
Safe and Effective Determinant Evaluation

Kenneth L. Clarkson
AT&T Bell Laboratories

Murray Hill, New Jersey 07974
e-mail: clarkson@research.att.com

February 25, 1994

Abstract

The problem of evaluating the sign of the determinant of a small
matrix arises in many geometric algorithms. Given an n × n matrix
A with integer entries, whose columns are all smaller than M in Eu-
clidean norm, the algorithm given here evaluates the sign of the deter-
minant det A exactly. The algorithm requires an arithmetic precision of
less than 1.5n + 2 lg M bits. The number of arithmetic operations needed
is O(n3) + O(n2) logOD(A)/β, where OD(A)|det A| is the product of
the lengths of the columns of A, and β is the number of “extra” bits of
precision,

min{lg(1/u)− 1.1n− 2 lg n− 2, lg N − lg M − 1.5n− 1},

where u is the roundoff error in approximate arithmetic, and N is the
largest representable integer. Since OD(A) ≤ Mn, the algorithm requires
O(n3 lg M) time, and O(n3) time when β = Ω(log M).

1 Introduction

Many geometric algorithms require the evaluations of the determinants of small
matrices, and testing the signs (±) of such determinants. Such testing is fun-
damental to algorithms for finding convex hulls, arrangements of lines and line
segments and hyperplanes, Voronoi diagrams, and many others. By such nu-
merical tests, a combinatorial structure is defined. If the tests are incorrect, the
resulting structure may be wildly different from a “sensible” result[11, 6], and
programs for computing the structures may crash.

Two basic approaches to this problem have been proposed: the use of exact
arithmetic, and the design of algorithms to properly use inaccurate numerical
tests. While the former solution is general, it can be quite slow: naively, n-tuple
precision appears to be necessary for exact computation of the determinant of an
n×n matrix with integer entries. While “adaptive” precision has been proposed
and used[7], the resulting code and time complexity are still substantially larger
than one might hope.

1

The second approach is the design (or redesign) of algorithms to use limited
precision arithmetic and still guarantee sensible answers. (For example, [4, 2,
13, 6, 14, 12, 11, 9, 17].) Such an approach can be quite satisfactory, when
obtainable, but seems applicable only on an ad hoc and limited basis: results
for only a fairly restricted collection of algorithms are available so far.

This paper takes the approach of exact evaluation of the sign of the deter-
minant, or more generally, the evaluation of the determinant with low relative
error. However, the algorithm requires relatively low precision: less than 3n/2
bits, and additionally some number more bits than were used to specify the ma-
trix entries. The algorithm is naturally “adaptive,” in the sense that the running
time is proportional to the logarithm of the orthogonality defect OD(A) of the
matrix A, where

OD(A) ≡
∏

1≤i≤n‖ai‖
|detA|

.

Here ai is the ith column of A. (We let ‖ai‖ ≡
√

a2
i denote the Euclidean norm

of ai, with a2
i ≡ ai ·ai.) In geometric problems, the orthogonality defect may be

small for most matrices, so such adaptivity should be a significant advantage in
running time. Note that the limited precision required by the algorithm implies
that “native” machine arithmetic can be used and still allow the input precision
to be reasonably high. For example, the algorithm can handle 10× 10 matrices
with 32-bit entries in the 53 bits available in double precision on many modern
machines.

The algorithm is amenable to “rank-one updates,” so det B can be evaluated
quickly (in about O(n2) time) after detA is evaluated, if B is the same as A in
all but one column.

One limitation of the approach here is that the matrix entries are required
to be integers, rather than say rational numbers. This may entail preliminary
scaling and rounding of input to a geometric algorithm; this limitation can be
ameliorated by allowing input expressed in homogeneous coordinates, as noted
by Fortune[1]. The resulting output is plainly the output for inputs that are
“near” the originals, so such an algorithm is stable in Fortune’s sense.[2]

The new algorithm uses ideas from Lovász’s basis reduction scheme [8, 10,
16], and can be viewed as a “low-rent” version of that algorithm: a result of
both algorithms is a new matrix A′, produced by elementary column operations,
whose columns are roughly orthogonal. However, basis reduction does not allow
a column of A to be replaced by an integer multiple of itself: the resulting
set of matrix columns generates only a sublattice of the lattice generated by
the columns of A. Since here only the determinant is needed, such a scaling
of a column is acceptable since the scaling factor can be divided out of the
determinant of the resulting matrix. Thus the problem solved here is easier
than basis reduction, and the results are sharper with respect to running time
and precision. The algorithm here yields a QR factorization of A, no matter
what the condition of A, and so may be of interest in basis reduction, since
Lovász’s algorithm starts by finding such a factorization. In practice, that initial
factorization is found as an approximation using floating-point arithmetic; if the

