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Abstract

We prove the existence of small core-sets for solv-
ing approximate k-center clustering and related prob-
lems. The size of these core-sets is considerably
smaller than the previously known bounds, and im-
ply faster algorithms; in particular, we get an algo-
rithm needing O(dn/e + (1/€)%) time to compute an
e-approximate minimum enclosing ball (1-center) of n
points in d dimensions. We also give a simple gradient-
descent algorithm for computing the minimum enclos-
ing ball in O(dn/€*) time. This algorithm also implies
slightly faster algorithms for computing approximately
the smallest radius k-flat of a given set of points.

1 Introduction

Given a set of points P C R* and value € > 0, a core-set
S C P has the property that the smallest ball contain-
ing S is within € of the smallest ball containing P. That
is, if the smallest ball containing S is expanded by 1+,
then the expanded ball contains P. It is a surprising fact
that for any given € there is a core-set whose size is in-
dependent of d, depending only on €. This is was shown
by Badoiu et al.[BHI], where applications to clustering
were found, and the results have been extended to k-flat
clustering.[HV].

While the previous result was that a core-set has size
O(1/€?), where the constant hidden in the O-notation
was at least 64, here we show that there are core-sets of
size at most 2/e. This is not so far from a lower bound
of 1/¢, which is easily shown by considering a regular
simplex in 1/e dimensions. Such a bound is of particular
interest for k-center clustering, where the core-set size
appears as an exponent of n in the running time.

Our proof is a simple effective construction. We also
give a simple algorithm for computing smallest balls,
that looks something like gradient descent; this algo-
rithm serves to prove a core-set bound, and can also
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be used to prove a somewhat better core-set bound for
k-flats. Also, by combining this algorithm with the con-
struction of the core-sets, we can compute a 1-center in
time O(dn/e + (1/€)?).

In the next section, we prove the core-set bound for
1-centers, and then describe the gradient-descent algo-
rithm. In the conclusion, we state the resulting bound
for the general k-center problem.

2 Core-sets for 1-centers

Given a ball B, let cg and rp denote its center and
radius, respectively. Let B(P) denote the l-center of
P, the smallest ball containing it.

We restate the following lemma, proved in [GIV]:

Lemma 2.1 If B(P) is the minimum enclosing ball of
P C RY, then any closed half-space that contains the
center cp(py also contains a point of P that is at dis-
tance rg(py from cp(p)-

Theorem 2.2 There exists a set S C P of size 2/e
such that the distance between cp(s) and any point p of
P is at most (1 + €)rp(p)-

Proof: We proceed in the same manner as in [BHI]: we
start with an arbitrary point p € P and set Sy = {p}.
Let m; = rp(s,) and ¢; = cp(s;)- Take the point ¢ € P
which is furthest away from c¢; and add it to the set:
Sit1 < S;|U{q}. Repeat this step 2/e times.

Let ¢ = cpp), R =rpp), i =1i/R, di = ||c — ¢i|
and K; = ||¢;41 — ¢||- Since the radius of the minimum
enclosing ball is R, there is at least one point ¢ € P such
that ||¢ — ¢;|| > R. If K; = 0 then we are done, since
the maximum distance from ¢; to any point is at most
R. If K; > 0, let H be the hyperplane that contains
¢; and is orthogonal to (¢;, c;y1). Let HT be the closed
half-space bounded by H that does not contain ¢;11. By
Lemma Lemma 2.1, there must be a point p € S; (H™
such that ||¢; — p|| = r; = MR, and so ||ci1 — p|| >

VAZR? + K2. Therefore,
>\i+1R > max(R — Ki» A/ )\22R2 + K?)
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We want a lower bound on A;;; that depends only on
Ai- Observe that the bound on A;41 is smallest with

respect to K; when
R—-K,; = \/)\?RQ—&—KZZ

R* = 2K;R + K} = \}R* + K
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Substituting v; = 1= in the recurrence (2), we get

Since A\g = 0, we have 79 = 1, so v; > 1+ i/2 and
A > 11— ﬁ That is, to get A; > 1 — ¢, it’s enough
that 1+14/2 > 1/e, or enough that i > 2/e. [

3 Simple algorithm for 1-center

The algorithm is the following: start with an arbitrary
point ¢; € P. Repeat the following step 1/e? times: at
step ¢ find the point p € P farthest away from ¢;, and
move toward p as follows: ¢;11 «— ¢; + (p — CZ)H%1
Claim 3.1 If B(P) is the I-center of P with center
cp(py and radius rppy, then ||lcppy — ci| < rB(p)/\ﬂ
for all i.

Proof: Proof by induction: Let ¢ = cp(p). Since we
pick ¢; from P, we have that [|c — ¢1]| < R = rp(p).
Assume that ||c — ¢;|| < R/Vi. If ¢ = ¢; then in step i
we move away from ¢ by at most R/(i+1) < R/vi+ 1,
so in that case ||c—c¢;11|] < R/Vi + 1. Otherwise, let H
be the hyperplane orthogonal to (¢, ¢;) which contains
c. Let H be the closed half-space bounded by H that
does not contain ¢; and let H~ = R\ HT. Note that
the furthest point from ¢; in B(P) () H~ is at distance
less than +/||¢; — ¢||? + R? and we can conclude that for
every point ¢ € PN H ™, |le; — ¢l| < V/l|ei — ¢]|? + R2.
By Lemma 2.1 there exists a point ¢ € P(H™ such

that [le; — q|] > /|lei — ¢||> + R?2. This implies that

p € P H*. We have two cases to consider:

e if ¢; 11 € HT, by moving ¢; towards ¢ we only in-
crease ||ci+1 — ||, and as noted before if ¢; = ¢ we
have ||ciy1 — || < R/(i+ 1) < R/vi+ 1. Thus,
llcivr — | S R/Vi+1

e if ¢;y1 € H™, by moving ¢; as far away from c
and p on the sphere as close as possible to H ™, we

only increase ||¢;+1 — ¢||. But in this case, (¢, ¢i11)
is orthogonal to (¢;,p) and we have ||c;y1 — ¢|| =

BN _ Rt l
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4 Conclusions

In this paper we showed the existence of small core-sets
for solving k-center clustering. The new bounds are
not only asymptotically smaller but also the constant is
much smaller that the previous results. These results
combined with the techniques from [BHI] and [HV] al-
low us to get faster algorithms for the k-center problem
and j-approximate k-flat respectively. We can solve the
k-center problem in 20((k1o8k)/€) gn while the previous

bound was 20((k10gk)/€*) gy, Also, the running time for
computing j-approximate k-flat (with or without out-

liers) is dn©(k3/ 65), while the previous known bound was

dnO*i/*log 1) By combining the two algorithms above
we get an O(dn/e+ (1/¢€)%) time algorithm for comput-
ing 1-center which is faster than the previously fastest
algorithm, with running time O(dn/e*+ (1/¢)'%log ).
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