Subgradient and Sampling Algorithms for ¢; Regression

Kenneth L. Clarkson*

January 4, 2005

Abstract

Given an n x d matrix A and an n-vector b, the ¢; regression problem is to find the
vector x minimizing the objective function || Az —b||;, where ||y||1 = >, |y;| for vector y.
This paper gives an algorithm needing O(nlogn)d°(™ time in the worst case to obtain
an approximate solution, with objective function value within a fixed ratio of optimum.
Given € > 0, a solution whose value is within 1 4 ¢ of optimum can be obtained either
by a deterministic algorithm using an additional O(n)(d/€)°() time, or by a Monte
Carlo algorithm using an additional O((d/¢)®™) time. The analysis of the randomized
algorithm shows that weighted coresets exist for ¢ regression. The algorithms use the
ellipsoid method, gradient descent, and random sampling.

1 Introduction

Given a set S of n points, the ¢; regression problem is to fit a hyperplane to the points,
minimizing the sum of the vertical distances of the points to the hyperplane. More formally,
given an n X d matrix A and an n-vector b, the problem is to find the d-vector & such that
the sum of the absolute values of the entries of Az — b is minimum. The entries of Ax — b
are called residuals. That is, & minimizes the objective function ||Azx — b1, yielding the
minimum residual vector b = A% — b. Another description of # is that it gives the linear
combination of the columns of A that is closest in ¢; distance to b.

This problem arises in statistics, as a more robust alternative to least squares regression,
for which the sum of the squares of the residuals is minimized. We can also regard the
residual as the difference between b; and its prediction a;.z, where a;. is the i’th row of A.
(The points of S are of the form [a;.b;], where a;. is the i’th row of A, so “vertical” here
would refer to the last coordinate.)

Related work. While /; regression is an instance of linear programming, and so
has good algorithms in theory and practice, it is still of interest to further understand its
computational properties. Moreover, there is the usual gap between theory and practice:
the best provably-good algorithms take O(n) time, and are exact,[YKII88, MT93] but are
complicated, and take time at least exponential in d. (The stated dependence is 3¢°,[MT93]
but a dependence that is single-exponential is likely to be achievable with current methods.)
In contrast, the algorithms here, while approximate and O(nlogn), are polynomial in d and
1/e.

While interior point or simplex methods can be applied, and may be satisfactory in
practice, their worst-case dependence on n may be substantial, since the linear programming
formulation has 2n constraints and n + d unknowns.[Sch86] (While the dual formulation

*Bell Labs; 600 Mountain Avenue; Murray Hill, New Jersey 07974; clarkson@research.bell-labs.com

allows an interior point iteration in nd®® time, the number of such iterations can be large
in the worst case. Also, the ellipsoid method could be applied using the subgradient, as
used here for rounding.)

Subgradient descent. A key algorithmic element used here is a version of gradient
descent: starting at an estimate of the optimum, move in the direction of the negative
gradient of the objective function

F(z) = ||[Az = b||1,

to obtain a new estimate. Each such step has a certain step length, chosen judiciously (but
easily). The descent direction at d-vector x used here is

e = —AT sgn(Az —b),

where sgn(y), for a vector y, is the vector of equal dimension whose coordinates are the
signs of the corresponding coordinates of y. (Note that the corresponding direction for the
least squares objective function ||Az — b||s is —AT (Az — b); setting that function to zero
yields the normal equations.)

Of course, the function || Az—b||; is only piece-wise linear, and so does not have a gradient
everywhere; however, the value g, is a subgradient (as stated below in Lemma 3.1), and the
iteration just described is an instance of an unconstrained “subgradient method.” Such
methods have a long history and rich theory (see, e.g., [Sho85, NB01, Ber01]). However,
their analyses seem to typically focus on limiting convergence behavior: as the number of
iterations goes to infinity, does the estimate converge to the optimum? Also, most analyses
of subgradient methods focus on a fixed sequence of stepsizes, where here the stepsize is
computed using the current function value.

Conditioning. Here the results can be stated with bounds in terms of n, d, and e,
as in Theorem 3.7, by taking advantage a particular kind of “conditioning” of A for ¢;
regression, related to polytope rounding.[Lov86] Elementary column operations and scaling
on A amount to a change of variable for z. Since such changes of variable can be tracked
readily, this paper will freely use column operations and scaling. As discussed in Section 2,
such operations can be done so as to obtain a new version of the matrix A with the property
that, for any =,

lzlly = Azl > ||z]l1/dVd.