2

matrix MGS (matrix A)
{

for k := 1 upto n do
ck := ak;
for j := k − 1 downto 1 do ck −= aj(ck/cj);

return C;
}

Figure 1: A version of the modified Gram-Schmidt procedure.

matrix is ill-conditioned, the factorization procedure may fail.
Schnorr has given an algorithm for basis reduction requiring O(n+lg M) bits;

his algorithm for this harder problem is more complicated, and his constants
are not as sharp.[15]

2 The algorithm

The algorithm is an adaptation of the modified Gram-Schmidt procedure for
computing an orthogonal basis for the linear subspace spanned by a set of vec-
tors. The input is the matrix A = [a1 a2 . . . an] with the column n-vectors ai,
i = 1 . . . n. One version of the modified Gram-Schmidt procedure is shown in
Figure 1. We use the operation a/b for two vectors a and b, with a/b ≡ (a ·b)/b2.
Note that (a + b)/c = a/c + b/c, and (a − (a/c)c) · c = 0. Implemented in ex-
act arithmetic, this procedure yields an orthogonal matrix C = [c1 c2 . . . cn],
so ci · cj = 0 for i 6= j, such that ak = ck +

∑
1≤j<k Rjkcj , for some values

Rjk = ak/cj . (In variance with some usage, in this paper orthogonal matrices
have pairwise orthogonal columns: they need not have unit length. If they do,
the matrix will be termed orthonormal.)

The vector ck is initially ak, and is then reduced by the cj components of ak:
after step j of the inner loop, ck ·cj = 0. Note that even though aj is used in the
reduction, rather than cj , the condition ck · ci = 0 for j < i < k is unchanged,
since aj has no ci components for i > j.

Since A = CR where R is unit upper triangular, det A = det C; since C is
an orthogonal matrix, |detC| =

∏
1≤j≤n‖cj‖, and it remains only to determine

the sign of the determinant of a perfectly conditioned matrix.
When the same algorithm is used with floating-point arithmetic to find a

matrix B approximating C, the algorithm may fail if at some stage k a column
bk of B is very small: the vector ak is very nearly a linear combination of the
vectors {a1, . . . , ak−1}: it is close to the linear span of those vectors. Here the
usual algorithm might simply halt and return the answer that the determinant
is nearly zero. However, since bk is small, we can multiply ak by some large
scaling factor s, reduce sak by its cj components for j < k, and have a small
resulting vector. Indeed, that vector will be small even if we reduce using
rounded coefficients for aj . With such integer coefficients, and using the columns

3

float det safe(matrix A)
{

float denom := 1;
Sb := 0;

for k := 1 upto n do
loop

bk := ak;
for j := k − 1 . . . 1 bk −= aj(bk/bj);

if a2
k ≤ 2b2

k then {Sb += b2
k; exit loop;}

s := Sb/4(b2
k + 2δka2

k);
s := min{s, (N/1.58k −

√
Sb)2/a2

k};
if s < 1/2 then s := 1 else s := d

√
s c;

if s = 1 and a2
k ≤ 0.9Sb then s := 2;

denom ∗= s;
ak ∗= s;
for j := k − 1 . . . 1 ak −= ajd(ak/bj)c;
if ak = 0 then return 0;

end loop;
return det approx (B)/denom;

}

Figure 2: An algorithm for estimating det A with small relative error.

aj and exact arithmetic for the reduction steps, det A remains unchanged, except
for being multiplied by the scaling factor s.

Thus the algorithm given here proceeds in n stages as in modified Gram-
Schmidt, processing ak at stage k. First the vector bk is found, estimating the
component of ak orthogonal to the linear span of {a1, . . . , ak−1}. A scaling
factor s inversely proportional to ‖bk‖ is computed, and ak is replaced by sak

and then reduced using exact elementary column operations that approximate
Gram-Schmidt reduction. The result is a new column ak = sĉk +

∑
1≤j<k αjcj ,

where ĉk is the old value of that vector, and the coefficients αj ≈ 1/2. Hence the
new ak is “more orthogonal” to earlier vectors than the old one. The processing
of ak repeats until ak is nearly orthogonal to the previous vectors a1, . . . , ak−1,
as indicated by the condition a2

k ≤ 2b2
k.

