
Ocelot’s Knapsack Calculations for Modeling

Power Amplifier and Walsh Code Limits

Kenneth L. Clarkson John D. Hobby

January 17, 2006

Abstract

We give a model for the performance impact on wireless systems of the

limitations of certain resources, namely, the base-station power amplifier

and the available OVSF codes. These limitations are readily modeled

in the loss model formulation as a stochastic knapsack. A simple and

well-known recurrence of Kaufman and Roberts allows the predictions of

the model to be efficiently calculated. We discuss the assumptions and

approximations we have made that allow the use of the model. We have

included the model in Ocelot, a Lucent tool for modeling and optimizing

cellular phone systems. The model is fast to compute, differentiable with

respect to the relevant parameters, and able to model broad ranges of

capacity and resource use. These conditions are critical to our application

of optimization.

1 Introduction

There are many conditions that reduce the performance of cellular phone sys-
tems. Several of these conditions are limitations of shared resources. The theory
of loss model systems studies the properties of multiple services contending dy-
namically for a common resource. This note describes the assumptions and
approximations the authors have made to apply the loss model formulation to
two such common resources: the base-station power amplifier (or PA), and the
set of OVSF codes used in the forward radio link (from base-station to mobile
phone). These resources limit both circuit and packet services; here we will
be mainly concerned with circuit services, with some discussion of how their
modeling interacts with the modeling of packet services.

Although the loss model setting is natural and appropriate for this modeling
task, it is not a perfect fit. Section 2.1 below gives some assumptions and
approximations that we must make to use loss model results to capture the
performance effects of the power amplifier and the OVSF codes. For example,
the power needs of a call can vary continuously, but the simplest loss model
results assume resources are measured in discrete units. Some discretization is
therefore needed; our approach to that task is outlined in Section 2.2. Next, after

1



giving a more formal description of the loss model calculations for each resource
separately, in Section 2.3, we describe the assumptions and approximations that
are needed to allow the combined effects of the limitations of these resources,
in Section 2.4.

Ocelot also incorporates some performance measures for packet data services.
While those measures will be described elsewhere, we still need to make some
assumptions in order to combine those measures with the modeling of circuit
services; these are outlined in Section 2.5.

Section 3 discusses our overall performance estimate. Section 4 discusses
a generalization of the recurrence to situations where multiple resources are
shared. The generalization is to expensive to use for optimization, but we can
use it as a basis for comparison. Section 5 discusses a simple way to model
a system having circuit services with two particular priority types. While not
used in Ocelot, such a scheme shows the flexibility of the modeling scheme
used. Then Section 6 tests our assumptions and evaluates the accuracy of the
performance estimates.

Section 7 discusses the derivative calculation needed by Ocelot. While the
derivative calculations are largely straightforward, they are complicated, and it
is not entirely trivial to set them up for rapid evaluation.

Section 8 gives some correspondences between the mathematical notation
used here and Ocelot program variables.

2 Loss Model Systems

Loss model results apply to the following situation. (See, for example, [Kel91,
Ros95].)

There is a collection of “jobs,” or “calls,” contending for a resource; there
are M units of the resource, for some M , and there are K distinct kinds of jobs,
where job type k requires bk units of the resource. Once admitted, a job uses
the resource until the job is done. If admission of a job would raise the total
number of units of the resource above M , the job is not admitted: it is blocked.
It is assumed that jobs arrive at random, and take a random amount of time
to be done. We are interested in estimating the blocking probability under these
conditions, the probability that when a job arrives, all M units of the resource
are in use.

We next review the assumptions needed to apply this framework to OVSF
codes, and to the power amplifier.

Hereafter, we refer to OVSF codes colloquially as Walsh codes, although we
mean the more general class of codes.

2.1 Preliminary Assumptions

While a call (that is, job) of a circuit service uses a constant number of Walsh
codes over the time the job is in the system, this is only true approximately for
PA usage under power control: fading, both slow and fast, results in random

2



variation in the power demands of the call. It is possible to model this variation,
but for now we assume that power remains at a fixed level for the duration of
a call. Also, power demand is best modeled as varying continuously, so K
is infinity; while there are “continuous stochastic knapsack” models of such
situations, here we simply discretize power demand.

Approximation 2.1 Power discretization. Power will be discretized so that
MA units of power, called bins, will be available from the PA. The power de-
mands of the calls will be further discretized to use units of bA

i = 1, 2, 4 . . . bins.

Since calls far away from the base-station (that is, at high pathloss) use
more power, we cannot assume that the power is fixed for each service; even for
voice, some calls may take 1 bin, others 2, others 4, and so on. That is, the
appropriate “job type” for analyzing power is not service but what we will call
the power demand class. As will be apparent from the discussion below, we can
regard all calls that use the same power as being the same, as far as analyzing
PA usage goes. We don’t care what (circuit) service they are, just how much
power they use. Section 2.2 has more details on the way the discretization of
power demands is done, and Section 2.4 has more details on the relation between
services and power demand classes.

The coarse rounding we do is partly justified by a study [Whi] showing that
blocking results are relatively insensitive to whether we model calls by different
job sizes, or simply by the mean of those sizes; on the other hand, the range
of power demands we will consider for 3G services are much greater than for
CDMA IS95 voice, and we will be considering a relatively low capacity case:
not so many data calls can be supported by a given PA, so it’s not clear now
that we can simply ignore per-call variations in power demand.

As noted, Walsh codes are already discrete; however, the following approxi-
mation will be needed to put them in the loss model framework.

Approximation 2.2 Walsh code additivity. If the total number of Walsh
codes requested is below a given limit, then the requests can be satisfied.

This is an approximation, because a service needing 2j Walsh codes will be
allocated a set of codes of the form (k−1)2j, (k−1)2j +1, . . . , k2j −1, for some
k; it cannot be allocated an arbitrary set of 2j codes. Moreover, the allocation
decision must be done “on-line,” as calls arrive.

As our experimental results of Section 6 show, this assumption has a sub-
stantial effect; also in the section, we give a “correction” (28) derived empiri-
cally, and show experimentally that this change improves the agreement of our
calculations with simulation results.

Even the admission policy we use for the loss model calculations is an as-
sumption.

Assumption 2.3 Admission. A call is refused admission (not allowed to
connect), when its estimated power demand would raise PA use above MA bins,
or its Walsh code allocation would raise the total number of Walsh codes above
a limit MW .

3



As noted above, we are using an additivity approximation for Walsh codes.
With respect to the PA, this is apparently the admission policy of some systems,
except for the means of obtaining the estimated power demand. As noted above,
the estimate we use is static: an expected number of users (Erlangs) obtained
from Ocelot’s data for the location of users. The actual estimate can be dynamic,
and based on the average power demands of the calls of the same service type
in service at that moment. Since our model of offered traffic is static, we can’t
model the changing power requirements of a given call during its duration, and
so we can’t model any such averaging.

The loss model calculations require one further assumption about the ran-
dom arrival of jobs.

Assumption 2.4 Poisson arrival. Jobs arrive as a Poisson process, and
their completion time is a random process. If a job is blocked, it goes away (is
cleared).

A Poisson process has an associated parameter, its mean λ, and we assume
that the completion time has mean 1/µ; the key parameter for us is ρ ≡ λ/µ,
the load. We don’t need to assume any particular distribution for the comple-
tion (or holding) times; the calculations are valid with any such holding time
distribution.

