng. Points, Spheres, and Separators: a unified geometric approach to graph partitioning.
PhD thesis, Carnegie-Mellon University, School of Computer Science, 1991. Tech. Rep. CMU-
CS-91-184.

[24] L. Valiant. Short monotone formulae for the majority function. J. Algorithms, 5, 1984, 363–366.

[25] V. N. Vapnik and A. Ya. Chervonenkis. On the uniform convergence of relative frequencies of
events to their probabilities. Theory Probab. Appl., 16 (1971) 264-280.

[26] B. W. Weide. Statistical Methods in Algorithm Design. PhD Thesis, Carnegie-Mellon University,
School of Computer Science, 1978. Tech. Rep. CMU-CS-78-142.

[27] F. F. Yao. A 3-space partition and its application. 15th ACM Symp. Theory of Computing
(1983) 258–263.

22