The algorithm is shown in Figure 2. All arithmetic is approximate, with
unit roundoff u, except the all-integer operations ak ∗= s and the reduction
steps for ak (although ak/bj is computed approximately). The value N is no
more than the largest representable integer. For a real number x, the integer
dxe is the least integer no smaller than x, and dxc is dx − 1/2e. The quantity
δk is defined in Notation 3.4 below.

4

The precision requirements of the algorithm can be reduced somewhat by
“reorthogonalization,” that is, simply applying the reduction step to bk again
after computing it, or just before exiting the loop for stage k. Hoffman discusses
and analyzes this technique; his analysis can be sharpened in our situation.[5]

Note that the condition a2
k ≤ 2b2

k may hold frequently or all the time; if the
latter, the algorithm is very little more than Modified Gram-Schmidt, plus the
procedure for finding the determinant of the very-well-conditioned matrix B.

3 Analysis

The analysis requires some elementary facts about the error in computing the
dot product and Euclidean norm.

Lemma 3.1 For n-vectors a and b and using arithmetic with roundoff u, a · b
can be estimated with error at most 1.01nu‖a‖‖b‖, for nu ≤ .01. The rela-
tive error in computing a2 is therefore 1.01nu, under these conditions. The
termination condition for stage j implies a2

j ≤ 2b2
j (1 + 2.03nu).

Proof: For a proof of the first statement, see [3], p. 35. The remaining
statements are simple corollaries.

We’ll need a lemma that will help bound the error due to reductions using
bj , rather than cj .

Lemma 3.2 For vectors a, b, and c, let d ≡ b− c, and let δ ≡ ‖d‖/‖b‖. Then

a/b− a/c ≤ ‖a‖‖d‖/‖c‖‖b‖ = δ‖a‖/‖c‖.

Note also a/b ≤ ‖a‖/‖b‖.

Proof: The Cauchy-Schwartz inequality implies the second statement, and
also implies

a/b− a/c ≤ ‖a‖‖b/b2 − c/c2‖.

Using elementary manipulations

b

b2
− c

c2
=

(dc2 − cd · c)− c(d · c + d2)
c2b2

.

The two terms in the numerator are orthogonal, so the norm of this vector is√
(dc2 − cd · c)2 + c2(d · c + d2)2

c2b2
=

√
c2d2b2

c2b2
= δ/‖c‖,

as desired.

Lemma 3.3 For vectors a, b and c, and d, and δ as in the previous lemma,
suppose a2 ≤ 2b2(1 + α), a/c = 1, and α < 1. Then ‖a− b‖/‖b‖ ≤ 1 + 4δ + α.

5

Proof: We have

(a− b)2

b2
=

a2 − 2a · b + b2

b2
≤ 3 + 2α− 2a · b/b2,

using a2 ≤ 2b2(1 + α). By the assumption a/c = 1,

a · b
b2

=
a · (c + d)

b2
=

c2 + a · d
b2

≥ (1− δ)2 −
√

2(1 + α),

where the last inequality follows using the triangle and Cauchy-Schwartz in-
equalities and the assumption a2 ≤ 2b2(1 + α). Hence

(a− b)2

b2
≤ 3 + 2α− 2((1− δ)2 −

√
2(1 + α)δ) ≤ 1 + 2α + 8δ,

giving ‖a− b‖/‖b‖ ≤ 1 + 4δ + α, as claimed.

Notation 3.4 Let
η ≡ 3(n + 2)u,

and for j = 1 . . . n, let
δj ≡ Ljη − η,

where
L2

j ≡ jµ2(µ2 + 2.04)j−1,

and
µ ≡ 1.58.

Let
φ ≡ 1 + 2.04/µ2.

Let
dk ≡ bk − ck

for k = 1 . . . n.

Theorem 3.5 Suppose the reductions for bk are performed using rounded arith-
metic with unit roundoff u. Assume that (n + 2)u < .01 and δn < 1/32. (For
the latter, lg(1/u) ≥ 1.1n + 2 lg n + 7 suffices.) Then:

(i) ‖bk − aj(bk/bj)‖ ≤ 1.54‖bk‖.

(ii) The computed value of a single reduction step for bk, or bk − (bk/bj)aj,
differs from the exact value by a vector of norm no more than η‖bk‖.
Before a reduction of bk by aj, ‖bk‖ ≤ ‖ak‖µk−1−j.

(ii) After the reduction loop for bk, dk satisfies

‖dk‖ ≤ δk‖ak‖/
√

2,

and after stage k, ‖dk‖ ≤ δk‖bk‖.