The load of expected jobs of type k is ρk, where ρk = λk/µk.

2.2 Continuous versus Discrete Power Demands

In practice, loads are not naturally divided into discrete power demand classes.
Instead, we have a series of incremental load contributions with some way of
computing power requirements for each. For example, a load contribution ρ̄ may
require some non-integer number of power bins b̄. We cope with this by defining
a weighting function wi for each power demand class i, and contributing wi(b̄)ρ̄
to each power demand class i whose weighting function is nonzero at b̄.

This is a lot like replacing the single value b̄ by a probability distribution
centered at b̄, as would occur with fading. However, the main purpose here is
to cope with the discreteness of the power demands and to ensure that each ρi

is a smooth function of the b̄ values. Hence the weighting functions should have
the following properties:

1. Each wi remains between 0 and 1.

2. At any b̄,
∑

i wi(b̄) = 1, so the total of the new loads
∑

i wi(b̄)ρ̄ is the
original load ρ̄.

3. Each wi must be a C1 continuous function of b̄.

4. At any b̄, few wi(b̄) values should be > 0.

5. Unless b̄ is too big, b̄ =
∑

i bA
i wi(b̄), so that the total of the new average

power demands
∑

i bA
i wi(b̄)ρ̄ is the original average power demand ρ̄b̄.

4



Here “too big” means that b̄ is larger than a certain threshold, defined
below.

Properties 1 through 4 could also be expressed by saying that the weighting
functions are a partition of unity. If it weren’t for Property 5, we could use
nonuniform quadratic B-spline weighting functions. Using cubic splines instead
of quadratics as shown in Figure 1 gives the extra degree of freedom needed to
ensure Property 5.

8 16 32
64

0 20 40 60 80

0

0.2

0.4

0.6

0.8

1

(a)

0

1

2

4

0 2 4 6 8 10

0

0.2

0.4

0.6

0.8

1

(b)

Figure 1: (a) power demand class weighting functions wi(b̄) labeled with the
corresponding bA

i ; (b) the first few weighting functions expanded for clarity.

To build the weighting functions, we assume the bA
j are ordered as

0 = bA
0 < bA

1 < bA
2 < · · · < bA

m.

We use a related set of values b̂j , for j = 0 . . .m, where b̂0 = 0, and choose b̂1,

b̂2, . . . , b̂m so that bA
m < b̂m and

bA
i < b̂i < bA

i+1 for 0 < i < m.

(For bA
i = 0, 1, 2, 4, 8, 16, 32, 64, Ocelot uses b̂i values 0, 1.76, 2.25, 5.74, 10.3,

21.8, 42.2, 87.0.)

We need wi(b̄) = 0 and w′
i(b̄) = 0 when b̄ ≤ b̂i−2 or b̄ ≥ b̂i+1 so that no

more than three wi functions are ever greater than zero at any b̄, and at most
two are greater than zero at b̄ = b̂0, b̂1, . . . , b̂m. Thus for any j < m, applying
Properties 2 and 5 with b̄ = b̂j gives two equations

wj(b̂j) + wj+1(b̂j) = 1, (1)

bA
j wj(b̂j) + bA

j+1wj+1(b̂j) = b̂j (2)

in the two unknowns
wj(b̂j) and wj+1(b̂j).

5



Furthermore, differentiating the equations for Properties 2 and 5 gives two equa-
tions

w′
j(b̂j) + w′

j+1(b̂j) = 0, (3)

bA
j w′

j(b̂j) + bA
j+1w

′
j+1(b̂j) = 1 (4)

in the two unknowns
w′

j(b̂j) and w′
j+1(b̂j).

Thus wi(b̂j) and w′
i(b̂j) can be determined for each j = 0 . . .m− 1 and each

i, recalling that most such values are zero. Since knowing all such values at each
cubic segment boundary b̂j determines all the piecewise-cubic wi functions, it

only remains to choose wi(b̂m) and w′
i(b̂m). This is where b̄ is “too big” for

Property 5 to apply, so we just have the wi functions level off with all the
weight assigned to bA

m; i.e., all w′
i(b̄) = 0,

wm(b̄) = 1, and wi(b̄) = 0 for i < m.

Note that there is a power demand class bA
i = 0 at i = 0. Since this consumes

no power resources, the corresponding traffic load can be ignored in much of the
following analysis, but it is clearly necessary in order to cope with cases where
b̄ < 1.

2.3 Loss Models

Up to the approximations we have discussed, the loss model systems we have
are two instances of a stochastic knapsack. The blocking probabilities, and
other properties, of the stochastic knapsack can be computed provably and
exactly using an efficient calculation, which we next review. This model, and
calculation, has seen many applications in network modeling. It has also been
applied to model the limitations of wireless systems with respect to reverse-link
interference,[JHR02] an area in which we have not applied it.

The loss model framework, again, is the following. We have a collection of
K kinds of jobs contending for a resource of M units, and job type k needs bk

units. Jobs arrive Poisson, with load ρk. For the Walsh codes, the job type is
the type of service; for the PA, the job type is the power demand class.

The stochastic knapsack calculation (Kaufman-Roberts recurrence) allows
us to find the steady-state probability distribution of the number of resources
in use, and the blocking probabilities per job type.[Kau81, Rob81, Ros95] A
derivation of this calculation is outlined, in a more general setting, in Section 4
below.

Let g(c) satisfy g(c) = 0 for c < 0 or c > M , and g(0) = 1, and let

g(c) =
1

c

∑

k

ρkbkg(c − bk) (5)

6



for c = 1 . . .M . Then the steady-state probability that c resource units are used
is ĝ(c) ≡ g(c)/G, where

G ≡
∑

c

g(c). (6)

The blocking probability for a circuit service needing bk units is then

Rk ≡
∑

c<bk

ĝ(M − c). (7)

Equivalently, let

G(c) ≡
∑

c′≤c

g(c′).

Then
Rk = 1 − G(M − bk)/G(M). (8)

It will be convenient to define

Pk ≡ 1 − Rk = G(M − bk)/G(M) (9)

as the “passing probability”.
We will use the recurrence in computing the passing probability, first for

Walsh codes and then for the power amplifier.

2.4 Assumptions for Integrated Analysis

So far, discussion has been about analyzing the PA blocking probability in isola-
tion, and similarly the Walsh code blocking probability, in isolation. Moreover,
discussion has not addressed packet data QoS analysis. This subsection dis-
cusses the approximations and assumptions we make to analyze the joint effect
of the Walsh code and PA blocking, and to integrate packet data analysis, and
other remaining approximation.

We model the combined effect of PA limitations and Walsh limitations se-
quentially, for non-packet services:

Approximation 2.5 Cascade model. We will first compute the blocking per
service due to Walsh code limitations, and then compute the blocking due to the
PA of the resulting reduced load, on a service-by-service basis.

That is, high blocking of a given service by Walsh code limitations implies a
reduced load when considering that service with respect to PA limitations. The
reduction in PA load for that service is assumed to be uniform across different
power demand classes for that service. (This is expressed symbolically as (16)
below.)

This is an approximation, because even when the PA is highly loaded, and
a service might be blocked as a result, we will still consider the service at full
load for the Walsh code calculation.