A matrix A will this property will be called ¢ conditioned. This relation is similar to, but
weaker than, the strict equality ||Az||2 = ||x||2 that would hold if Gram-Schmidt orthogonal-
ization were done on the columns of A. The conditioning is done by applying the ellipsoid
algorithm, as used to find “weak Loewner-John ellipsoids.” The subgradient is used as a
separation oracle. To obtain a good time bound for the conditioning, without a dependence
on the bit-complexity of the input, we first apply elementary column operations to make the
columns of A orthogonal, and make b orthogonal to A. That is, a bit of “folklore” advice
for getting an initial estimate for /1 regression, which is to begin with the optimum for /o
regression, is used here.

The conditioning of A is helpful both for the ¢; subgradient method of Section 3, and for
the sampling procedure discussed in Section 4. For the subgradient method, the conditioning
assures that each iteration makes good progress. For the randomized sampling procedure,
the conditioning allows a bound on the norm of the optimum vector &, which allows a bound
on the variance of the objective function random variable considered in the analysis.

Sampling. The sampling algorithm is not much more than picking a random sample
of S, and solving the ¢; regression problem for the resulting sample problem. (This again is
not far from folklore for how to get an initial estimate for ¢; regression.) The sampling is
done after some preprocessing, including the conditioning procedure, and the samples are
chosen with probabilities that depend on the point coordinates. Moreover, the resulting
sample problem has each point weighted. The sample problem has the provable property
that the optimum & of the original problem yields the expected F'(&) value as in the original
problem, and any point yielding a bad objective function value in the original problem also
yields a bad value in the sample. (This is the outline of the proof of Theorem 4.7.) So the
solution to the sample problem will be a good solution to the original.

The approximate hardness of the weighted sample problem is a property analogous to
that of “coresets” for other fitting problems.[BHPI02, HPV02, AHPVar, BC02] A novelty
here is that while most of the known coreset constructions are for problems where the fit
involves minimizing a maximum of distances, here the fit is the sum of residuals. However,
the “coreset” here is not apparently as useful, but may be one step toward coreset-based
algorithms for problems related to ¢; regression. The size of the sample is only polynomially
dependent on the dimension, as opposed to some coreset constructions with exponential de-
pendence on the dimension. As shown in Theorem 4.7, the bound is O(d®v/d/e?) log(d/~e),
where is a failure probability; this is similar in form to bounds for e-approximations.

The probabilities used in the sampling technique is similar in flavor to that used in some
recent randomized approximation algorithms for numerical linear algebra.[DK01, DKM]
One difference from those algorithms is that the sampling is done independently for each
input point, rather than picking each point of the sample independently from among the
input points.

Detailed time bounds. The time bounds for the algorithms are, in more detail,

O(nd®(lognlogd + log(d/e)/€*))
in the worst case, for the deterministic algorithm, and

8
O(nd®lognlogd) + O(d ;4/& (logd)®In(1/€)?In(1/7))

for the Monte Carlo algorithm, where the failure probability is 7. (Note the lack of depen-
dence on n in the second term of the latter bound.) These bounds are from Theorem 3.7
and Theorem 4.8, respectively. Although these dependencies are polynomial, they are rel-
atively large, but it is likely that faster performance is possible in practice. This is true
particularly if the rounding/conditioning step is skipped; then the main algorithm com-
prises only the subgradient descent procedure. In that case O(nd?) time is needed, iterated
a data-dependent number of times.

Relation to small-d LP. The form of the time bound for the sampling algorithm is
roughly similar to those long known for randomized algorithms for LP (linear programming)
in small dimension.[Cla95] Such LP problems arise in, for example, f, regression. The
previous algorithms rely on the existence of a “coreset” of size d for the exact problem; that
existence follows by basic arguments. Here the coreset existence is much harder to prove,
and uses weights, and is only approximate.

Statistical view. Another motivation for studying this problem is that we might regard
the regression hyperplane as a statistic, interpreting S itself as a random sample from an
underlying population. We might hope that the expected value of the statistic for the sample

is equal to the value of the statistic for the whole set, and indeed, an unweighted (unbiased)
sample has the appropriate expectation. However, an unweighted sample doesn’t have the
same provable properties, for clear reasons: while a single outlying point can change the
regression plane by an arbitrarily large amount, that outlier may well not be in the sample.
That is, the ¢; estimator is not that robust, and so unweighted samples can do poorly. Here
the sampling method makes outliers more likely to be picked; this reduces the variance due
to their presence.

Outline. Before describing the approximation algorithm in Section 3 and the sampling
algorithm in Section 4, the conditioning procedure is described. There are some concluding
remarks.

2 Rounding and Conditioning

We will apply a standard rounding procedure, using the ellipsoid method[Lov86], to the
polytope P = P(A) = {z | ||Az|; < 1}, which will have the effect of making A well-
behaved with respect to the #; norm.

This procedure requires a separation oracle, that for a given point z ¢ P, returns a
hyperplane H that separates « and P. Here the subgradient provides such an oracle, since

Ayl > [|Az|[1 + (y — 2)" AT sgn(Az),
as shown in Lemma 3.1 below, so that the hyperplane
{y | (y —)" AT sgn(Az) = (| Az|l1) +1)/2}
separates x and P when [|Azx|; > 1.