6

Proof: First, part (i): let

a′j ≡ (aj − bj)− ((aj − bj)/bj)bj ,

which is orthogonal to bj , and express bk − aj(bk/bj) as

bk − (bk/bj)bj

− (bk/bj)a′j
− (bk/bj)((aj − bj)/bj)bj .

Since b2
k = α2 + β2b2

j + γ2(a′j)
2, for some α, β = bk/bj , and γ = bk/a′j , we have

(bk − (bk/bj)(bj + a′j))
2 = α2 + (γ − β)2(a′j)

2,

and so

(bk − (bk/bj)(bj + a′j))
2/b2

k ≤ (γ − β)2/(β2b2
j/(a′j)

2 + γ2),

which has a maximum value

1 + (a′j)
2/b2

j ≤ 2 + 4δj + 2.03nu,

and so
‖bk − (bk/bj)(bj + a′j)‖ ≤ 1.47‖bk‖. (1)

Using part (ii) inductively and Lemmas 3.3 and 3.1, and the assumption
δj ≤ 1/32,

‖(bk/bj)((aj − bj)/bj)bj‖

≤ ‖bk‖
b2
j

(aj − cj − dj) · (cj + dj)

=
‖bk‖
b2
j

(−cj · dj + dj · (aj − bj))

≤ ‖bk‖(δj(1 + δj) + δj(1 + 4δj + 2.03nu))
≤ ‖bk‖δj(2.15)

Thus with (1),

‖bk − aj(bk/bj)‖ ≤ (1.47 + 2.15/32)‖bk‖ ≤ 1.54‖bk‖.

This completes part (i).
Now for part (ii). From Lemma 3.1 and Lemma 3.2, the error in computing

bk/bj = bk · bj/b2
j is at most

((1 + u)(1 + 2.03nu)− 1)‖bk‖/‖bj‖,

and ‖aj‖ ≤
√

2(1+1.02nu)‖bj‖, and so the difference between aj(bk ·bj/b2
j) and

its computed value is a vector ε with norm no more than ‖bk‖ times
√

2(1 + 1.02nu)((1 + u)2(1 + 2.03nu)− 1) (2)
< 2.9002(n + 1)u (3)

7

A reduction step computes the nearest floating-point vector to bk−aj(bk/bj)+ε.
Hence the error is a vector ε + ε′, where

‖ε′‖ ≤ u‖bk − aj(bk/bj) + ε‖
≤ u(‖bk − aj(bk/bj)‖+ ‖ε‖).

With this and (2), the computed value of bk after the reduction step, differs
from its real value by a vector that has norm no more than ‖bk‖ times

2.9002(n + 1)u(1 + u) + 1.54u
< 3(n + 2)u
= η.

Using part (i), the norm of bk after the reduction step is no more than (1.54 + η)‖bk‖ < µ‖bk‖.
We turn to part (iii), using (ii) and inductively (iii) for j < k. (We have

d1 = 0 for the inductive basis.)
The vector bk is initially ak, which is ck plus a vector in the linear span of

a1 . . . ak−1, which is the linear span of c1 . . . ck−1. When bk is reduced by aj , it
is replaced by a vector

bk − (bk/bj)aj + εj , (4)

where εj is the roundoff. Except for εj , the vector bk − ck continues to be in
the linear span of {c1 . . . ck−1}. Hence dk ≡ bk − ck can be expressed as ek + Υ,
where ek =

∑
1≤j<k γjcj , for some values γj , and Υ is no longer than the sum

of the roundoff vectors, so

‖Υ‖ ≤ η‖ak‖µk−1/(µ− 1), (5)

using part (ii). From the triangle inequality,

d2
k ≤ (‖ek‖+ Υ)2. (6)

The quantity γj is

1
cj
· [bk − (bk/cj)aj + (bk/cj)aj − (bk/bj)aj]

= bk/cj − bk/bj ,

where bk is the value of that vector for the aj reduction. (Note that except for
roundoff, bk/cj does not change after the reduction by aj .) By Lemma 3.2 and
this part of Theorem 3.5 as applied to dj ,

|γj | ≤ ‖bk‖δj/‖cj‖, (7)

Using part (ii) and (7),

e2
k =

∑
1≤j<k

γ2
j c2

j

≤
∑

1≤j<k

δ2
j µ2(k−1−j)a2

k.

