COLOR LAYER black

A Las Vegas Algorithm for Linear Programming When the Dimension is Small

> Ken Clarkson AT&T Bell Labs Murray Hill, NJ

Outline

- Results
- The smallest enclosing sphere
 - the algorithm
 - analysis of the algorithm
- Modifications for LP
- Conclusions

Problem: linear programming with n inequality constraints in d variables,

- $O(n2^{2^d})$ [Meg];
- $O(n3^{d^2})$ [C][D];
- $O(nd^{3d+\epsilon})$ Las Vegas [DF];

New bound: $O(d^2n) + O(d \log n)O(d)^{d/2+O(1)}$ expected arithmetic operations, Las Vegas.

Time bound from $O(d \log n)$ calls to simplex, on subproblems with $\approx d^2$ constraints.

The smallest enclosing sphere

Given

 $S \subset E^d$ of size n, in general position, find $B^*(S)$,

the smallest closed ball containing S.

Facts: $B^*(S)$ exists, is unique, and there exists $S^* \subset S$ with $|S^*| \leq d+1$ and $B^*(S^*) = B^*(S)$. The algorithm

The general idea: focus in on S^* using random sampling.

choose random $R \subset S$ with $|R| = 2(d+1)^2$; compute $B^*(R)$ using some algorithm; Let $V \leftarrow S \setminus B^*(R)$; Fact: V contains at least one point of S^* (unless $B^*(R) = B^*(S)$ so $V = \phi$)

Otherwise $S^* \subset B^*(R)$, with $B^*(R)$ no larger than $B^*(S)$; So $B^*(R) = B^*(S^*) = B^*(S)$;

Fact: The expected size of V is (d+1)n/r = n/2(d+1).

So V is a small set that must contain a member of S^* .

An iterative algorithm

 $w_p \leftarrow 1$ for all $p \in S$; **repeat** choose (weighted) random $R \subset S$; $V \leftarrow S \setminus B^*(R)$; $w_p \leftarrow 2w_p$ for all $p \in V$; **until** $V = \phi$ Compare the total weight of S with the total weight of S^* ;

Each time, some point in S^* is in V.

After k(d+1)th step, weight of S^* is at least $(d+1)2^k$;

Each iteration, expected weight of V is dW/rW is the current weight, at first W = n.

The next weight is W(1 + (d+1)/r); After k(d+1)th step, $W \le n(1 + (d+1)/r)^{k(d+1)} \approx ne^{k/2}$.

With $k = O(\log n)$, algorithm will stop.

Proof that the expected size of V is $(d+1)n/r = \sqrt{n}$:

Let \mathcal{F}_S denote $\{B^*(T) \mid T \subset S\}$ For $B \in \mathcal{F}_S$, let T_B be the smallest $T \subset S$ with $B = B^*(T)$. Then $|T_B| \leq d + 1$ for $B \in \mathcal{F}_S$.

Let $\mathcal{F}_{S}^{j} = \{B \in \mathcal{F}_{S} \mid j = |S \setminus B|\}.$ Similarly define \mathcal{F}_{R} , \mathcal{F}_{R}^{j} .

Note that $\mathcal{F}_S^0 = \{B^*(S)\}$. Fact: $|\mathcal{F}_S^1| \le d+1$. Proof of claim:

Let $I_B = 1$ when $B = B^*(R)$, 0 otherwise. The expected number of points outside $B^*(R)$ is

$$E\left[\sum_{\substack{j\geq 0\\B\in\mathcal{F}_{S}^{j}}}I_{B}j\right] = \sum_{\substack{j\geq 0\\B\in\mathcal{F}_{S}^{j}}}E[I_{B}]j = \sum_{\substack{j\geq 0\\B\in\mathcal{F}_{S}^{j}}}\operatorname{Prob}\{B = B^{*}(R)\}j$$

$$= \sum_{\substack{j\geq 0\\r-|T_{B}|}}\binom{n-j-|T_{B}|}{r-|T_{B}|}j/\binom{n}{r}$$

$$\leq \frac{n-r+d+1}{r-d-1}\sum_{\substack{j\geq 0\\B\in\mathcal{F}_{S}^{j}}}\binom{n-j-|T_{B}|}{r-|T_{B}|-1}j/\binom{n}{r}$$

$$\leq (n/r)\sum_{\substack{S\in\mathcal{F}_{S}^{j}\\B\in\mathcal{F}_{S}^{j}}}\operatorname{Prob}\{B\in\mathcal{F}_{R}^{1}\}$$

$$= (n/r)E[|\mathcal{F}_{R}^{1}|] = \frac{n}{r}(d+1).$$

Modifications for LP

 $\max\{cx \mid Ax \leq b\},\$ where A is $n \times d$

a similar algorithm, except:

- sample constraint inequalities, not points
- modify to assure feasibility
- give answers for unbounded subproblems
- break ties by choosing shortest optimal point
- use simplex for base case

Concluding Remarks

- What about small n/d?
- Any implications for simplex?
- Any implications for combinatorial problems?