Algorithms for the Minimum Diameter of Moving
Points and for the Discrete 1-center Problem

Kenneth L. Clarkson
Bell Laboratories, Lucent Technologies
Murray Hill, New Jersey 07974

clarkson@research.bell-labs.com
http://cm.bell-labs.com/who/clarkson/

March 1997

Abstract

Given points moving with constant, but possibly different, velocities,
the minimum moving diameter problem is to find the minimum, over all
time, of the maximum distance between a pair of points at each moment.
This note gives a randomized algorithm requiring O(nlogn) expected
time for this problem, in two and three dimensions. Also briefly noted is
a randomized O(nlog nloglogn) expected-time algorithm for the discrete
1-center problem in three dimensions; in this problem, a member p of a
set S of points is desired, whose maximum distance to S is minimum over
all points of S.

1 Introduction

Given a set S of n sites (points), the discrete 1-center problem is to find the
point of S minimizing the maximum distance to points of S. That is, for point
D, let dmax(p, S) denote maxyes d(p, q), where d(p, ¢) is the Euclidean distance
between p and ¢. The discrete 1-center problem is to find minyes dmax(p, S),
and the point p that realizes that distance.

The input for the minimum moving diameter problem is a set S of sites that
are each moving with constant, but possibly different, velocities: that is, at time
t, the position of site p is a point p(¢t) = m, + tvp,, where m,, is the position of
site p at time ¢ = 0, and v, is the velocity of site p. The sites give rise to a
collection of points S(t) at time ¢, their position at that time. The minimum
moving diameter problem is to find

mtln pl'élsa(}g) dmax (p(t)a S(t)) .

This note gives randomized algorithms for these problems; the moving diam-
eter algorithm requires O(nlogn) expected time, in two and three dimensions.

Previously Gupta et al.[5] gave an algorithm needing O(n log® n) worst-case time
in the plane. Their algorithm, using parametric search, has been implemented;]]
it may be that the algorithm here is easier to code.

The algorithm given here for the discrete 1-center problem in three dimen-
sions needs O(nlognloglogn) expected time. An algorithm for the discrete
1-center problem in the plane needing O(nlogn) time is easy to find using the
farthest point Voronoi diagram, but the author has found no previous work on
the three-dimensional version of the problem.

Both algorithms will use an algorithm for the intersection of equal-radius
balls in three dimensions;[3] such intersections have a descriptive complexity
linear in the number of input balls. The use of ball intersections is not surprising
here, since the prior use of that algorithm was to help find the diameter of a point
set, maxye s dmax (P, S). Algorithms for planar point location can be adapted to
determine the location of a given point with respect to a ball intersection, that
is, whethere the point is inside or outside the intersection.[3] The usefulness of
that location algorithm here is that, if a point is inside the intersection, then it
is closer than p to each of the ball centers. Here p is the radius of the balls.

The minimum moving diameter problem is quite easily expressed as a con-
vex programming problem, and the algorithm applies ideas previously used for
linear programming and for convex programming.[3, 1] Curiously, the most nat-
ural statement of the problem in terms of convex programming has 2(n?) con-
straints; the most obvious approach then requires 2(n?) time. However, as will
be apparent, not all Q(n?) constraints need be explicitly considered, and so the
algorithm can be more efficient.

2 The minimum moving diameter algorithm

As Gupta et al. observe, the squared distance between two given sites is a
quadratic function of time; in other words, the graph of d(p(t), q(t))? vs. t is a
parabola, where p(t) and ¢(t) denote the position of the moving sites at time ¢.
Each pair of points gives a different parabola, and at time #, the diameter is
the maximum ordinate of the intersections of these parabolas with the line
t = t. That is, the diameter at different times gives the upper envelope of the
parabolas, or equivalently, the boundary of the intersection of the regions above
these parabolas. Thus the min-diameter problem is to find the point (t*,y*) in
that intersection of parabolic regions with y* as small as possible. Since each
parabolic region is convex, this is simply a convex programming problem in two
dimensions, with a set P of (g) constraints: the constraints are the parabolic
regions, and the “objective function” value at a point is its ordinate. Using
the techniques of Adler and Shamir[1], generalizing from a linear programming
algorithm[2], these problems can be solved, for S in any dimension, in time
linear in the number of constraints, that is, in O(n?) time. This is a nontrivial,
albeit obvious, result in more than three dimensions.