8

Using (5),(6), and δj < Ljη,

d2
k

a2
k

≤ µ2k η2

µ2

 1
µ− 1

+
√ ∑

1≤j<k

L2
j/µ2j

2

. (8)

It suffices for part (iii) that

δk ≥ µk
√

2(1 + η)
η

µ

 1
µ− 1

+
√ ∑

1≤j<k

L2
j/µ2j

 ,

where the (1 + η) term allows the statement

d2
k ≤ δ2

ka2
k/2(1 + 2.03nu). (9)

Letting Mk = Lk/µk, we need

Mk ≥
1
µk

+

√
2(1 + η)

µ

 1
µ− 1

+
√ ∑

1≤j<k

M2
j

 ,

Since L1 = 1 allows
‖d1‖ = 0 = δ1 = η − η,

Mk =
√

j(1 + 2(1 + η)/µ2)k−1, or L2
k = kµ2(µ2 + 2.04)k−1 for k > 1, gives

sufficiently large δk, using the facts∑
1≤j<k

jxj−1 =
kxk−1

x− 1
− xk − 1

(x− 1)2

and √
x− y ≤

√
x− y/2

√
x.

The last statement of part (iii) follows from the termination condition for
stage k, which from Lemma 3.1 implies a2

k ≤ 2b2
k(1 + 2.03nu) < 2b2

k(1 + η).

Lemma 3.6 With Notation 3.4 and the assumptions of Theorem 3.5, let Sc
k ≡∑

1≤j<k c2
j and Sb

k the computed value of
∑

1≤j<k b2
j . Then

|Sc
k − Sb

k|/Sk
c < 1/10.

Proof: With Theorem 3.5(iii), we have

b2
j/c2

j ≤ 1/(1− δj)2,

implying ∑
1≤j<k

b2
j/Sc

k ≤ 1/(1− δj)2.

9

Lemma 3.1 implies Sb
k/

∑
1≤j<k b2

j ≤ 1 + 1.03(k + n)u, and so

Sb
k

Sc
k

≤ 1 + 1.03(k + n)u
(1− δj)2

,

implying Sb
k − Sc

k < Sc
k/10. A similar argument shows that Sc

k − Sb
k < Sc

k/10.
For the remaining discussion we’ll need even more notation:

Notation 3.7 Let
fk ≡ ak%ck ≡ ak − (ak/ck)ck,

so that ak = ck + fk, ck and fk are perpendicular, and a2
k = c2

k + f2
k . Suppose a

reduction loop for ak is done. Let âk denote ak before scaling it by s, and let ĉk

and f̂k denote the components ck and fk at that time. Let a
(j)
k denote the vector

ak when reducing by aj, so a
(k−1)
k is ak before the reduction loop, and a

(0)
k is ak

after the reduction loop. We’ll use zjk to refer to a computed value of ak/bj.

Lemma 3.8 With assumptions as in the previous theorem, before a reduction
of ak by aj,

‖ak‖ ≤ s‖âk‖µk−1−j + (3/4)
∑

j<i<k

‖ci‖µi−1−j .

Proof: When reducing by aj , ak = a
(j)
k is replaced by

a
(j−1)
k = ak − zjkaj + αaj ,

for some |α| ≤ 1/2. As in Theorem 3.5(ii), the norm of ak − zjkaj is no more
than µ‖ak‖, so

‖a(j−1)
k ‖ ≤ µ‖a(j)

k ‖+ ‖aj‖/2.

Thus

‖a(j)
k ‖ ≤ s‖âk‖µk−1−j +

∑
j<i<k

‖ai‖µi−1−j/2

≤ s‖âk‖µk−1−j + (3/4)
∑

j<i<k

‖ci‖µi−1−j , (10)

where the last inequality follows from Lemma 3.1 and Theorem 3.5(ii).

Lemma 3.9 With the assumptions of Theorem 3.5, in a reduction loop for ak,

ĉ2
k ≤ 0.55â2

k

and
f̂2

k ≥ 0.45â2
k.

10

Proof: Since the reduction loop is done, the conditional “a2
k ≤ 2b2

k” returned
false. Therefore, using Theorem 3.5(iii) and reasoning as in Lemma 3.1,

‖âk‖ >
√

2‖bk‖(1− 2.03nu)

≥
√

2(‖ĉk‖ − δk‖âk‖/
√

2)(1− 2.03nu),

which implies
ĉ2
k ≤ 0.55â2

k, (11)

using the assumption δk < 1/32. The last statement of the lemma follows from
â2

k = ĉ2
k + f̂2

k .

Theorem 3.10 With assumptions as Theorem 3.5, after the reduction loop for
ak it satisfies

a2
k ≤ max{â2

k, 2.6Sc
k}.

Also
Sc

k ≤ M2(3.3)k−2.

The condition
lg N ≥ lg M + 1.5n + 1

allows the algorithm to execute.