The rounding procedure maintains a series of ellipsoids F,,, m = 0,..., where Ej is a
Euclidean ball B containing P. The procedure uses the separation oracle to maintain the
condition that each F,, contains P and has provably smaller volume than F,,_1. A critical
quantity is the ratio of the volume of B to the volume of P; the running time is proportional
to the logarithm of this ratio.

We can construct an instance of the rounding problem where the ratio is a function only
of n and d, as follows. Use Gram-Schmidt, or an equivalent procedure, to make the columns
of A orthogonal to each other. Also, scale the columns of A to have ¢; norm equal to one.

This needs only elementary column operations, and as noted above, amounts to a change
of variable. The following lemma applies.

Lemma 2.1 Given an n X d matriz A where the columns of A are orthogonal and scaled
to have unit {1 norm,
Bl/\/ECP(A)CB\/ﬁ,

where B, denotes the Euclidean ball centered at the origin, with radius .

Proof: 1f ||z|2 < 1/+/d, then ||z|; < 1, which implies |Az|; < 1 by the column scaling,
giving the first inclusion.
For the second inclusion, for x with ||Az||; < 1 we have

lzl3 =) afllaxl?
k
<ny aillarll3
k

= n||Az||3 < n||Az[lf < n,

which implies = € B, /. [|
Lemma 2.2 As applied to the preprocessed n X d matriz A, the rounding procedure takes
O(nd®logn)

time, and returns a pair of concentric ellipsoids E and E' with E' C P(A) C E, and E’
arises from E by shrinking by a factor of 1/d.

Proof: From the previous lemma, the ratio of the volumes of the initial ellipsoid to the
final ellipsoid is at most (dn)d/ 2 and the ellipsoids shrink by a factor of e3/2(d+1)(2d+1)
at each step,[Lov86] so the number of steps is O(d*log(nd)). A factor d?n accounts for
the work at each step of checking inclusions, generating separating hyperplanes, and linear
algebra to maintain the ellipsoids. Since P is centrally symmetric, the tighter shrinkage
term 1/d can be used, instead of the general 1/dv/d for such ellipsoids. |

The result of this rounding procedure can be more conveniently used here by applying
another change of variables to yield the condition that A is “u-conditioned” for u = dv/d,
where this means that for any =z,

[l = Azl = [l[1/p- (1)

Theorem 2.3 Given an n x d matriz A, the rounding procedure and elementary column
operations on A yield a new version of A that is dv/d-conditioned, in time

O(nd®logn).

Proof: Having applied the rounding procedure, there is an affine transformation with
matrix 7 that maps the containing ellipsoid E to By, and the contained ellipsoid E’ to Bj.
That is, if y = 7(x) for some x, and ||y||1 < 1, then ||y|]l2 < 1, and soy € By C 7P. Moreover,
if y € 7P, then y € By and ||yl2 < d, so ||y|1 < dVd. Since TP = P(Ar™!), renaming
A7~! to be A yields the conditions that ||y||; < 1 implies |Ay||; < 1, and ||Ay||; < 1 implies
ly|li < dv/d. These facts imply the inequalities (1) with u = dv/d. |

3 An Approximation Algorithm

As shown below in Lemma 3.2, the rounding procedure has the useful effect that it results
in an optimization problem for which the negative gradient of the objective function points
from the current location toward an optimal vector. This and other properties will be stated
and proven in the analysis of the subgradient iteration scheme.

This property of the gradient immediately suggests a descent scheme: take a step along
the negative gradient toward an optimal vector, re-evaluate the gradient, and repeat. A
complication here is that the although the negative gradient points toward an optimum
vector, it is difficult to tell how far to go in that direction without overshooting the best
possible improvement. It’s also difficult to know just how much an improvement will occur.

One approach might be to do a search along the line of the gradient, approximately
finding the minimum of the objective function when confined to the given line. This is
likely to work well in practice, but seems difficult to analyze.

Here we adopt an approach similar to, but more elaborate than, the smallest ball algo-
rithm of Badiou et al.[BC02]. The step length is calculated using the current function value
and other inputs, with a scheme that allows lower and upper bounds on the approximation
ratio || Az — b1 /||AZ — b||; to be maintained, where again & is an optimal vector.

3.1 The subgradient iteration

The approximation algorithm is simply the subgradient iteration procedure described below,
under the assumption that A has already been p-conditioned with 1 = dv/d, as discussed
in the last section, and that b is orthogonal to the subspace spanned by the column vectors
of A. The latter is easy to achieve by using the orthogonalization of A produced while A
was being conditioned.