The faster algorithm is a variation on this old algorithm; after a few remarks,
we’ll briefly describe the old algorithm, and then the changes that speed it up.

For technical reasons, we note that the optimum point for this convex pro-
gramming problem is unique, or can be viewed as unique, using the convention
that if the minimum diameter is realized over of period of time, rather than at
an instant, we use as optimum point the one with smallest ¢ value realizing the
minimum diameter. If there is no such smallest ¢ value, we view the optimum
as occurring at t = —oo. This uniqueness is needed for technical reasons.

The convex programming optimum here is determined by a set P* of two
constraints; that is, the optimum for the two constraints in P*, by themselves, is
the optimum for all of P. The goal is thus to find that subset P*. The algorithm
will be applied recursively, to some subset of the original set of constraints P.

The old algorithm takes a random subset R of the constraints, and recur-
sively computes the optimum for that subset. It then finds the set V of con-
straints violated by that optimum. If V does not contain a member of P*, then
an optimum has been found: if both members of P* are unviolated, then the
objective function value cannot be any better than the optimum y*; on the
other hand, that value cannot be any worse than y*, since fewer constraints are
satisfied. Therefore, the optimum found for R has the same objective function
value as the optimum for P, and is therefore the unique optimum.

In short, if V is empty, the algorithm stops, and otherwise V contains a
member of P*. Here the algorithm recursively computes the optimum for R'UV,
where R' is another random subset of P. Let V' be the set of constraints violated
by the optimum for R’ UV. The set V' is either empty, and the algorithm is
done, or V' contains the remaining member of P*, and the optimum for YV U)’
is optimum overall. The recursive computation of the optimum for V U V'
completes the algorithm.

To speed up the algorithm, we do not use the sets of constraints V and V', but
rather implicit representations for supersets of these constraints. Specifically,
we represent V by the set of sites Sy that gave rise to V: each constraint in V
yields two elements of Sy, the two sites associated with that constraint. Thus
|Sy| < 2|V|. We represent V' similarly, as Syr. Let P(Sy) denote the set of
constraints associated with any two members of Sy. Clearly V C P(Sy).

With this in mind, in the general step, the algorithm will be called with a
set of constraints represented as the union of two sets X and P(M), where set
X is a set of explicit constraints, and P (M) is the set of implicit constraints,
associated with a set of sites M C S. Initially X is empty and M = S.

It is easy to obtain a random subset of this set of constraints without explic-
itly examining the constraints in P(M); for example, consider the constraints
in a canonical numbering 1... (7;), where m is the size of M. Pick random
numbers in that range repeatedly, tossing out duplicates, until a set equal to
the desired random subset size is found. By inverting the canonical number-
ing, the constraints are found. Since the expected size of the set is at least
s — s(s — 1)/2(™) after s trials, and s < K,,m, the expected value of s is
m + O(1); using balanced trees to maintain the current subset and check for
duplicates, the expected work is O(slogm) = O(mlogm).

The size of R is r = max{K,v/z, K;,;m}, where z is the size of the explicit
set X, m is the size of the set of sites M for the implicit set, and K, and K,,

are sufficiently large constants. The total number of constraints represented is
z + ('), since each pair of sites in M implies a constraint.

Given a subset optimum (¢',y'), the explicit constraints Xy violated by that
optimum can be found readily; the violated implicit constraints can be found
as follows. A constraint is violated by (¢',y') if and only if the intersection
of the constraint’s boundary with the vertical line ¢ = ¢’ is a point (¢',y")
with ¢” > 4'; the value y" is simply the squared distance, at time t', between
the two sites p and ¢ associated with the constraint. In short, the violated
constraints correspond to sites My whose squared distances at time ' are larger
than y'. Thus the violated constraints of P(M) are contained in the constraints
of P(Mv)

Such sites My can be found using the same methods as in an algorithm
for computing the diameter of a point set[3]: given radius p (in the above,
Vy'), compute the intersection of the balls of radius p centered at the sites, as
positioned at time ¢ = #'. Find all sites outside that intersection; these sites
have farthest point distance greater than p at time ¢'.