7



A more sophisticated approach is taken with reduced-load approximation,
also known as Erlang fixed-point approximation. In that approach, as specialized
to the task here, the load for computing the blocking due to Walsh codes would
be reduced by considering the blocking due to the PA, as well as the other
way around. That is, mutually consistent blocking probabilities and reduced
loads would hold for Walsh codes and the PA simultaneously. There is always a
unique solution for such a set of conditions, for the K = 1 case,[Whi85, Kel86]
and always at least one solution for K ≥ 1.[CR93]

Although a reduced load approximation might be an improvement in ac-
curacy, we don’t take that approach here. Such an approximation is typically
found by fixed-point iteration, which here would amount to substituting the out-
put load back into the Walsh code blocking probability calculation, and then
using the original load times the Walsh blocking to determine the input load for
the PA. Doing this repeatedly is generally thought to converge rapidly, but it
is still much slower than the simple cascade. (Although a simplified loss model
calculation may make it feasible.[TM96]) Moreover, unless the fixed-point com-
putation is done to machine accuracy, it is difficult to determine the derivative
of the output of such an approximation; the derivative is very useful for op-
timization. Another possibility would be to iterate a small, fixed, number of
times. However, the derivative calculation would then be intractable.

Assumption 2.6 Equal priority circuit service. All circuit services (in-
cluding voice and data) have equal priority.

That is, we don’t model a policy where circuit data services are thrown off in
overload. This assumption can be avoided: in Section 5, we discuss how to com-
pute the blocking probabilities efficiently for two priority classes, one of which is
“best effort”; however, this approach seems hard to apply in combination with
calculation of packet data QoS estimates.

Approximation 2.7 Activity factors. In addition to loads, we also have
activity factors that specify another form of variation in the use of resources.

The activity factor models the use of the resource during a job, giving an indi-
cation of the average use of the resource. The role of activity factors is different
for different services and for the two resources. While an inactive voice or cir-
cuit call uses less (or no) power, it does use its allocated Walsh codes, so the
“activity factor” for circuit Walsh code usage is one, even if the general activity
factor for PA usage is less than one. We will model the situation by reducing the
usage estimate bA

k for the PA by the activity factor, but not doing so for Walsh
codes. An inactive packet data call uses neither its Walsh codes nor the PA, so
we explicitly include the activity factor into the M/M/m queue calculation for
Walsh codes and 3G1X PA usage. Since the UMTS PA performance values for
packet data are frozen, the activity factor for a UMTS packet data service is
frozen.

8



2.5 Packet Data

Packet data services do not satisfy, even approximately, the assumptions of the
stochastic knapsack calculation. From our assumptions, however, the results of
the stochastic knapsack calculation for the circuit services can be used to more
accurately predict the system performance for packet data services.

Assumption 2.8 Packet doesn’t affect circuit. The circuit services affect
the resources available to the packet services, but not the other way around.

The basis of this assumption is that one simple mechanism for handling overload,
that has been implemented, is to disconnect data services when the PA is in an
“overloaded” state. Such a state occurs where the power the PA is supplying
is above its nominal rating. We assume a similar condition holds for Walsh
codes. This assumption allows us to model the PA use by first applying “loss
model” calculations to the circuit services, and then finding the quality of service
available to the packet services.

Approximation 2.9 Packet service quality function. For given power
available from the PA, all users of a packet data service will see the same per-
formance, which is a function of the available power and of the average power
needed per call by the users of that packet service.

From this assumption, we model the expected QoS for a packet-data service
as follows: we use a quality function Pp(X, Z), taking values in 0 . . . 1, where X
is the expected number of packet users, and Z is the ratio of available units of
the resource to the average need of that resource by a user. (So Z is the “number
of channels”.) The function Pp() is analogous to Pk for circuit services: we want
Pp() as large as possible. The expected quality of service for packet-data services
is then estimated as

P̄p ≡
∑

c

ĝ(c)Pp(ρ̂p, ρ̂p(M − c)/Dp), (10)

where ρ̂p is the expected number of packet users and Dp is the expected total
demand for the resource by the packet user. If we define ρ̃k as the expected
number of packet data users for the job type k, then

ρ̂p =
∑

k

ρ̃k =
∑

i,j /∈C

ρij (11)

and
Dp ≡

∑

k

bkρ̃k (12)

So Dp/ρ̂p is an estimate of the average resource need per packet-data user, and
again, ĝ(c) ≡ g(c)/G is the steady-state probability that c units are in use by
circuit services, so that M − c are available for packet data.

9



The computation of Pp(X, Z) is outside the scope of this paper, but here is an
overview. To compute Pp(X, Z), we use the “normalized relative throughput”
(a function of delay) from the Walsh code calculations, and then from the PA
calculations, and take the minimum of the two throughputs, or equivalently,
compute the normalized relative throughput corresponding to the maximum
delay due to Walsh code and PA limitations. The throughput calculations
are based, for the PA in UMTS, on Monte Carlo simulations;[Gra] the results
of these simulations are tabulated and used to generate a smooth function in
Ocelot. For the PA in 3G1X, and for the Walsh codes in all technologies, we
will use a throughput estimate based on bounded M/M/m queues. 1

3 Performance Estimate

First we describe the loss model calculations, and then the overall performance
estimate.

3.1 Per-service Performance

As described above, we will do a loss model calculation for the Walsh codes,
and then use the resulting reduced load to do a loss model calculation for the
PA, and use the results of those calculations to compute performance estimates
for packet data services.

Each service j, such as voice, circuit data, packet data, etc., will be modeled
as having offered load ρij for power demand bA

i and Walsh code usage bW
j ; that

is, ρij expected users using service j will need bA
i bins of the PA and bW

j Walsh
codes.

The load ρW
j of circuit service j for the Walsh-code loss-model calculation

is
ρW

j ≡
∑

i

ρij , (13)

and we can take ρW
j to be zero for j /∈ C, where C is the set of indices of circuit

services (that is, voice or circuit data). Having done the loss model calculation
for the Walsh codes, we have Walsh code usage probabilities ĝW (c) and passing
probabilities P W

j . As discussed above, we use the ĝW (c) values to compute

P̄p
W

, the normalized relative throughput of packet data services due to Walsh
code limitations. Here, for packet data service j, the load for service j (job type
j) is

ρ̃W
j =

∑

i

ρij ,

1 The PA model using bounded M/M/m queues was suggested by Harish Viswanathan and
John Graybeal, and the use of the performance measure of normalized relative throughput
was suggested by Graybeal.

10



and ρ̃W
j = 0 if j ∈ C. This implies

ρ̂W
p =

∑

j

ρ̃W
j =

∑

i,j /∈C

ρij (14)

and
DW

p ≡
∑

j /∈C

bW
j ρ̃j =

∑

i,j /∈C

bW
j ρij (15)

For the PA loss-model calculation, the load values ρA
i are

ρA
i ≡

∑

j∈C

P W
j ρij . (16)

Together with the bin requirements bA
i , these yield PA bin usage probabilities

ĝA(c) and passing probabilities P A
j . The usage probabilities are used to compute

P̄p
A
, the normalized relative throughput of packet data services due to PA

limitations. Here packet data load for power demand class (PA job type) i is

ρ̃A
i =

∑

j /∈C

ρij .