Proof: We begin by bounding the cj components of ak for j < k, and use
these to bound ‖fk‖, after the reduction loop. Note that the cj component of
ak remains fixed after the reduction of ak by aj . That is, using Notation 3.7,

a
(0)
k /cj = a

(j−1)
k /cj = (a(j)

k − dzjkcaj)/cj .

Using aj/cj = 1, this implies

|a(0)
k /cj |

≤ |a(j)
k /cj − a

(j)
k /bj |+ |a(j)

k /bj − dzjkc|

≤ ‖a(j)
k ‖δj/‖cj‖+

(
1/2 + 2.2(n + 1)u‖a(j)

k ‖/‖cj‖
)

< 1/2 + ‖a(j)
k ‖(δj + η)/‖cj‖, (12)

where the next-to-last inequality follows from Theorem 3.5(iii) and from rea-
soning as for (2). Since

f2
k = ‖a(0)

k ‖2 − s2ĉ2
k =

∑
1≤j<k

(a(0)
k /cj)2c2

j ,

and the triangle inequality implies ‖x+y‖2 ≤ (‖x‖+‖y‖)2, we have f2
k no more

than ∑
1≤j<k

(‖cj‖/2 + ‖a(j)
k ‖(δj + η))2

≤
(√

Sc
k/2 +

√ ∑
1≤j<k

(‖a(j)
k ‖(δj + η))2

)2

. (13)

11

From the definition of δj and (10),∑
1≤j<k

‖a(j)
k ‖2(δj + η)2

≤ η2k
∑

1≤j<k

(
s‖âk‖µk−j +

3
4

∑
j<i<k

‖ci‖µi−j

)2

(µ2φ)j

≤ η2k

√ ∑
1≤j<k

s2â2
kµ2kφj

+
3
4

√ ∑
1≤j<k

(∑
j<i<k

‖ci‖µi
)2

φj

2

≤ δ2
k(s‖âk‖µ/

√
2 + 3

√
Sc

k/4)2

With (13), f2
k is no more than(√

Sc
k/2 + δk(s‖âk‖µ/

√
2 + 3

√
Sc

k/4)
)2

≤
(√

Sc
k(1/2 + δk) + 1.2δks‖âk‖

)2

. (14)

If s = 1, then using Lemma 3.9 and δk ≤ 1/32,

a2
k = c2

k + f2
k ≤ 0.55â2

k + (
√

Sc
k(1/2 + δk) + 1.2δk‖âk‖)2

≤ 0.55â2
k + (0.54

√
Sc

k + 1.2‖âk/32‖)2

≤ max{â2
k, Sc

k}. (15)

If s = 2 because the conditional “s = 1 and a2
k ≤ 0.9Sb” returned true,

then ‖âk‖ ≤ 1.01
√

Sc
k, and

a2
k ≤ 4(0.55)â2

k + (
√

Sc
k(1/2 + δk) + 2(1.2)δk‖âk‖)2 (16)

≤ 2.6Sc
k. (17)

Now suppose s > 1 and the conditional “s = 1 and a2
k ≤ 0.9Sb” returned

false. By Theorem 3.5(iii), ĉ2
k ≤ b2

k + 2δkâ2
k, so that when d

√
sc is evaluated it

is no more than
√

Sb/4c2
k(1.03) + 1/2, where the 1.03 factor bounds the error

in computing s. Thus

c2
k ≤ s2ĉ2

k ≤ (
√

Sb/4(1.03) + ‖ĉk‖/2)2

≤ (0.55
√

Sc
k + ‖ĉk‖/2)2

≤ (0.55
√

Sc
k + 0.375‖âk‖)2, (18)

using Lemma 3.9. When d
√

sc is evaluated, it is smaller than

1.03
√

Sb/4δkâ2
k + 1/2,

12

and so
sδk‖âk‖ ≤ 0.55

√
δkSc

k + δk‖âk‖/2.

With (14) and the assumption δk ≤ 1/32,

f2
k ≤ (

√
Sc

k(1/2 + δk) + 0.55
√

δkSc
k + δk‖âk‖/2)2

≤ (0.63
√

Sc
k + δk‖âk‖/2)2, (19)

and so with (18),

a2
k = c2

k + f2
k

≤ (0.55
√

Sc
k + 0.375‖âk‖)2 + (0.63

√
Sc

k + ‖âk‖/64)2

≤ max{â2
k, 1.4Sc

k}. (20)