The subgradient iteration procedure uses several readily calculated values, which will
be specified below. The procedure is as follows: for each entry in a decreasing sequence of
values &y, for i = 0,1,..., perform a minor iteration with &; until &; < 1+ €, where 1 + ¢
is the desired approximation ratio. As a special case for i = 0, repeatedly perform minor
iterations with &g until a minor iteration is unsuccessful, as described below.

Each minor iteration using some & starts with the current estimate x of the solution,
and iteratively attempts to improve on x as follows. Let xg := x; for k = 0,1,..., B(&;),
where B(&;) is given below, let

giﬂk
gz ll2”

Tpy1 = xp + p(2p, @)

where p(xy, @) is defined below, and
Gy, = —AT sgn(Az), — b),

as defined in the introduction.
A minor iteration can quit before k = B(&;), if

F(ay)/F(xo) = [| Az — bll1/[[Azo — bll1 < (1 +1/a)/2.

Say that a minor iteration that quits early for this reason is successful, and let the current
estimate x := xp. Otherwise the minor iteration is unsuccessful, and the final value of zy, is
not used.

This completes the description of the algorithm, except for the definitions of &;, B(&)
and p(zk, &@). These are

_ 2 i=0
a; =< <
’ {%41(1+ V1+8/a;i_1) i>0.

and
__In[2pvd(@+1)/(a—1)]
PO =T @y
where a1
k(@) = m.
Finally,

p(z,@) = F(z)(1 — 1/&)/V4d.

The motivations for these definitions should be clearer from the following analysis. The
general idea is that g, has positive dot product with & — x, and the stepsize p is chosen so
that progress toward & is made, but the step doesn’t overshoot. The values ¢; are intended
as lower bounds on the approximation ratio F'(x)/F(z). If indeed &; < F(x)/F (%) then, as

will be shown, the minor iteration will be successful, and the approximation ratio will be
reduced. The failure of a minor iteration amounts to a proof that &; > F(x)/F(Z), and so
the lower bound &; can be reduced.

The algorithm and analysis are less elegant than they might be, because for a given
step, it hasn’t been proven that the objective function value is reduced, only that the /o
distance to an optimum vector is reduced, and that reduction in distance is not directly
known. Hence certain conditions must be inferred from the success or failure of a sufficient
number of steps, that is, a minor iteration.

3.2 Analysis of the subgradient iteration

First, a theorem regarding the gradient of the ¢; regression objective function. Some nota-
tion will be needed: for vector ¢, again, let sgn ¢ denote a vector with the same dimensions
as ¢, but with a +1 entry when where ¢ has a positive entry, a —1 when ¢ has a negative
entry, and zero where ¢ has a negative entry. With this definition, we can write ||Axz — bl|1

as sgn(Az — b)T(Az —b).
When the gradient of | Az — b||; exists, it is AT sgn(Ax — b): suppose z is such that for
any d-vector 9 that is short enough, sgn(Az — b) = sgn(A(z +) — b). Then
Az +6) = bllx
sgn(A(x +6) =)L (A(z +6) - b)
= sgn(Az — b)" (A(z +) — b)
= sgn(Aac —b)T(Az — b) 4 sgn(Az — b)T As
= || Az — b||; + 6T AT sgn(Az — b),

so the Taylor expansion of
[A(z +0) — bl

is the above expression, and AT sgn(Ax — b) is the gradient at x.
Indeed, AT sgn(Azx —b) is a subgradient of |Ax — b||1, as shown in the next lemma.

Lemma 3.1 For any d-vectors x and y,
[Az — bl — [[Ay = bll1 < (z — y)" A sgn(Az —b).
That is, AT sgn(Ax — b) is a subgradient.
Proof: We have
[Az —blly — || Ay — blx
= sgn(Az — b)T (Az — b) — sgn(Ay — b)T (Ay — b)
< sgn(Az — b)T(Az — b) — sgn(Az — b)T (Ay — b)
= sgn(Az — b)T Alz — 9]
— (2 — y)T AT sgn(Az —),

Next we show that the gradient points toward an optimum vector . As before, we will
use the notation F(x) = ||Az — b||1, and g, = —AT sgn(Az — b).