Note that since our model of QoS for packet data is based on delay, there is no
modeled reduction of PA demand by packet calls due to Walsh code limitations.
We have

ρ̂A
p =

∑

i

ρ̃A
i =

∑

i,j /∈C

ρij , (17)

so indeed ρ̂A
p = ρ̂W

p = ρ̂p, and

DA
p ≡

∑

i

bA
i ρ̃i =

∑

i,j /∈C

bA
i ρij (18)

3.2 Overall Performance

We can now join together the blocking probabilities and performance estimates
to obtain an overall performance estimate.

We merge together the packet data estimates P̄p
W

and P̄p
A

using a “smooth
min” function M(., .) to obtain a packet performance estimate

P̄p
O
≡ M(P̄p

W
, P̄p

A
). (19)

If we used the usual min instead of the smooth min, the estimate would not
be differentiable everywhere, and a derivative discontinuity would interfere with
optimization.

Let Ij be a weighting factor indicating the “importance” of service j. We will
combine the estimates together by weighting using Ij and using the appropriate
loads. Let

Lp ≡
∑

j /∈C

∑

i

Ijρij .

11



Our measure of overall performance is T/L, where

T ≡
∑

j /∈C

∑

i

Ijρij P̄p
O

+
∑

j∈C

∑

i

IjρijP
W
j P A

i = LpP̄p +
∑

j∈C

∑

i

IjρijP
W
j P A

i

(20)
and

L ≡
∑

j

∑

i

Ijρij .

This completes the description of the calculations, except for computing
derivatives.

4 Loss Models for Multiple Resources

While the Kaufman-Roberts recurrence has been applied to the sharing of a
single resource, it can be extended to model the sharing of multiple resources.
Next we give such an extension, which can then be compared with the results
of the “cascade” method of combining Walsh code and PA results.

The extension is appropriate when there there are two or more resources,
and the units brk of resource r for job-type k may be different for each r. Also
the total number of total units Mr of each resource r may be different. Here
a multi-dimensional recurrence, like Kaufman-Roberts, can be used. As noted,
this recurrence is expensive: the time needed to evaluate it is Ω(K

∏

i Mr) in
the worst case. This is too slow to use routinely in applications, but it allows the
exact blocking probability to be computed for comparisons with approximations.

The Kaufman-Roberts recurrence has been extended before, in the context of
loss networks, [Ros95], where the resources being shared are links in a network.
The situation here is a little different, because the brk values can be different
for different resources r, and the sharing is less complicated: every job may use
each one of the resources. (However, the discussion here cannot be regarded as
new, and is included mainly for completeness.) In the loss network setting, the
latter can be modeled as a single path; however, in a loss network, effectively
brk = br′k for all r and r′, and so modeling the single path is simply a matter of
using the link with the smallest Mr. Finally, in a loss network, the existence of
disjoint paths (or nearly disjoint paths) implies the plausibility of the approxi-
mation of assuming that resource blocking probabilities are independent. Such
an approximation is clearly inappropriate here.

We derive the recurrence analogously to the derivation given in Ross[Ros95].
Let the jobs being done as a given moment be given as column K-vector n =
(n1, . . . , nK), where nk is the number of jobs of type k. Let B denote the R×K
matrix of values brk, the number of units of resource r used by job type k. Let
b·k and br· denote the k’th column and r’th row of B. Let c denote the column
R-vector of units of resources in use, where cr denotes the units of resource r in
use. Let S(c) denote the set of vectors n of job types that use resources c, so

S(c) ≡ {n | Bn = c}.

12



Let π(n) denote the steady-state probability of job-type distribution n, in the
unbounded case, that is, where all resources are infinite. There is an explicit
expression for π(n), but the only property we will need here is the balancing
equation

nkπ(n) = ρkπ(n − ek), (21)

where ek is the K-vector that is one in entry k and zero elsewhere. This expres-
sion results from the fact that, in the steady state, the probability of a transition
from state n to state n − ek is equal to the probability of a transition in the
other direction. We can write relation (21) as

nπ(n) = ρπ(n), (22)

where ρ is the diagonal K × K matrix with entries ρkk ≡ ρk, and π(n) is the
K × 1 vector with π(n)k ≡ π(n − ek) if nk > 0, and π(n)k = 0 when nk = 0.

Let q(c) denote the steady state probability of resource distribution c in the
unbounded case, so

q(c) =
∑

n∈S(c)

π(n), (23)

and let q(c) denote the K × 1 vector with

q(c)k ≡ q(c − b·k)

when c ≥ b·k, and q(c)k = 0 otherwise.
Another simple statement about π(n) follows from the fact that n ∈ S(c) if

and only if n−ek ∈ S(c−b·k), when nk > 0. From this fact, and the definitions,
it follows that

∑

n∈S(c)

π(n)k =
∑

n∈S(c)

π(n − ek)

=
∑

n∈S(c−b·k)

π(n)

= q(c − b·k) = q(c)k ,

that is,

q(c) =
∑

n∈S(c)

π(n). (24)

(cf. (23))
A recurrence relation for q(c) can now be derived, using (22) and (24). We

13



have

cq(c) =
∑

n∈S(c)

cπ(n) =
∑

n∈S(c)

(Bn)π(n)

= B
∑

n∈S(c)

nπ(n) = B
∑

n∈S(c)

ρπ(n)

= Bρ

∑

n∈S(c)

π(n)

= Bρq(c).

This reasoning gives us R expressions for q(c), which are all equal: the
matrix-vector expression above implies that for each r = 1 . . . R,

q(c) =
1

cr
br·ρq(c).

These dependencies are a consequence of the linear dependency c = Bn.
We have a recurrence for q(c), the steady-state probability of having the

units of each resource in use be c, in the unbounded case. How does this help us
find the corresponding probabilities for the bounded case, where we must have

c = Bn ≤ M,

where M is the R-vector of bounds on the resources? The remarkable fact is that
the bounded probabilities are proportional to the unbounded probabilities, so
we can set up and solve the analogous recurrence for g(c), with initial, boundary
values set at one, and then compute Q(c) = g(c)/G for every c, where G is a
“normalization constant” equal to the sum of the g(c) values for all c with
c ≤ M. The validity of this calculation is a consequence of the reversibility of
the Markov chain with state space {n | n >= 0}.[Ros95]

It follows that we can solve the recurrence above, starting with q(0) = 1, for
all c ≤ M, and then normalize by

∑

c≤M
q(c).

An obvious problem here is the expense of solving the recurrence, when R
is not small. One helpful possibility is that many values of q(c) may be zero,
so that if we solve the recurrence so that one nonzero entries are touched, the
calculation will be correspondingly sped up.