Now a second random subset R’ of the constraints is found, again of size r,
and the algorithm is called recursively with the explicit constraint set R' U Xy,
and the implicit constraint set represented by My . The result is another pair
of sets Xy: and My, representing violated constraints of X and P(M). The
algorithm is called recursively again with explicit set Xy U Xy and implicit set
My U My, and the result is the overall optimum.

The recursion stops when x and m are smaller than a constant K, at which
point some algorithm for convex programming is called for such constant-size
problems.

For convenience of analysis, the algorithm is changed as follows: rather than
a single recursive call with random subset R, the algorithm repeats with different
random subsets until My and Xy are below an appropriate threshold in size.
This threshold is 6m?/r for My and 6x/r for Xy. The same repetition is done
for finding My and Xy.

Theorem 1 The minimum diameter of a moving point set in two or three di-
mensions can be found by a randomized algorithm in expected O(nlogn) time.

Proof. To solve a given problem, the algorithm finds three optima recursively.
Using the first two optima, the algorithm does O(z + mlogm) expected work
overall to find the sets My, Xy, My, and Xy-.

The expected sizes of Xy and Xy are 2z/r, and the expected sizes of My
and My are at most 4("y)/r < 2m?/r. (Perhaps first explicitly claimed by
Adler and Shamir[1], such bounds are a ready consequence of random sampling
results,[3], and can also be shown using “backwards analysis.”[7, 4]) By Markov’s
inequality, the probability that one of these sets exceeds 3 times its expected
size is 1/3; hence an iteration to find a random subset R with these sizes small
will succeed with probability 1/3. Let T'(z, m) denote the expected work for a
problem with x explicit constraints and m sites for implicit constraints. The

total work for finding a subset R giving small Xy and My is

2 4
T(r,0)+ ET(T, 0) + §T(r, 0)...,
or expected 37(r,0). Similarly, the expected work to find small My and Xy
is 3T'(r + 6x/r,6m?/r). Finally, the work to find the optimum for the final
recursive call is T'(12z/r,12m?/r). Therefore, the expected work T'(z,m) is
bounded by

T (xz,m) < O(z)+0(mlog m)+3T (r,0)+3T (r+6z /r,6m?/r)+T 12z /r,12m?/7),

for z or m larger than K, and O(1) for small z and m. It is easy to obtain the
bound T'(z,m) = O(z+mlogm) from this recurrence, for K, = 6v/5, K, > 30,
and K > 5. The theorem follows. O

3 The three-dimensional discrete 1-center prob-
lem

Given a set S of n sites (points), the discrete 1-center problem is to find the
site ¢ whose maximum distance to the remaining sites is minimal, over all sites.
That is, the maximum distance to c¢ is

.dmx;)
min ax(p, S)

where dmax(p, S) = maxyecs d(p, q), and d(p, q) is the Euclidean distance from p
to g. We can generalize this problem slightly: given sets 7" and S, let
T,S) = mindyax(p,),
o(T’, §) = 10 drnax (p, 5)
so that ¢(5,5) is the discrete 1-center distance of S.
The problem can be solved recursively as follows: in the general step, at

recursion depth &, if k at least lglgn, use a simple algorithm for ¢(7, S) requiring
O(n|T|) time. Otherwise, pick a random subset R of T', of size r;, = \/my, where

my = m2_k, and m is the size of the top level set T. Recursively compute
¢(R,S), giving a distance p = ¢(R,S). For each site ¢ € S, consider the ball
with radius p centered at gq. All sites of T' closer than p to ¢ are inside that ball.
If a site p € T is in all such balls, over all ¢ € S, then its maximum distance to
the other sites is no more than p, s0 dmax(p,S) < p. The set T” of such sites
inside the ball intersection for S are the only possible points of 7' with maximum
distance to S equal to ¢(7,S). The set T’ can be found in O(nlogn) time, or
even in O(nlogm) expected time using the slightly more complicated algorithm
described below. Now compute ¢(T",S), which is ¢(7,S), and the algorithm is
done.