Lemma 3.2 Given an {1 p-conditioned matrix A and d-vector x, let

az, p) = F(z)/F(%), (2)

and writing simply o when x and p are understood. Let 6 be the angle between g, and & —x,
S0

A)
cosf = TolhlE =2l (3)
Then
|& — z|2cos 8 > p(x,a) = F(x)(1—1/a)/Vd (4)
and w1
cos > k(a) = —————— (5)

pVd(a+ 1)
Proof: At x, we have
9" (& —x) > F(z) = F(&) = F(z)(1 - 1/a),

by the previous lemma and definition of «, and omitting the subscript from g. Also ||g||2 <
V/d since the column sums of A have been set to 1. From these considerations,

Tz —x
| — 2||2 cos O = g||(9H2) > (F(z) — F(#))/Vd

= F(z)(1 - 1/a)/Vd,

the first conclusion of the lemma.
From the triangle inequality, we have

[AZ — Azlly < [|Az — bl|s + [[AZ — bl[1 = F(z) + F (%),
and so, from the p-conditioning of A,
& —zl2 < (|2 — 2z
< pl|Az — Azl
< w(F(x) + F(2)) (6)

< p(F(x) + F(z)/a)
= pF(z)(1+1/a),

and so
wosg > F@)(1=1/0)/Vd
2 —]2

| F@)(1-1/a)/Va

= TuF(@)(1+1/a)

_ a—1

pVd(a+ 1)

the other conclusion of the lemma. []

We need a quantitative statement about how far to go in the direction g,.

Lemma 3.3 With conditions as in the previous lemma,

lz + p(w,0) 1= = &ll2 < (1 = K(0)?/2)l|lz —]2,

| xH

where p(x,a) and k are defined above (4,5).

Proof: For convenience in this proof, put & at the origin. We have

[z +p I = llz]3 + p* — 2lz||p cos §

| xll

and so, writing x for k(o) = p/||x]|2,

cos 6

|l + p 1/l =

p p
-2
H«%’H% [E41P
=1+ k> — 2k cosf

<1-— K2

| z”

using (4) and (5) of the last lemma. The lemma follows, taking square roots of both sides
and using 1 —w <1 —w/2. |

A difficulty in using this result is that generally, F'(#) is unknown, which implies « is
unknown. However, the following lemma implies that we can tell when an estimate & of «
is too big.

Lemma 3.4 With the conditions of the previous lemma, suppose & < o = «(x). Let

ro = x, and let
Jzy,

gz ll2”

Tt1 = T + p(ag, @)
for k> 0. There is a value

In[20v/d(+ 1)/(G — 1)
k((a+1)/2)2/2

such that for some k < B(a),
F(xp) < F(z)(1+1/a)/2.
That is, if & < a = a(xg), a minor iteration succeeds.

Proof: Suppose the claim is false, so that during the B(&) iterations, F'(xy) remains
above the given bound, implying

F(xg) > F(zo)(1+1/a)/2 (8)
= F(2)a(zo)(1 +1/a)/2
> F(2)(a(zo) +1)/2 (9)

and so a(zy) > (a+1)/2 for k =1... B(&), where we abbreviate a(zg) as a. We will show
that this assumption implies a contradlction.

Based on this condition, the previous lemma implies that after B(&) iterations,

lzk — 22
<lwo—2llz [(1—s(o(xx)®/2)
1<k<B(&)
< (1= k(e +1)/2)%/2)P@ |z — |2, (10)

using the fact that () is increasing. Using the triangle inequality and the ¢; conditioning
of A,

F(zy) = ||Azy, — bllx
< Az — bl|y + || Az — Ai|y
< F(2) + [|og — 2lh
< F(2) + ||z — 2]|2Vd.

That is, using (10) and (6), and the facts that (o« —1)/(a+ 1) and so k(«) are increasing
functions of «,

F(ag) - F(2)

< o — &)2Vd

< (1= r((a+1)/2)*/2)P @z — &]2Vd

< exp(=B(@)r((a+1)/2)* 2)uF (x)(1+ 1/a)Vd
_ HE@)a(l+1/a)Vd

T 2pVd(@+1)/(a@—1)

< F()(a—1)/2,

which implies F(xy) < F(#)(a + 1)/2, contradicting assumption (9).]
The following lemma gives the properties of the sequence of &; that will be used in the
analysis of the subgradient iteration algorithm.

Lemma 3.5 With &; as defined,
dip1 = (1 +1/6i11)/2,
and &; <1+ (3/4)°.

Proof: The first claim requires only the quadratic formula. The second can be proven
with induction: it holds for i = 0, and for i > 0, let 3 denote (3/4)’. Then, using 8 < 1

and V1+w <1+ w/2,
davit
=(1+08)(1+/1+8/(1+0)
=14+8+/1+32+8(1+0)
=1+ 6+3y1+103/9+ 32/9
<1+ 8+3y/1+118/9
<14 6+3(1+113/18)
=44175/6
<4+ 30,

10

and so &;11 < 1+38/4 =1+ (3/4)""! and the claim follows inductively. |
Lemma 3.6 For u < dvd and & =1+,
B(@) = B(1 +¢) = O(d"log(d/e)) /€
as € — 0.
Proof: From (7) and the definition (5) of (), we have

In[2pVd(a+1)/(a — 1)]
r((@+1)/2)2/2
_ 2p%d(a +3)° In[pdvd(a+1)/(a —1)]
= (& —1)?2 ’

B(a)

from which the lemma follows.]