5 Two-Priority Systems

As given above as Assumption 2.6, we assume that all circuit services have the
same priority. It is not unusual, however, to have circuit data services at lower
priority than voice services, where the data services are thrown off in overload.
In such a case, the higher priority (voice) services are unaffected by the lower
priority (data) services, while the data services make do with whatever resources
are left over from the demands of the higher priority services. Here we note that
it is possible to model such a condition with the stochastic knapsack, without

14



a significant computational cost. The idea is similar to what is done to include
the modeling of packet data (and is mutually exclusive with that modeling).
The loss model calculation (5) is done as before, but omitting the circuit data
services, yielding functions gV (c), ĝV (c), and GV (c). The circuit data services
would have a separate calculation, leading to functions gD(c) and GD(c) for the
circuit data services alone, and a function RD

k (c), where analogously to (8),

RD
k (c) ≡ 1 − GD(c − bk)/GD(c),

the blocking probability for (data) job type k, given that c resource units are
available. The blocking probability for a lower priority circuit data service is
then

∑

c

ĝV (c)RD
k (M − c),

the probability that c resource units are used by the higher priority voice ser-
vices, times the blocking for data, given that M − c units are available. This
requires only a constant factor more time to compute, but does preclude the
convolution that is done for packet data.

6 Experimental Studies

Since it is hard to compare our model directly with the real world, we built
a Monte Carlo simulator that models call arrivals and departures, Walsh code
allocation and deallocation, and blocking due to Walsh and power limitations. It
does not operate in discrete time steps, but rather uses exponentially-distributed
random variables to decide when the next event happens. Each simulation ran
for at least 30,000 steps with one half or one third of that reserved for “warm-
up time” not used in gathering statistics. Furthermore, each statistic reported
below is averaged over at least 10 such simulation runs.

6.1 Walsh Code Additivity

Running the Monte Carlo simulator with the available power MA set very high
allows us to compare Approximation 2.2 (Walsh code additivity) to the popular
crowded-first allocation scheme [YCT01, RS02], also called crowded-first-code
[CTW03]. One would naturally expect the additivity assumption to be opti-
mistic with respect to the overall blocking probability, because it amounts to
assuming that there is never any code blocking (blocking calls due to otherwise
sufficient free Walsh codes not forming a large enough contiguous block). How-
ever, Figure 2 shows that the assumption actually becomes pessimistic at high
loads. Here code blocking affects more calls that demand many Walsh codes.
For a lower overall blocking, it is good strategy to block such “large jobs” un-
necessarily if this is likely to prevent many small jobs from being blocked.

When the distribution of Walsh code demands is skewed so there are fewer
large jobs and more small jobs, Figure 3 shows that the additivity assumption
is more pessimistic at high loads, and the crossover from optimism to pessimism

15



additive

crowded 1st

code blk.

150 200 250 300 350 400

0

0.05

0.1

0.15

0.2

(a)

additive

crowded 1st

code blk.

150 200 250 300 350

0.4

0.6

0.8

1

1.2

(b)

Figure 2: (a) Blocking versus average Walsh code demand ` under the additivity
assumption and crowded-first allocation, with a separate graph for the code
blocking component; (b) the ratio of each type of blocking to crowded-first
blocking. Each call is equally likely to demand 1, 2, 4 or 8 Walsh codes.

happens at a lower load and a lower blocking rate. This crossover tends to be
at blocking rates near a few percent, which is a reasonable operating point for
a loaded cell phone system.

To get a better idea of what Walsh code demand qualifies a call as “large,”
note that each value for the total free space σ in the Walsh tree leads to a prob-
ability distribution for how often the maximum contiguous block of available
Walsh codes is 1, 2, 4, 8, 16, etc. Figure 4 shows

γ := 2E[lg β|σ]

as a function of σ, where β is the maximum contiguous available Walsh size.
Here E[lg β | σ] is the conditional expectation of lg β given σ, for some specific
ρ and bW values, and lg n := log2 n.

Figure 4 suggests that γ is roughly linear in σ, but depends on the Walsh
code demands of incoming calls, and is bounded by the largest power of 2 not
exceeding σ. Thus an empirical estimate for γ can be of the form,

γ ≈ min(3 + f(z, `) · σ, 2blg σc), (25)

where ` :=
∑

j ρW
j bW

j and z :=
√

∑

j ρW
j (bW

j )2/
∑

j ρW
j , the RMS mean of

the Walsh demands bW
j weighted by the associated traffic ρW

j . Since it can be
useful to be able to compute estimated γ values, we shall use the rather arbitrary
empirical formula

f(z, `) =
7.5 + 8.53z + 0.157z2

` + max(0, 24z − 100)
. (26)

16



additive

crowded 1st

code blk.

150 200 250 300 350 400

0

0.05

0.1

0.15

0.2

(a)

additive

crowded 1st

code blk.

150 200 250 300 350

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 3: (a) Blocking versus average Walsh code demand ` under the additivity
assumption and crowded first allocation, with a separate graph for the code
blocking component; (b) The ratio of each type of blocking to crowded-first
blocking. Relative likelihoods for Walsh code demands 1, 2, 4, 8 are 1, 0.6, 0.36,
0.216.

160

200

240

280
320

360

0 50 100 150

0

10

20

30

40

50

(a)

40

80

120

160

200
240

0 50 100 150 200 250

0

20

40

60

80

100

120

(b)

Figure 4: Graphs of maximum Walsh codes per call γ versus total Walsh tree
free space σ for RMS mean Walsh codes per call z = 4.61 and for various total
Walsh loads `. (a) shows only σ values with ≥ 1000 occurrences in the simulator
runs; (b) uses a lower limit of 10 occurrences for ` = 40, 80 and a limit of 100
for larger ` values.

17



How much does it help to base call blocking on (25) and (26) instead of just
using the additivity assumption? This seems promising in simulator runs; i.e.,
Figure 5 shows that it does give a much better match to crowded-first blocking
for the examples of Figures 2b and 3b.

additive

γ corrected

crowded 1st

150 200 250 300 350

0.4

0.6

0.8

1

1.2

(a)

additive

γ corrected

crowded 1st

150 200 250 300 350

0.4

0.6

0.8

1

1.2

1.4

(b)

Figure 5: Graphs of the ratio of blocking from the additive assumption to
crowded first blocking versus Walsh demand `, including a version corrected via
(25). For (a), Walsh demands 1, 2, 4, 8 are equally likely; for (b), their relative
likelihoods are 1, 0.6, 0.36, 0.216.

This can also be solved numerically if one is willing to solve a large sparse
linear system, where there is one variable for each system configuration, and the
system configuration depends on the number of calls using each Walsh code size
bW
j . If, for instance, MW = 128 and the Walsh demands bW

j are {1, 2, 4, 8}, then
there is one probability to compute for each of the 222,241 ways of choosing non-
negative integers q0, q1, q2, q3 such that q0 +2q1 +4q2 +8q3 ≤ 128. The problem
is that basing the blocking on (25) causes the resulting probability distribution
for c = q0 + 2q1 + 4q2 + 8q3 to disobey the Kaufman-Roberts recurrence.

More heuristically, using ` and z as defined above and σ(c) = MW − c, the
Kaufmann-Roberts recurrence can be modifed to

g(c) =
1

c

∑

k

ρW
k bW

k g(c − bW
k )δc−bk,k, (27)

where

δc,k =











1 if bW
k < min{3 + f(z, `) · σ(c), 2blg σ(c)c;}

1
2 if bW

k = min{3 + f(z, `) · σ(c), 2blg σ(c)c;}

0 otherwise.

(28)

Figure 6 gives an example of the resulting g(c) distribution for a scenario where
it is much more accurate than the unmodified Kaufman-Roberts solution for

18



the high c values that are relevant for computing blocking probability. See also
Figure 8, discussed just below.

