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Abstract

Let S be a set of n points in d dimensions. A k-set of S is a subset
of size k that is the intersection of S with some open halfspace. This
note shows that if the points of S are random, with a coordinate-wise
independent distribution, then the expected number of k-sets of S is
O((k log(en/k))d−1)2d/(d − 1)!, as k log n → ∞, with a constant inde-
pendent of the dimension.

1 Introduction

For a set S of n points in Rd, a k-set of S is a subset of size k of the form
P ∩ S, where P is an open halfspace. It is a long-standing puzzle to bound the
maximum number of k-sets that some set can have. Results on this problem go
back to Lovász and Erdős et al.[Lov71, ELSS73]; the best known upper bound
O(nk1/3) in the plane is due to Dey[Dey98], while the best upper bound for
d = 3 is O(nk3/2)[SST01], and for d > 3 is O(nd−εd), [vV92] where εd > 0. The
best lower bound nd−1eΩ(

√
log k) is due to Tóth.[Tot01].

It is tempting to speculate that the truth is closer to the lower bound. The
fact that the total number of j-sets, for j ≤ k, is no more than O(nbd/2ckdd/2e),
[AG86, CS89] is suggestive in this regard: dividing this bound by k, the “av-
erage” number of j-sets, for random j ≤ k, is O(nbd/2ckdd/2e−1). There are
also tighter results for a restricted class of well-separated, so-called dense point
sets.[EVW97]

There are a few results known for random sets; these results are close to,
or below, the worst-case lower bound. Here “random” means that the points
are independently, identically distributed random variables, with a distribution
that may have some additional properties. Bárány and Steiger showed, among
other results, that if the distribution is spherically symmetric, then the expected
number of n/2-sets is O(nd−1), with a constant dependent on d. [BS94] They
also showed a bound of O(n) for points uniform in a convex body in the plane.
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Here we consider random points which have a distribution with the coordinate-
wise independence property, defined below. For such pointsets, we use well-
known results about the k-set polytope, and use its relation to k-sets, and well-
known results regarding coordinate-wise maxima, to prove a tight bound on the
expected number of k-sets.

The bound overlaps with Bárány and Steiger’s results to some extent: pla-
nar points uniform in a rectangle are coordinate-wise independent, and a mul-
tivariate normal distribution is both spherically symmetric and coordinate-wise
independent.

2 Coordinate-wise independence

Let X1, X2 . . . Xd denote the n-vectors of coordinates of S. Write the density
function of the nd coordinates of S as f(X1, X2 . . . Xd), and let the marginal
density function of Xi be fi(Xi). Say that S is coordinate-wise independent if:

1. Each function fi(Xi) is symmetric in the n coordinates of Xi;

2. The density functions satisfy f(X1, . . . , Xd) =
∏

i fi(Xi).

(A similar definition, with similar results, can be made for discrete distribu-
tions.)

Note that condition 1 is satisfied if the points of S are independently, iden-
tically distributed. This definition generalizes slightly from that case, because
results known to hold for i.i.d. points will be needed for pointsets satisfying this
broader condition.

This general definition can include a case where all points have the same x1

coordinate.

3 Maxima and extreme points

Given a vector v = (v1, . . . , vd) with each entry ±1, say that a point p ∈ S is a
v-maximum if, for all p′ ∈ S and all i = 1, . . . , d, pivi ≥ p′ivi. If v is understood,
we may just say that p is a maximum. Say that p is a coordinate extremum if it
is a v-maximum for some v. The following is well-known.

Lemma 3.1 Every extreme point (convex hull vertex) of S is a coordinate ex-
tremum of S.

Proof: (Sketch) Suppose x ∈ S is not a coordinate extremum. Then every
quadrant about x contains a point of S. Call that collection of points T . It is
easy to show by induction on dimension that x is a convex combination of the
points of T , which implies that x is not an extreme point of S.

That is, the number of coordinate extrema is an upper bound on the number
of extreme points.

Let M(S) denote the v-maxima of S, for v = (1, . . . , 1).
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Lemma 3.2 If S is coordinate-wise independent, then for any given v, the prob-
ability that the first point p1 in S is a v-maximum is E[|M(S)|]/n.