Theorem 3.7 A d-vector x with {1 regression value within € of optimal can be found within
O(nd’(lognlogd + log(d/e)/€*))

time.

Proof: The preliminary orthogonalization can be done with O(d?) vector operations on
b and the column vectors of A, each requiring O(n) time, for O(nd?) time overall.

The rounding procedure, yielding the conditioned version of A, needs O(nd®logn), from
Lemma 2.2.

The algorithm requires O(nd) time for each of at most B(&;) steps of the i’th minor
iteration. By the previous lemma, B(2) = O(d*logd). When the minor iteration with
&; = 2 is successful, the stopping condition implies that the approximation ratio F'(z)/F(Z)
has decreased by a factor of (1+1/2)/2 = 3/4. A minor iteration is unsuccessful only when
a; > a(x), by Lemma 3.4, and so when a minor iteration with &; = 2 is unsuccessful, it
must be that the approximation ratio a(z) < 2. By beginning with b orthogonal to the
columns of A, the initial approximation ratio is at most /n, since

I6lly < [Ibll2v/7 < [[bllav/m < [1Bll1v/7,
where again, b= A% —b. Therefore, the work for all the minor iterations with &; = 2 is
O(nd)B(2)logn = O(nd®log dlogn).

For the minor iterations with ¢ > 0 (and so &; < 2), note that after the minor iteration
is done using @, it holds inductively that o < &;: either the iteration fails, which can only
happen if a < @;, or it succeeds, which implies that the final iterate xj satisfies

< F(xo)di_l(l + 540/2
= F(.T(])&i,

using the condition for success, the inductive assumption, and Lemma 3.5.

11

Also from that lemma, &; < 1+ (3/4)%, and so O(log(1/¢)) minor iterations are needed.
By the previous lemma, O(d*log(d/(a; — 1))/(&; — 1)?) steps are needed for each minor
iteration, and from that bound the number of steps overall is within a constant factor of
the number of steps in the last minor iteration, so the total work for the minor iterations
with o; < 2 is

O(nd)d*log(d/e)/€>.

Putting this bound together with the bound for &; = 2 yields the theorem. [|

4 A Sampling Algorithm

First, some probabilistic bounds, and then the sampling construction.

4.1 Tail Estimates

Theorem 4.1 Let X;, i« = 1...n, be independent random wvariables, with bounded EXi2
and X; >0 for alli. For S=3 . X; andt >0,

—¢2
If there is also some M with X; < EX; + M for all i, then
—#2
log Prob{S > ES +t} <
ogProbiS = BS 1} < o oS EX? — [BX,]

Proof: The bound on the lower tail seems to be due to Maurer[Mau03] and independently
McAllester and Ortiz]MOO3]; the former gave a simple proof. The upper tail bound is due
to Bernstein.[Ber46] |

4.2 The Sampling Algorithm

The first step of the overall algorithm is to apply the rounding algorithm of Section 2 to
dv/d-condition A. It also is necessary to apply the subgradient algorithm of Section 3 with
e =1 to b, so that ||b]|; < 2||Az — b||;. (That is, having obtained an approximate solution
z, replace b by b — AZ, and make a change of variable in x to account for the different b.)
It will be convenient to then scale b so that ||b||; = d.

Following these preprocessing steps, the sampling algorithm is as follows: let

fi = 1bil + llai |1,

and let
p; = min{l,rf;/2d},

where 7 is an integer parameter, noting that) . f; = 2d.
Let Y and Z be diagonal n x n matrices where

v — 1 with probability p;
“ 0 with probability 1 — p;,

12

and Z;; = Y;;/p;. Now solve the sample problem
min||Z(Ax — b)||;
X

approximately, and return its output as an approximation to the solution of the original
problem. This is the whole of the algorithm.
By construction, we have the expected number of nonzero Y;; to be no more than

EY Yi=) EYi=) p<) rfij2d=r
and since EZ;; = EY;;i/p; = pi/pi = 1,

E|Z(Az = b)|1 = B | Zii(b; — a;.x)]

= ZEZM“)% — ai.:v|
= [[Az — b1

So the sample problem gives an unbiased estimate of the objective function value of x, for
any z. Of course, this does not show that the sample problem has an objective function
value near that of Z, since we don’t know how concentrated these values are around their
expectations. However, we can apply the tail bounds, Theorem 4.1, to show that with high
probability, ||Z(Az — b)||1 is not too large, and for any given z, ||Z(Az — b)||1 is not too
small. This will require a bound on Y, E[(Zi;|b; — a;.x|)?], before which, a lemma.

Lemma 4.2 For dv/d-conditioned n x d matriz A, and d-vector b with ||bl|; < 2min,||b —
Azx||1, we have
Izl < dvd||Az — b||x.