Kaufman-Roberts

Modified K-R

60 80 100 120 140 160

10−10

10−8

10−6

10−4

0.01

Figure 6: The solution to (27) as a function of Walsh codes in use c along with
the corresponding probability from Kaufman-Roberts. The dotted line gives
the distribution from solving from solving the large sparse linear system that
describes blocking based on (25). This is for the Walsh code demands from
Figure 5 with MW = 128 and ` = 268.4.

6.2 The cascade model

How good is the cascade model (Approximation 2.5)? One would expect it
to perform well when Walsh limitations strongly predominate over power lim-
itations. This is demonstrated by the scatter plots in Figure 7. These show
the model’s prediction for overall performance, versus corresponding simulator
results. Here there were two services and two power demand classes with

MW = 64, MA = 100, cI1, I2 = 1, 2, bW
1 , bW

2 = 16, 1, bA
1 , bA

2 = 1, 4,

and 81 different problem instances were obtained by trying all possible load
matrices where

ρ1,1, ρ2,1 ∈ {2, 8, 32}, ρ1,2, ρ2,2 ∈ {1, 4, 16}. (29)

Since Figure 7b shows such a close match between the cascade model and the
simulator results, almost all the disagreement in Figure 7a must be due to the
Walsh additivity assumption. This conclusion is bolstered by Figure 8, which
compares the performance estimated using the empirical correction (28) with
simulator results, under the same conditions. This shows a clear improvement
relative to Figure 7a. When using the empirical correction, the blocking proba-
bility calculation is slightly more complicated: rather than

∑

c>MW −bk
g(c)/

∑

c g(c),

19



it is
∑

c g(c)(1 − δc,k)
∑

c g(c)
.

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

1

(a)

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

(b)

Figure 7: (a) Overall performance predicted by the Monte Carlo simulator for
various Walsh-limited scenarios versus the corresponding T/L from the cascade
model; (b) the same except with the simulator using Walsh additivity assump-
tion for admission control.

Now consider 81 power-limited scenarios where the 2 services and 2 power
demand classes have

MW = 256, MA = 100, cI1, I2 = 1, 2, bW
1 , bW

2 = 8, 1, bA
1 , bA

2 = 11, 4,

and (29) gives 81 sets of ρi,j values. In this case the Walsh-additivity assumption
does not matter and we get good agreement between simulator results and the
cascade model as shown in Figure 9.

Tweaking the scenarios so that

MW = 64, MA = 100, cI1, I2 = 1, 2, bW
1 , bW

2 = 8, 1, bA
1 , bA

2 = 8, 3,

while still using the 81 sets of ρi,j values from (29) gives Figure 10. Many of
these are scenarios where Walsh and power limitations both matter, yet there
isn’t a lot of scatter in the figure, and the small circles for scenarios where both
limitations matter do not appear particularly problematical. In fact, comparing
10a to 10b shows more scatter due to the Walsh additivity assumption than due
to the cascade model.

7 Derivatives

We need to compute the derivatives of T/L with respect to each of the input
load values ρi′j′ . The input loads determine the loads ρW

j and ρp for the Walsh

20



0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 8: Overall performance predicted by the Monte Carlo simulator for var-
ious Walsh-limited scenarios versus the corresponding T/L from the cascade
model, using empirical correction;

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 9: Overall performance predicted by the Monte Carlo simulator for var-
ious power-limited scenarios versus the corresponding T/L from the cascade
model.

21



0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(a)

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

(b)

Figure 10: (a) Overall performance predicted by the Monte Carlo simulator for
various scenarios versus the corresponding T/L from the cascade model without
the empirical correction; (b) the same except with the simulator using Walsh
additivity assumption for admission control. Dots like those in Figure 7 de-
note Walsh-limited scenarios; circles like those in Figure 9 denote power-limited
scenarios; and anything in-between denotes a scenario where both limitations
matter.

code computations, and also the loads ρA
i and ρp for the PA computation. Since

the computations of P W
j and P A

i are analogous, and similarly the computations

of P̄p
W

and P̄p
A
, we will first determine the derivatives of stochastic knapsack

quantities generically, for either resource, in terms of their inputs, and then
apply the chain rule for derivatives to find derivatives with respect to ρi′j′ .

Indicator functions. We will use the indicator function 1A, which has the
value 1 when condition A holds, and is 0 otherwise.

Index restriction. When referring to a job type k, it will be more in
accord with our input ρij , associated with PA bins and Walsh services, to keep
a reminder that only circuit services are included in the Walsh code stochastic
knapsack; we will show this by restricting job type k to a set U . That is,
UW = C and UA is the set of all “power demand classes”, and by restricting
consideration to job types k ∈ U , we can allow job type k to be the same as
service k.

Load derivatives. We will need the derivative of the packet load ρp with
respect to ρi′j′ . Using (11) on page 9, we have

∂ρ̂p

∂ρi′j′
=
∑

i,j /∈C

∂ρij

∂ρi′j′
= 1j′ /∈C (30)

22



For k = j ∈ U , we have from (13) on page 10

∂ρW
j

∂ρi′j′
=
∑

i

∂ρij

∂ρi′j′
= 1j=j′ . (31)

From (16) on page 11, we have

∂ρA
i

∂ρi′j′
=

∑

j∈C

∂(P W
j ρij)

∂ρi′j′
(32)

=
∑

j∈C

P W
j

∂ρij

∂ρi′j′
+

∂P W
j

∂ρi′j′
ρij

=
∑

j∈C

P W
j 1i=i′,j=j′ + 1j′∈C

∂P W
j

∂ρW
j′

∂ρW
j′

∂ρi′j′
ρij

= P W
j′ 1j′∈C1i=i′ + 1j′∈C

∑

j∈C

∂P W
j

∂ρW
j′

ρij

= 1j′∈C



P W
j′ 1i=i′ +

∑

j∈C

∂P W
j

∂ρW
j′

ρij



 ,

where
∂P W

j

∂ρW
j′

is given just above.

7.1 Per-resource Derivatives

Passing probability. The derivative ∂Pk

∂ρk′

of the passing probability Pk with

respect to input ρk′ , for k, k′ ∈ U , can be found using using (9) on page 7 and
(7) on page 7, as

∂Pk

∂ρk′

=
∑

c<bk

∂ĝ(M − c)

∂ρk′

. (33)

Occupancy probability. The derivative ∂ĝ(c)
∂ρk′

can be found, in turn, as

(
∂g(c)

∂ρk′

− g(c)
∂G

∂ρk′

/G)/G, (34)

using ĝ(c) ≡ g(c)/G. Here

∂G

∂ρk′

=
∂GM

∂ρk′

=
∑

0≤c≤M

∂g(c)

∂ρk′

,

23



and ∂g(c)
∂ρk′

can be computed by solving the recurrence resulting from

∂g(c)

∂ρk′

=
1

c

∑

k∈U

∂ρkbkg(c − bk)

∂ρk′

=
1

c

∑

k∈U

∂ρk

∂ρk′

bkg(c − bk) + ρkbk
∂g(c − bk)

∂ρk′

=
1

c

∑

k∈U

1k=k′bkg(c − bk) + ρkbk
∂g(c − bk)

∂ρk′

(35)

Packet data. We can also compute the derivative of Pp, for either resource,
by using (10) on page 9 to obtain