With (15), (16), and (20), we have a2
k ≤ max{â2

k, 2.6Sc
k}. First we show that

c2
k ≤ max{ĉ2

k, 2.2Sc
k}. It remains to bound Sc

k inductively. If s = 1 then c2
k = ĉ2

k.
If s = 2 because the conditional “s = 1 and a2

k ≤ 0.9Sb” returned true, then
c2
k ≤ 2.2Sc

k. If s > 1 and the conditional “s = 1 and a2
k ≤ 0.9Sb” returned

false, then with (18),

c2
k ≤ (0.55

√
Sc

k + ‖ĉk‖/2)2 ≤ max{ĉ2
k, 2.2Sc

k},

Let σc
k be an upper bound for Sc

k, so σc
2 = M2 suffices, and when stage k is

finished, σc
k+1 = σc

k + 2.2σc
k is large enough, so σc

k = (3.2)k−2M2 is an upper
bound for Sc

k.

Theorem 3.11 Let β be the minimum of

lg(1/u)− 1.1n− 2 lg n− 2

and
lg N − lg M − 1.5n− 1.

(The conditions of Theorems 3.5 and 3.10 are implied by β > 4.) The algorithm
requires O(n3) + O(n2) logOD(A)/β time.

Proof: Clearly each iteration of the main loop requires O(n2) time. The idea
is to show that for each stage k, the loop body is executed O(1) times except
for executions that reduce OD(A) by a large factor; such reductions may occur
when ak is multiplied by a large scale factor s, increasing detA, or by reducing
‖ak‖ substantially when s is small.

We consider some cases, remembering that c2
k never decreases during stage k.

The discussion below assumes that Sb/4(b2
k + 2δka2

k) evaluates to no more than
(N/1.58k −

√
Sb)2/a2

k; if not, s is limited by the latter, and β is bounded to the
second term in its definition.

s > 2,b2
k ≥ δkâ2

k.
After two iterations with this condition, either s ≤ 2 or c2

k will be sufficiently
large that 2b2

k ≥ a2
k.

13

s > 2,b2
k ≤ δkâ2

k.
Here (19) and Lemma 3.9 show that

‖fk‖ ≤ 0.62
√

Sc
k + δk‖âk‖/2,

and s > 2 implies

δk‖âk‖/2 ≤ δk

√
Sb/δk/

√
4(2.5)2/2 < 0.04

√
Sc

k,

so ‖âk‖ ≤ 0.66
√

Sc
k/
√

.45 <
√

Sc
k during the second iteration under these con-

ditions. Thus s ≥ 0.37/
√

δk here for all but possibly the first iteration, while a2
k

is bounded. Hence lgOD(A) decreases by 0.5 lg(1/δk)− 2 during these steps.
s ≤ 2.

From (14) and Lemma 3.9,

‖fk‖ ≤ (1/2 + δk)
√

Sc
k + 2.4δk‖f̂k‖/

√
.45

≤ 0.54
√

Sc
k + 4deltak‖f̂k‖,

so yk ≡ ‖fk‖/0.54
√

Sc
k converges to 1/(1− 4δk).

Suppose yk ≥ 1/(4δk)2/(1 − 4δk); here s = 1, and yk decreases by a factor
of 4δk/(1 − 4δk) ≤ 4.6δk at each reduction loop. Hence ‖ak‖ is reduced by a
factor of 4.6δk, while detA remains the same. Hence lgOD(A) decreases by at
least lg(1/δk)− 2.3.

Suppose yk < 1/(4δk)2/(1 − 4δk); then in O(1) (less than 7) reductions,
yk ≤

√
1.01/(1− 4δk), so that

a2
k ≤ f2

k/0.45
≤ 1.01(0.54)2Sc

k/(1− 4δk)2/0.45
≤ 0.75Sc

k,

and so the conditional “a2
k ≤ 0.9Sb” will return true. Thereafter O(1) execu-

tions suffice before stage k completes, as ck doubles in magnitude at each step.

Here is one way to get the estimate det approx (B): estimate the norms ‖bi‖,
normalize each column of B to obtain a matrix B̄ with columns b̄j ≡ bj/‖bj‖,
for j = 1, . . . , n, and then return det B̄ ≈ ±1 times

∏
1≤i≤n‖bi‖. To suggest

that det B̄ can be estimated using low-precision arithmetic, we show that indeed
|det B̄| ≈ 1 and that the condition number of B̄ is small. In the proof, we use
the matrix C̄ whose columns are c̄j ≡ cj/‖cj‖, for j = 1, . . . , n. (Note that
the truly orthonormal matrix C̄ has det C̄ = 1 and Euclidean condition number
κ2(C̄) = 1.)