Proof: Let Ik be an indicator function that is 1 when pk is a maximum, and
zero otherwise. Since the density function is symmetric, all orderings of the
points are equally likely, and so the probability that p1 is a maximum is equal
to

∑
k Ik/n. The expectation of this quantity is

∑
k E[Ik]/n = E[|M(S)|]/n, as

claimed, by linearity of expectation.

Theorem 3.3 If S is coordinate-wise independent, then for any given v, the
expected number of v-maxima is

Hd−1
n

(d− 1)!
(1 + O(d/ log n)) = O(logd−1 n)/(d− 1)!

as n →∞. Here Hn ≡
∑

1≤i≤n 1/i = log n + γ, where γ is Euler’s constant.

The asymptotic result is due to Bentley et al.[BKST78]; A simplified proof
and tighter bound was given by Buchta[Buc89]. These proofs were for i.i.d.
points, but would probably apply in the more general setting needed here; even
so, yet another proof follows.

Proof: We consider only v = (1, . . . , 1); the other cases are similar. Order
the n points by increasing x1 coordinate; let pk denote the k’th point in the
list. For p = (x1, . . . , xd), let P1(p) denote the point (x2, . . . , xd). Then pk is a
maximum if and only if P1(pk) ∈M(Qk), where

Qk ≡ {P1(pi) | i ≥ k}.

Let Ik denote the event that pk is a maximum; that is, Ik = 1 when the k’th
point in the list is a maximum. We have

E[|M(S)|] = E[
∑

k

Ik] =
∑

k

E[Ik] =
∑

k

Prob{P1(pk) ∈M(Qk)}.

Since S is coordinate-wise independent, the distribution of Qk is also coordinate-
wise independent. Therefore, the probability that P1(pk) ∈M(Qk) is E[|M(Qk)|]/k,
by the lemma just above. Letting T (n, d) be the expected number of maxima
of n coordinate-wise independent points in d dimensions, we have

T (n, d) =
∑
k≤n

T (k, d− 1)/k,

with T (n, 1) = T (1, d) = 1 for all n and d. Expanding in d, the solution to this
recurrence is

T (n, d) =
∑
j2≤n

1
j2

T (j2, d−1) =
∑
j2≤n

1
j2

∑
j3≤j2

1
j3

T (j3, d−2) =
∑

1≤jd≤jd−1···≤j2≤n

∏d

i≥2

1
ji

.

As shown by Buchta[Buc89], this quantity is Hd−1
n

(d−1)! (1+O(d/ log n)), as claimed.
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A way to verify the claim is to observe that the solution sum is symmetric
in j2, . . . , jd, and adding up (d − 1)! copies gives an unrestricted sum over the
ji’s, that is, Hd−1

n , plus some lower-order terms.
Note that T (n, d) satisfies the recurrence

T (n, d) = T (n, d− 1) + T (n− 1, d)/n.

Plugging in the given bound also verifies the claim. This recurrence was studied
by Roman[Rom92], who showed that the solution can be expressed by a rather
different sum:

T (n, d + 1) =
∑

1≤i≤n

(
n

i

)
(−1)i−1i−d.

4 The main result

Theorem 4.1 If S is coordinate-wise independent, then the expected number of
k-sets of S is

O((k log(en/k))d−1)2d/(d− 1)!

as k log n/k →∞, with a constant independent of the dimension.

Proof: Let Vk(S) denote the set

{
∑
p∈T

p | T ⊂ S, |T | = k}.

It is a well-known fact that the extreme points of Vk(S) are in one-to-one corre-
spondence with the k-sets of S.(See, for example, [EVW97]) The convex hull of
Vk(S) is called the k-set polytope of S. Note that Vk(S) has N ≡

(
n
k

)
≤ (en/k)k

points. Since S is coordinate-wise independent, so also is Vk(S). (The alert
reader will notice that the points of Vk(S) are not i.i.d., however.) So the
expected number of maxima of Vk(S) is

Hd−1
N

(d− 1)!
(1+O(d/ log N)) = O(log N)d−1/(d−1)! = O((k log(en/k))d−1)/(d−1)!.

From Lemma 3.1, the number of extreme points of Vk(S) is at most 2d times
this value, which also bounds the number of k-sets by the correspondence just
mentioned.
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