COLOR LAYER black

A Las Vegas Algorithm for Linear Programming When the Dimension is Small

> Ken Clarkson AT&T Bell Labs Murray Hill, NJ

Outline

- Results
- The smallest enclosing sphere
	- the algorithm
	- analysis of the algorithm
- Modifications for LP
- Conclusions

Problem: linear programming with n inequality constraints in d variables,

- \bullet $O(n2^{2^d})$ [Meg];
- $O(n3^{d^2})$ [C][D];
- $O(nd^{3d+\epsilon})$ Las Vegas [DF];

New bound: $O(d^2n) + O(d \log n) O(d)^{d/2 + O(1)}$ expected arithmetic operations, Las Vegas.

Time bound from $O(d \log n)$ calls to simplex, on subproblems with $\approx d^2$ constraints. The smallest enclosing sphere

Given

 $S \subset E^d$ of size n, in general position, find $B^*(S)$,

the smallest closed ball containing S.

Facts: $B^*(S)$ exists, is unique, and there exists $S^* \subset S$ with $|S^*| \leq d+1$ and $B^*(S^*) = B^*(S)$. The algorithm

The general idea: focus in on S^* using random sampling.

choose random $R \subset S$ with $|R| = 2(d+1)^2$; compute $B^*(R)$ using some algorithm; Let $V \leftarrow S \setminus B^*(R)$;

Fact: V contains at least one point of S^* (unless $B^*(R) = B^*(S)$ so $V = \phi$)

Otherwise $S^* \subset B^*(R)$, with $B^*(R)$ no larger than $B^*(S)$; So $B^*(R) = B^*(S^*) = B^*(S);$

Fact: The expected size of V is $(d+1)n/r = n/2(d+1).$

So V is a small set that must contain a member of S^* .

An iterative algorithm

 $w_p \leftarrow 1$ for all $p \in S$; repeat choose (weighted) random $R \subset S$; $V \leftarrow S \setminus B^*(R);$ $w_p \leftarrow 2w_p$ for all $p \in V$; until $V = \phi$

Compare the total weight of S with the total weight of S^* ;

Each time, some point in S^* is in V .

After $k(d+1)$ th step, weight of S^* is at least $(d+1)2^k;$

Each iteration, expected weight of V is dW/r W is the current weight, at first $W = n$.

The next weight is $W(1+(d+1)/r)$; After $k(d+1)$ th step, $W \leq n(1 + (d+1)/r)^{k(d+1)} \approx n e^{k/2}.$

With $k = O(\log n)$, algorithm will stop.

Proof that the expected size of V is $(d+1)n/r =$ √ \overline{n} :

Let \mathcal{F}_S denote $\{B^*(T) | T \subset S\}$ For $B \in \mathcal{F}_S$, let T_B be the smallest $T \subset S$ with $B = B^*(T)$. Then $|T_B| \leq d+1$ for $B \in \mathcal{F}_S$.

Let $\mathcal{F}_S^j = \{B \in \mathcal{F}_S \mid j = |S \setminus B|\}.$ Similarly define \mathcal{F}_R , \mathcal{F}_I^j R .

Note that $\mathcal{F}_S^0 = \{B^*(S)\}.$ Fact: $|\mathcal{F}_S^1| \leq d+1$.

Proof of claim:

Let $I_B = 1$ when $B = B^*(R)$, 0 otherwise. The expected number of points outside $B^*(R)$ is

$$
E\left[\sum_{\substack{j\geq 0\\B\in\mathcal{F}_S^j}}I_Bj\right] = \sum_{\substack{j\geq 0\\B\in\mathcal{F}_S^j}} E[I_B]j = \sum_{j\geq 0} \text{Prob}\{B = B^*(R)\}j
$$

\n
$$
= \sum_{j\geq 0} {n-j-|T_B| \choose r-|T_B|}j / {n \choose r}
$$

\n
$$
B\in\mathcal{F}_S^j
$$

\n
$$
\leq \frac{n-r+d+1}{r-d-1} \sum_{\substack{j\geq 0\\B\in\mathcal{F}_S^j}} {n-j-|T_B| \choose r-|T_B|-1}j / {n \choose r}
$$

\n
$$
B\in\mathcal{F}_S^j
$$

\n
$$
\leq (n/r) \sum_{\substack{B\in\mathcal{F}_S^j\\j\geq 0, B\in\mathcal{F}_S^j}} Prob\{B \in \mathcal{F}_R^1\}
$$

\n
$$
= (n/r)E[|\mathcal{F}_R^1|] = \frac{n}{r}(d+1).
$$

Modifications for LP

 $max{cx | Ax \leq b},$ where A is $n \times d$

a similar algorithm, except:

- sample constraint inequalities, not points
- modify to assure feasibility
- give answers for unbounded subproblems
- break ties by choosing shortest optimal point
- use simplex for base case

Concluding Remarks

- What about small n/d ?
- Any implications for simplex?
- Any implications for combinatorial problems?