Proof: Using Lemma 2.3 and the hypothesis,

|z]l1 < dVd||Az||x
< AV (|[blly + [|Az — b]1)
< dVd (2]|A% - b1 + || Az — bl|h)
< 3dVd| Az — b|);.

Lemma 4.3 Under the conditions of the sampling algorithm,

6d2v/d
| Az — b]f3.

r

Z E[(Zi|bs — a;.x])*] <

13

Proof: Using the definitions, the previous lemma, standard facts, and ignoring those i
for which p; =1 < rf;/2d,

ZE[(Zu"bz' — a;.x))?]
Z |b azx‘]
Z ’b — Q. x‘

Z Ib —azw\ !b|+Haz [[1/l]loo)
B (16s] + llas. |l)r/2d

Z [bi — ai-z[([bi] + llai.[[1) max{1, ||/}
(16s] + llai-\[1)r/2d

= 7HAx — blly max{1, [|z[|oo }

2d
< fHA:r — b||1(3dVd|| Az — b]1)
6d2f

| Az — b||3,
and the lemma follows. []

Lemma 4.4 For e < 1/2 and a given d-vector x, the probability is at most

exp(—e2r/24d*V/d)
that
1Z(Az = b)[1 < (1 + €)|[b]lx
when || Az — by > (1 + 2€)[1b||1.

Proof: The lower tail bound of Theorem 4.1 can be applied, with random variables
Xi = Ziilajx — bi|, sum S = |[|[Z(Az — b)||1, and

t=ES—(1+¢)|blh = [|Az = by — (1+ ¢)[[b]1-
Using also the previous lemma and € < 1/2; we have

log Prob{]|Z(Az —)| < (1 +€)[[b]l1}
—(| Az = blls = [[]l1 (1 + ¢))*

<
- 6d2\/gHA:E—b||%/T
. 2
S e}
6@ \\ (1520l
< i
= 24d2/d’

14

as claimed. m

To apply the upper tail bound of Theorem 4.1, we need an upper bound on each coor-
dinate of b.

Lemma 4.5 For all i, Zy|b;| < 6d>/d||b||1/r.
Proof: From Lemma 4.2, we have

Il < 3dvalb]1/r.

Therefore
Ziibi| = |bs| /pi = |bi|2d/ fir

2d |b;| + |lai-[[1/|12[] oo
ro bl + el
24 |bi| + [|ai. |1y 3dV/d] by
r 1bi] + llai.][x
< 6dQ\/EHZA?Hl'

—

Lemma 4.6 For e < 1, the probability is at most exp(—e*r/16d2v/d) that
1Zblly = (1 + €)|bl1

Proof: The second part of Theorem 4.1 can be applied, with X; = Zilbil, S = [|Zb|1,
t = €||b||1, and from the previous lemma, M = 6d2v/d||b||/r. Consequently,

log Prob{||Zb||1 > [|b]l1 + t}
—t2

<

T 2M/3+42Y, EX? — [EX;]?

< —(e]lbll1)>

2(el|bll1) (6a2V/dl[b|1 /) /3 + 25L4 b2
—e2
B 46d2\/a/r + 12d2\/g/r

—€e2r

< _
~ 16d2Vd
for e < 1. []
These two lemmas can be combined to prove the following theorem.

Theorem 4.7 For any n x d matrix A and n-vector b, and given € > 0 and v > 0, there is

a value R where 5/
288d°v/d
R = —a In(d/ev)

such that if 1 > R, then with probability at least 1 — v, the sample problem with parameter
r has optimum solution xz with

1Azz — blli < (L +)bl

where ||b]|1 = || A% — b||y is the minimum value of || Az — b|);.

15

Proof: We will show that with high probability, & yields an objective function value
for the sample problem that is not too big, and that for all vectors, their sample problem
objective function value is not too small. Here “too big” means larger than (1 + ¢/2)|b|1,
and “too small” means smaller than (14¢/2) b1, when the vector z gives objective function
value greater than 1+ € times the optimum.

For the latter, it is enough to show that any possible optimum vector x gives a value
that is not too small. Such optimum vectors come from a finite set of vectors: since ¢;
regression is a linear programming problem, its optima are at vertices of its feasible polytope;
here those vertices correspond to hyperplanes determined by d points of the n input points
S. There are (Z) such hyperplanes. For each such hyperplane, let p;,,pi,,...,p;, denote
the points in S that determine it. Let T" denote the corresponding set of indices, and let
denote the corresponding solution.