It remains to describe how to find the set 7' C T inside all balls of radius p
centered at sites of S. This can be done as follows. Split the set S arbitrarily into

[n/m] groups, and for each group, compute ball intersections and use planar
point location to test each member of T for inclusion in the ball intersection. A
member of 7' must be in all such ball intersections.

Theorem 2 Given sets T and S in three dimensions, the value of ¢(T,S) can
be found in O(nlogmloglogm) expected time, The discrete 1-center of S can
be found in O(nlognloglogn) expected time.

Proof. The expected size of T at recursion depth k is my; this follows
inductively from the claim that the expected size of T" is |T'|/rg. To prove the
latter, pick p € T at random, and consider ¢(R U {p}, S). Since p is a random
element of R U {p}, the probability that ¢(R U {p},S) < ¢(R,S) is 1/(ry + 1):
these are different only if p is the element of RU {p} determining ¢c(RU {p},T).
But this condition is the same as ¢(p,S) = ¢(R U {p},S). Hence a random
member of T has probability 1/(r; + 1) of having smaller max-distance to S
than ¢(R,S), and the expected size of T" is |T'|/(ry, + 1).

The work to find and test the ball intersections is O(nlog |T'|), since each
group from S requires (|T'|log|T|) time for the ball intersections and inclusion
testing, and so all such testing needs O(nlog|T|) time. From the concavity of
the logarithm function, the expected work to make and test the ball intersections
is O(nlogmy), at recursion depth k.

The expected work Wy, at depth k satisfies

Wi < 2Wit1 + O(nlogmy),
for k < lglgn, and O(myn) for k > lglgn. This has the bound
Wi, < [(Iglgmy) — klnlogmy,

which implies the time bound for finding ¢(7,S). The bound for the discrete
1-center problem follows trivially. 0O

4 Concluding remarks

Megiddo’s parametric search technique has proven very useful in computational
geometry; sometimes randomization gives an alternative approach that is sim-
pler or faster, although with only expected bounds. This note is another example
of this phenomenon.

A curious feature of the minimum moving diameter algorithm is that it
allows a convex programming problem with n? constraints to be solved in o(n?)
time, because many unviolated constraints can be ignored without considering
them explicitly. Can this trick work elsewhere?

When the recursive approach used here was introduced for linear program-
ming, another approach using iterative reweighting was also given.[2] Apply-
ing that alternative to the minimum moving diameter problem doesn’t seem
to yield an algorithm with quite as small a running time: the farthest point
queries are always done to the whole set S. The same apparently holds also

for later algorithms,[7, 6] which are more “complete” in the sense that their
base case problem has very few constraints. The recursive technique gives a
batch of queries to be answered at once. This is not unlike parametric search,
where a parallel algorithm gives a batch of a certain kind of queries, that can
be answered quickly.

The time bound given here for the discrete 1-center problem seems unnatu-

ral. Is a bound of O(nlogn) possible?

References

[1]

[2]

I. Adler and R. Shamir. A randomization scheme for speeding up algo-
rithms for linear and convex quadratic programming problems with a high
constraints-to-variables ratio. Math. Prog., 61:39-52, 1993.

K. L. Clarkson. Las Vegas algorithms for linear and integer programming
when the dimension is small. Journal of the ACM, 42(2):488-499, 1995. Pre-
liminary publicaton in Proc. 29th Annual IEEE Symposium on Foundations
of Computer Science, 1988.

K. L. Clarkson and P. W. Shor. Applications of random sampling in com-
putational geometry, II. Discrete Comput. Geom., 4:387—421, 1989.

Bernd Géirtner and Emo Welzl. Linear programming — randomization and
abstract frameworks. In Proc. 13th Sympos. Theoret. Aspects Comput. Sci.,
volume 1046 of Lecture Notes Comput. Sci., pages 669—687. Springer-Verlag,
1996.

P. Gupta, R. Janardan, and M. Smid. Fast algorithms for collision and prox-
imity problems involving moving geometric objects. Comp. Geom.: Theory
and Appl., 6(6):371-392, 1996.

J. Matousek, M. Sharir, and E. Welzl. A subexponential bound for linear
programming. In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages
1-8, 1992.

R. Seidel. Small-dimensional linear programming and convex hulls made
easy. Discrete & Computational Geometry, pages 423-433, 1991.