∂P̄p

∂ρi′j′
=
∑

c

∂ĝ(c)

∂ρi′j′
Pp(ρ̂p, ρ̂p(M − c)/Dp) +

∑

c

ĝ(c)
∂Pp(ρ̂p, ρ̂p(M − c)/Dp)

∂ρi′j′
,

(36)
We can compute the first sum as

∑

c

∂ĝ(c)

∂ρi′j′
Pp(ρ̂p, ρ̂p(M − c)/Dp) =

∑

k′

∂ρk′

∂ρi′j′

∑

c

∂ĝ(c)

∂ρk′

Pp(., .), (37)

=
∑

k′

∂ρk′

∂ρi′j′
Zk′ ,

where

Zk′ ≡
∑

c

∂ĝ(c)

∂ρk′

Pp(ρ̂p, ρ̂p(M − c)/Dp). (38)

For Walsh codes, where
∂ρW

j

∂ρi′j′
= 1j=j′ from (31) above, the sum is simply

ZW
j′ 1j′∈C , but for the PA, we have, using the above and (32) above, for j′ ∈ C,

∑

i′′

∂ρi′′

∂ρi′j′
ZA

i′′ =
∑

i′′

ZA
i′′



P W
j′ 1i′′=i′ +

∑

j∈C

∂P W
j

∂ρW
j′

ρi′′j





= ZA
i′ P

W
j′ +

∑

j∈C

∂P W
j

∂ρW
j′

∑

i′′

ZA
i′′ρi′′j . (39)

We can write the second sum in (36) in terms of derivatives with respect to
ρ̂p and Dp:

∑

c

ĝ(c)
∂Pp(ρ̂p, ρ̂p(M − c)/Dp)

∂ρk′

(40)

=
∑

c

ĝ(c)

([

Pp1(., .) + Pp2(., .)
M − c

Dp

]

∂ρ̂p

∂ρi′j′
− Pp2(., .)

M − c

D2
p

∂Dp

∂ρi′j′

)

=
∂ρ̂p

∂ρi′j′
Cp −

∂Dp

∂ρi′j′
Cd,

(41)

24



where

Cp ≡
∂Pp(ρ̂p, ρ̂p(M − c)/Dp)

∂ρ̂p
=
∑

c

ĝ(c)

[

Pp1(., .) + Pp2(., .)
M − c

Dp

]

(42)

and

Cd ≡
∂Pp(ρ̂p, ρ̂p(M − c)/Dp)

∂Dp
=
∑

c

ĝ(c)Pp2(., .)
M − c

D2
p

. (43)

The computation of these is similar for for the Walsh and PA computations,

and they can be found while computing P̄p
W

and P̄p
A
.

The expression for
∂ρ̂p

∂ρi′j′
is (30) on page 22, and for Walsh codes, using (15)

on page 11,
∂DW

p

∂ρi′j′
=
∑

j /∈C

bW
j

∂
∑

i ρij

∂ρi′j′
= bW

j′ 1j′ /∈C .

For the PA, using (18) on page 11,

∂DA
p

∂ρi′j′
=
∑

i

bA
i

∂
∑

j /∈C ρij

∂ρi′j′
= bA

i′1j′ /∈C .

Putting the above discussion together, we have

∂P̄p
W

∂ρi′j′
= 1j′∈CZW

j′ + 1j′ /∈C(CW
p + bW

j′ CW
d ) (44)

and

∂P̄p
A

∂ρi′j′
= 1j′∈CZA

i′ P
W
j′ + 1j′∈C





∑

j∈C

∂P W
j

∂ρW
j′

∑

i′′

ZA
i′′ρi′′j



+ 1j′ /∈C(CA
p + bA

i′ C
A
d ).

(45)
Note that the middle term is independent of i′.

7.2 Derivative Overall

Using the expression (20) on page 12 for the overall performance estimate,

∂(T/L)

∂ρi′j′
= (

∂T

∂ρi′j′
−

T

L

∂L

∂ρi′j′
)/L = (

∂T

∂ρi′j′
−

T

L
Ij′)/L, (46)

so we need to find ∂T
∂ρi′j′

. Differentiating (20) on page 12, we have

∂T

∂ρi′j′
=

∂(LpP̄p
O

)

∂ρi′j′
+

∂
∑

j∈C

∑

i IjρijP
W
j P A

i

∂ρi′j′
(47)

25



7.3 Packet Data

Looking at the first term of (47) above, we have

∂(LpP̄p
O

)

∂ρi′j′
=

∂Lp

∂ρi′j′
P̄p

O
+ Lp

∂P̄p
O

∂ρi′j′
.

Observe that
∂Lp

∂ρi′j′
= Ij′1j′ /∈C ,

so
∂(LpP̄p

O
)

∂ρi′j′
= Ij′1j′ /∈C P̄p

O
+ Lp

∂P̄p
O

∂ρi′j′
.

Considering now
∂P̄p

O

∂ρi′j′
, we have

∂P̄p
O

∂ρi′j′
=

∂M(P̄p
W

, P̄p
A
)

∂ρi′j′

= M1(P̄p
W

, P̄p
A
)
∂P̄p

W

∂ρi′j′
+ M2(P̄p

W
, P̄p

A
)
∂P̄p

A

∂ρi′j′
, (48)

where Mv(., .) denotes the derivative of M(., .) with respect to its v’th argu-

ment. We now use (44) above for
∂P̄p

W

∂ρi′j′
and (45) above for

∂P̄p
A

∂ρi′j′
.

7.4 Circuit Data

We have accounted for the packet-data term in (47) above; it remains to find
the circuit-related terms

∂
∑

j∈C

∑

i IjρijP
W
j P A

i

∂ρi′j′
(49)

=
∑

j∈C

∑

i

Ij

(

∂ρij

∂ρi′j′
P W

j P A
i + ρij

∂P W
j

∂ρi′j′
P A

i + ρijP
W
j

∂P A
i

∂ρi′j′

)

= Ij′P
W
j′ P A

i′ +
∑

j∈C

∑

i

Ij

(

ρij

∂P W
j

∂ρi′j′
P A

i + ρijP
W
j

∂P A
i

∂ρi′j′

)

Here ∂ĝ(c)
∂ρk′

is given above in (34) on page 23. Re-arranging, we have

∑

j∈C

∑

i

Ijρij

∂P W
j

∂ρi′j′
P A

i =
∑

j∈C

Ij

∂P W
j

∂ρi′j′

∑

i

ρijP
A
i , (50)

and
∑

j∈C

∑

i

IjρijP
W
j

∂P A
i

∂ρi′j′
=
∑

i

∂P A
i

∂ρi′j′

∑

j∈C

IjρijP
W
j . (51)

26



Here
∂P W

j

∂ρi′j′
can be found as

∂P W
j

∂ρi′j′
=

∂P W
j

∂ρW
j

∂ρW
j

∂ρi′j′

using (33) on page 23 and (31) on page 23.