The probability that xzp is a bad solution to the sample problem is bounded by the
probability that every index ¢ € T has Y;; = 1, and that the resulting objective function
value is too small. The former probability is the product of the probabilities [],.p pi. The
latter probability is no more than

exp(—er/96d*V/d)

by Lemma 4.4 (using €/2 as the € of the lemma). Let (]C\l[) denote the set of all sets of
size d of integers between 1 and n. Using these facts and the bound on r of the theorem
statement, the probability that some xp, for T € (J;), has a value that is too small is no
more than

Z exp(—€2R/96d%V/d) Hpi
TE(];]) €T
d
< exp(—€*R/96d*V/d) (sz>
= exp(—€2R/96d>Vd) R?
<7/2.

Applying Lemma 4.6, the probability that & yields an objective function value for the
sample problem that is too large is at most

exp(—€2R/64d?Vd) < ~/2,
and so the probability of failure is at most -, as claimed. [|

Theorem 4.8 For any n x d matriz A and n-vector b, and given ¢ > 0 and v > 0, in

8
O(nd®lognlogd) + O(d Eﬁ(log d)3In(1/€)*In(1/7))

time, a vector x* can be found such that, with probability at least 1 — v, ||b — Az*||; <
(14 €) ming||b — Az||;.

Proof: Applying Theorem 3.7 with € = 2, the time needed for preprocessing of A and b
is O(nd®lognlogd).

16

The sample size R needed to obtain a sampling approximation less than €/3 is given
by the last result; applying Theorem 3.7 again, the time to find a solution with 1 + ¢/3 of
optimum for the sampling problem is

O(Rd®(log Rlog d + log(d/e€)/€))

3
TV o) n(afe)0(d /) /)

8
PV 0g 4y In(1/0)? In(1/7)),

as claimed. [

= O

= O

€

5 Concluding Remarks

The log n term in the runtime might be removable by using a sampling approach to estimate
the subgradient, somewhat like the work of Nedi¢ and Bertsekas.[NBO01]

Given that the ellipsoid method was used, one might ask why that method could not
be simply applied to solve the problem. Perhaps it can be, but it is not obvious that a
bit-complexity dependence can be avoided; moreover, the subgradient descent scheme may
be of independent interest. It seems likely that the conditioning of A can be done using
the regression procedure itself, by making each column “¢; independent” of the others, and
then the ellipsoid method is not needed.

References

[AHPVar| P. Agarwal, S. Har-Peled, and K. R. Varadarajan. Approximating extent mea-
sures of points. J. ACM, to appear.

[BCO2] Mihai Badoiu and K. L. Clarkson. Optimal core-sets for balls. Manuscript,
available via http://cm.bell-labs.com/who/clarkson/, 2002.

[Ber46] S. Bernstein. The Theory of Probabilities. Gastehizdat Publishing House, 1946.
[Ber01] D. Bertsekas. Convex Analysis and Optimization. Athena Scientific, 2001.

[BHPIO2] M. Badoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets.
In Proc. 84th Symp. Theory of Comp., 2002.

[Cla95) K. L. Clarkson. Las Vegas algorithms for linear and integer programming when
the dimension is small. Journal of the ACM, 42(2):488-499, 1995.

[DKO01] P. Drinneas and R. Kannan. Fast Monte-Carlo algorithms for approximate ma-
trix multiplication. In EEE Symposium on Foundations of Computer Science,
2001.

[DKM] P. Drineas, R. Kannan, and M. W. Mahoney. Fast monte carlo algorithms
for matrices I: Approximating matrix multiplication. Manuscript. Available via
http://cs-www.cs.yale.edu/homes/mmahoney/.

[HPV02] S. Har-Peled and K. R. Varadarajan. Projective clustering in high dimensions
using core-sets. In Symp. Comp. Geometry, 2002.

17

[Lov86]

[Mau03]

[MO03]

[MT93]

[NBO1]

[Sch86]

[Sho85]

[YKIISS]

L. Lovéasz. Algorithmic Theory of Numbers, Graphs, and Convezity. STAM, 1986.

A. Maurer. A bound on the deviation probability for sums of non-negative
random variables. J. Inequalities in Pure and Applied Mathematics, 4, 2003.

D. McAllester and L. Ortiz. Concentration inequalities for the missing mass and
for histogram rule error. J. Machine Learning Research, 4:895-911, 2003.

N. Megiddo and A. Tamir. Linear time algorithms for some separable quadratic
programming problems. Operations Research Letters, 13:203-211, March 1993.

A. Nedié¢ and D. Bertsekas. Incremental subgradient methods for nondifferen-
tiable optimization. SIAM J. Opt., 12(1):109-138, 2001.

A. Schrijver. Theory of Linear and Integer Programming. Wiley, New York,
1986.

N. Z. Shor. Minimization Methods for Non-differentiable Functions. Springer,
1985.

P. Yamamoto, K. Kato, K. Imai, and H. Imai. Algorithms for vertical and
orthogonal L1 linear approximation of points. In Proceedings of the fourth annual
symposium on Computational geometry, pages 352-361. ACM Press, 1988.

18

