
COLOR LAYER

black

A Las Vegas Algorithm

for

Linear Programming

When the Dimension is Small

Ken Clarkson

AT&T Bell Labs

Murray Hill, NJ

1

Outline

• Results

• The smallest enclosing sphere

– the algorithm

– analysis of the algorithm

• Modifications for LP

• Conclusions

2

Problem: linear programming with

n inequality constraints in d variables,

• O(n22d
) [Meg];

• O(n3d2
) [C][D];

• O(nd3d+ε) Las Vegas [DF];

New bound:

O(d2n) + O(d logn)O(d)d/2+O(1)

expected arithmetic operations, Las Vegas.

Time bound from

O(d logn) calls to simplex,

on subproblems with ≈ d2 constraints.

3

The smallest enclosing sphere

Given

S ⊂ Ed of size n, in general position,

find B∗(S),

the smallest closed ball containing S.

Facts: B∗(S) exists, is unique,

and there exists S∗ ⊂ S with

|S∗| ≤ d + 1 and B∗(S∗) = B∗(S).

4

The algorithm

The general idea: focus in on S∗ using random

sampling.

choose random R ⊂ S with |R| = 2(d + 1)2;

compute B∗(R) using some algorithm;

Let V ← S \B∗(R);

5

Fact: V contains at least one point of S∗

(unless B∗(R) = B∗(S) so V = φ)

Otherwise S∗ ⊂ B∗(R),

with B∗(R) no larger than B∗(S);

So B∗(R) = B∗(S∗) = B∗(S);

Fact: The expected size of V is

(d + 1)n/r = n/2(d + 1).

So V is a small set that must contain a mem-

ber of S∗.

6

An iterative algorithm

wp ← 1 for all p ∈ S;

repeat

choose (weighted) random R ⊂ S;

V ← S \B∗(R);

wp ← 2wp for all p ∈ V ;

until V = φ

7

Compare the total weight of S

with the total weight of S∗;

Each time,

some point in S∗ is in V .

After k(d +1)th step, weight of S∗ is at least

(d + 1)2k;

Each iteration, expected weight of V is dW/r

W is the current weight, at first W = n.

The next weight is W (1 + (d + 1)/r);

After k(d + 1)th step,

W ≤ n(1 + (d + 1)/r)k(d+1) ≈ nek/2.

With k = O(logn), algorithm will stop.

8

Proof that the expected size of V

is (d + 1)n/r =
√

n:

Let FS denote {B∗(T) | T ⊂ S}
For B ∈ FS, let TB be

the smallest T ⊂ S with B = B∗(T). Then

|TB| ≤ d + 1 for B ∈ FS.

Let Fj
S = {B ∈ FS | j = |S \B|}.

Similarly define FR, Fj
R.

Note that F0
S = {B∗(S)}.

Fact: |F1
S | ≤ d + 1.

9

Proof of claim:

Let IB = 1 when B = B∗(R), 0 otherwise.

The expected number of points outside B∗(R)

is

E


∑
j≥0

B∈Fj
S

IBj

 =
∑
j≥0

B∈Fj
S

E[IB]j =
∑
j≥0

B∈Fj
S

Prob{B = B∗(R)}j

=
∑
j≥0

B∈Fj
S

(n− j − |TB|
r − |TB|

)
j/

(n

r

)

≤
n− r + d + 1

r − d− 1

∑
j≥0

B∈Fj
S

(n− j − |TB|
r − |TB| − 1

)
j/

(n

r

)

≤ (n/r)
∑

j≥0,B∈Fj
S

Prob{B ∈ F1
R}

= (n/r)E[|F1
R|] =

n

r
(d + 1).

10

Modifications for LP

max{cx | Ax ≤ b},
where A is n× d

a similar algorithm, except:

• sample constraint inequalities, not points

• modify to assure feasibility

• give answers for unbounded subproblems

• break ties by choosing shortest optimal

point

• use simplex for base case

11

Concluding Remarks

• What about small n/d?

• Any implications for simplex?

• Any implications for combinatorial prob-

lems?

12