Theorem 3.12 With assumptions as in Theorem 3.5, for any x ∈ Rn,

|‖B̄T x‖/‖x‖ − 1| ≤ 1.68δn,

and so |det B̄| ≥ 1− 2nδn, and B̄ has condition number κ2(B̄) ≤ 1 + 3δn.

14

Proof: It’s easy to show that for x ∈ Rn,

|b̄j · x− c̄j · x| ≤ (δj + η)‖x‖,

where the η on the right accounts for roundoff in computing b̄j from bj . Thus

(B̄T x− C̄T x)2 ≤ x2
∑

1≤j≤n

(δj + η)2

≤ x2η2n
∑

1≤j≤n

(µ2 + 2.04)j−1

≤ 2δ2
nx2.

Since ‖C̄T x‖ = ‖x‖,
|‖B̄T x‖/‖x‖ − 1| ≤

√
2δn.

Recall that B̄T and B̄ have the same singular values.[3] Since the bound above
holds for any x, the singular values σj of B̄ satisfy |σj−1| ≤ δn, for j = 1, . . . , n,
and so

κ2(B̄) = σ1/σn ≤
1 +

√
2δn

1−
√

2δn

≤ 1 + 3δn,

using (1 + x)/(1 − x) = 1 + 2x/(1 − x) and 1/(1 − x) increasing in x. Since
|det B̄| = σ1σ2 · · ·σn, we have

|det B̄| ≥ (1−
√

2δn)n ≥ exp(−1.5nδn) ≥ 1− 1.5nδn,

where we use 1− x ≥ exp(−x log(1−α)
−α) for 0 < x ≤ α < 1.

With these results, it is easy to show that Gaussian elimination with partial
pivoting can be used to find det B̄, using for example the backwards error bound
that the computed factors L and U have LU = B̄+∆, where ∆ is a matrix with
norm no more than n2

√
n2n−1‖B̄‖u; this implies, as above, that the singular

values, and hence the determinant, of LU are close to B.

Acknowledgements

It’s a pleasure to thank Steve Fortune, John Hobby, Andrew Odlyzko, and
Margaret Wright for many helpful discussions.

References

[1] S. Fortune. personal communication.

[2] S. Fortune. Stable maintenance of point-set triangulations in two dimen-
sions. In Proc. 30th IEEE Symp. on Foundations of Computer Science,
pages 494–499, 1989.

[3] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins
University Press, Baltimore and London, 1989.

15

[4] D. Greene and F. Yao. Finite-resolution computational geometry. In Proc.
27th IEEE Symp. on Foundations of Computer Science, pages 143–152,
1986.

[5] W. Hoffman. Iterative algorithms for Gram-Schmidt orthogonalization.
Computing, 41:335–348, 1989.

[6] C. Hoffmann, J. Hopcroft, and M. Karasick. Robust set operations on
polyhedral solids. IEEE Comp. Graph. Appl., 9:50–59, 1989.

[7] M. Karasick, D. Lieber, and L. Nackman. Efficient delaunay triangulation
using rational arithmetic. ACM Transactions on Graphics, 10:71–91, 1990.

[8] A. K. Lenstra, H. W. Lenstra, and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261:515–534, 1982.

[9] Z. Li and V. Milenkovic. Constructing strongly convex hulls using exact
or rounded arithmetic. In Proc. Sixth ACM Symp. on Comp. Geometry,
pages 235–243, 1990.

[10] L. Lovász. An algorithmic theory of numbers, graphs, and complexity.
SIAM, Philadelphia, 1986.

[11] V. Milenkovic. Verifiable implementations of geometric algorithms using
finite precision arithmetic. Artificial Intelligence, 37:377–401, 1988.

[12] V. Milenkovic. Verifiable Implementations of Geometric Algorithms using
Finite Precision Arithmetic. PhD thesis, Carnegie Mellon U., 1988.

[13] V. Milenkovic. Double precision geometry: a general technique for calculat-
ing line and segment intersections using rounded arithmetic. In Proc. 30th
IEEE Symp. on Foundations of Computer Science, pages 500–505, 1989.

[14] D. Salesin, J. Stolfi, and L. Guibas. Epsilon geometry: building robust
algorithms from imprecise calculations. In Proc. Seventh ACM Symp. on
Comp. Geometry, pages 208–217, 1989.

[15] C. P. Schnorr. A more efficient algorithm for lattice basis reduction. J.
Algorithms, 9:47–62, 1988.

[16] A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York,
1986.

[17] K. Sugihara and M. Iri. Geometric algorithms in finite-precision arithmetic.
Technical Report RMI 88-10, U. of Tokyo, 1988.

16