For the terms involving
∂P A

i

∂ρi′j′
, the situation is more complicated due to the

dependence of the inputs for P A
i on the Walsh passing probabilities. First we

rewrite (51) above as

∑

i

Si
∂P A

i

∂ρi′j′
=
∑

i

Si

∑

i′′

∂P A
i

∂ρA
i′′

∂ρA
i′′

∂ρi′j′
, (52)

where
Si ≡

∑

j∈C

IjρijP
W
j . (53)

We use expression (32) on page 23 for
∂ρA

i′′

∂ρi′j′
, to obtain that

∂ρA
i′′

∂ρi′j′
= 0, and so

the sum is zero, when j′ /∈ C, and otherwise

∑

i

Si
∂P A

i

∂ρi′j′
=

∑

i

Si

∑

i′′

∂P A
i

∂ρA
i′′



1i′=i′′P
W
j′ +

∑

j∈C

∂P W
j

∂ρW
j′

ρi′′j



 (54)

=
∑

i,i′′

Si
∂P A

i

∂ρA
i′′

1i′=i′′P
W
j′ +

∑

i,i′′,j∈C

Si
∂P A

i

∂ρA
i′′

∂P W
j

∂ρW
j′

ρi′′j

= P W
j′

∑

i

Si
∂P A

i

∂ρA
i′

+
∑

i,i′′,j∈C

Si
∂P A

i

∂ρA
i′′

∂P W
j

∂ρW
j′

ρi′′j

= P W
j′

∑

i

Si
∂P A

i

∂ρA
i′

+
∑

j∈C

∂P W
j

∂ρW
j′

∑

i′′

ρi′′j

∑

i

Si
∂P A

i

∂ρA
i′′

= P W
j′ Vi′ +

∑

j∈C

∂P W
j

∂ρW
j′

∑

i′′

ρi′′jVi′′ ,

where

Vi′ =
∑

i

Si
∂P A

i

∂ρA
i′

. (55)

8 Correspondences

This table gives the notation used, its counterpart in knapsack.cpp, and a
brief description. Indices i, i′ (ii), and i′′ (iii) are always used to index power
demand classes, and derivatives are generally indexed as ∂Gi

∂ρi′j′
, for example.

27



The indices j, j′, and j′′ are used similarly for services. When a loss model
system is considered generically (for either resource), the indices used are k and
k′.

28



KW W.K, num services number of services

KA PA.K, num bin classes power of power demand classes

M W.M Total number of Walsh codes

M PA.M Number of PA bins

ρij load[j][i] offered load for demand class i, service j

ρ̃k packet rho[k] expected number of packet data users of job type k

ρ̂p packet load total offered load for packet services

Dp packet tot bins packet total demand, in bins or Walsh codes

Ij importance[j] importance weighting factor for service j

Lp packet weighted load total importance-weighted load for packet services

L tot weighted load total importance-weighted load

j ∈ C !is packet(j) set of indices of circuit services

g(c) W.g[c] (PA.g[c]) (un-normalized) weight for occupancy of c units

G W.G (PA.G) sum of g(c) for Walsh (PA)

ĝ(c) g[c]/G[M] probability g(c)/G of using c Walsh codes (or bins)

∂G

∂ρk′

Gp[kk] derivative of G with respect to load ρk′

∂ĝ(c)

∂ρk′

prob occ der(kk, c) derivv. of occupancy prob. with respect to ρk′

T/L ret normalized importance-weighted performance

bA
i bes[i], PA.b[i] bins needed for demand class i

bW
j walsh[j], W.b[j] number of Walsh codes needed by service j

ρA
i PA.rho[i] total offered circuit load for demand class i

ρW
j W.rho[j] total offered circuit load for service j

P W
j W.pass[j] Passing probability for Walsh (1 - blocking)

P A
i PA.pass[i] Passing probability for PA (1 - blocking)

∂P W
k

∂ρW
k′

prob pass der(kk, k) derivative of passing probability

Pp(X, Y ) perf() quality measure for packet services

Pp(ρ̂p,ρ̂p(M−c)/Dp) packet perf vals[c] used in computing pp der partial

Zk′ pp der partial[kk] (38) term in packet derivative

pp der partial PA2[jj] middle term in derivative expression (45)

Cp packet perf val.dnu (42) term in computation of packet data deriv

Cd packet perf val.dav (43) term in computation of packet data deriv

Cp + bk′Cd pp der pdat() last term in derivative expression (44), (45

∂T/L

∂ρi′j′
<overwrites load[jj][ii]> derivative computed in Section 7.2

Si PA pass coeff[i] (53)

Vi′ vc perf der[ii] (55)

< none > vc perf der PA2[jj] Second term in final expression of (54)

29



References

[CR93] S.-P. Chung and K. W. Ross. Reduced load approximations for mul-
tirate loss networks. IEEE Trans. Communications, 41(8):1222–1231,
Aug. 1993.

[CTW03] C.-M. Chao, Y.-C. Tseng, and L.-C. Wang. Reducing internal and
external fragmentations of OVSF codes in WCDMA systems with
multiple codes. Wireless Communications and Networking, 1:693–
698, March 2003.

[Gra] J. Graybeal. Monte Carlo simulation of UMTS packet data perfor-
mance. Personal communication.

[JHR02] M. Jaber, S. A. Hussain, and A. Rouz. Modified stochastic knapsack
for UMTS capacity analysis. FUJITSU Sci. Tech. J., 38(2):183–191,
Dec. 2002.

[Kau81] J. S. Kaufman. Blocking in a shared resource environment. IEEE
Trans. Commun., 29:1474–1481, Aug. 1981.

[Kel86] F. P. Kelly. Blocking probabilities in large circuit switched networks.
Adv. Appl. Probabil., 18:473–505, 1986.

[Kel91] F. P. Kelly. Loss networks. Ann. Appl. Prob., 1:319–378, 1991.

[Rob81] J. W. Roberts. A service system with heterogeneous user require-
ments, pages 423–431. North-Holland, 1981.

[Ros95] K. W. Ross. Multiservice loss models for broadband telecommunica-
tion networks. Springer, 1995.

[RS02] A. N. Rouskas and D. N. Skoutas. OVSF codes assignment and re-
assignment at the forward link of W-CDMA 3G systems. In Proc. of
IEEE PIMRC, volume 5, pages 2404–2408, 2002.

[TM96] F Théberge and R. Mazumdar. An efficient reduced load heuristic for
computing call blocking in large multirate loss networks. In Global
Telecommunications Conference, 1996. GLOBECOM ’96. ’Commu-
nications: The Key to Global Prosperity, volume 1, pages 6–10, Nov.
1996.

[Whi] P. Whiting. Personal communication.

[Whi85] W. Whitt. Blocking when service is required from several facilities
simultaneously. AT&T Tech. J., 64(8):18071857, 1985.

[YCT01] C.-M. Chao Y.-C. Tseng. Code placement and replacement strategies
for wideband cdma ovsf code tree management. In Proc. of IEEE
GLOBECOM, volume 1, pages 562–566, 2001.

30


	Introduction
	Loss Model Systems
	Preliminary Assumptions
	Continuous versus Discrete Power Demands
	Loss Models
	Assumptions for Integrated Analysis
	Packet Data

	Performance Estimate
	Per-service Performance
	Overall Performance

	Loss Models for Multiple Resources
	Two-Priority Systems
	Experimental Studies
	Walsh Code Additivity
	The cascade model

	Derivatives
	Per-resource Derivatives
	Derivative Overall
	Packet Data
	Circuit Data

	Correspondences

