
Approximation Algorithms for Shortest Path Motion Planning

extended abstract

Kenneth L. Clarkson

AT&T Bell Laboratories

Murray Hill, New Jersey 07974

Abstract

This paper gives approximation algorithms for solving the following
motion planning problem: Given a set of polyhedral obstacles and points
s and t, find a shortest path from s to t that avoids the obstacles. The
paths found by the algorithms are piecewise linear, and the length of a
path is the sum of the lengths of the line segments making up the path.
Approximation algorithms will be given for versions of this problem in
the plane and in three-dimensional space. The algorithms return an ε-
short path, that is, a path with length within (1 + ε) of shortest. Let n
be the total number of faces of the polyhedral obstacles, and ε a given
value satisfying 0 < ε ≤ π. The algorithm for the planar case requires
O(n log n)/ε time to build a data structure of size O(n/ε). Given points
s and t, an ε-short path from s to t can be found with the use of the data
structure in time O(n/ε + n log n). The data structure is associated with
a new variety of Voronoi diagram. Given obstacles S ⊂ E3 and points
s, t ∈ E3, an ε-short path between s and t can be found in

O(n2λ(n) log(n/ε)/ε4 + n2 log nρ log(n log ρ))

time, where ρ is the ratio of the length of the longest obstacle edge to the

distance between s and t. The function λ(n) = α(n)O(α(n)O(1)), where the
α(n) is a form of inverse of Ackermann’s function. For log(1/ε) and log ρ
that are O(log n), this bound is O(n2(log2 n)λ(n)/ε4).

1 Introduction

1.1 Results and related work

Motion planning is the problem of determining a path by which an object can be
moved from place to place while avoiding obstacles. A survey of the substantial

1

literature on various cases of this problem can be found in [Yap85]. This paper
describes algorithms for the problem of moving in a short path from one point
to another in a way that avoids given polyhedral obstacles.

In the case where the obstacles, points, and paths are confined to the plane,
previous work has generally focused on finding exact algorithms: those finding
a shortest path between two points. This work has shown that O(n2 logn) time
suffices for this problem[SS84], and with sophisticated improvements, an O(n2)
bound on time and space can be attained [AAG+85]. Recently, Chew has shown
[Che86] that O(n2) time and O(n) space are enough to find a (

√
10 − 1)-short

path. In this paper, an algorithm is given that requires O(n logn/ε) time to
build a data structure of size O(n/ε), so that given two points, in O(n/ε) time an
ε-short path between the two points can be found. Indeed, with O(n2+n logn/ε)
time and space, a data structure can be built so that an ε-short path can be
found in O((log n)/ε) time.

The general three-dimensional version of this problem was posed in [SS84].
All known exact algorithms for this version require exponential time, although
some polynomial-time algorithms are known for special cases [Mou84, SB86,
RS85]. As for approximation algorithms, Papadimitriou [Pap85] has shown
that O(n3(L + log(n/ε))2/ε) time suffices to find an ε-short path between two
points. Here L is a bound on the number of bits in an integer specifying the
coordinates of a point in an instance. (In the worst case, log ρ = Θ(L), but in
this paper log ρ is used, as in many cases, L may be large but log ρ small.) The
algorithm given in this paper is faster than that of [Pap85] when nε3 is large.
Also, the number of arithmetic operations that are done depends much less on
log ρ = Θ(L). Another contrasting feature is that the new algorithm manipu-
lates only “flat” sets defined by sets of linear inequalities, where the algorithm
of [Pap85] manipulates regions bounded by hyperbolas.

1.2 Outline of the paper

This section continues with an overview and preliminary definitions. In §2, the
subgraph Vε is formally defined, and its properties related to ε-short paths in
the plane are proven. In §3, an algorithm is given for constructing Vε in the
planar case. In §4, the three-dimensional version of Vε is introduced, and in §5,
an algorithm is given for computing ε-short paths in E3. In §6, generalization
of the results to arbitrary lp norms is considered.

1.3 The general idea

In this section, an overview will be given of the ideas used in this paper, with
intuitive justifications for the main construction.

2

Let S be a set of polygonal obstacles, so that we are interested in paths in the
plane that do not intersect the interior of S. In previous work, it has been
shown that a shortest such path from a point s to a point t has endpoints are
that either s or t, or are in the set vertS of vertices of S [SS84]. To determine a
shortest path exactly, it is useful to construct the visibility graph: the undirected
graph V whose vertex set is vertS, and with an edge x V−− y between vertices x
and y if and only if x and y are visible to each other, that is, the line segment
xy does not intersect the interior of S. The number of edges in V is Θ(n2),
where n = | vertS|. Suppose V is augmented by adding s and t as vertices, and
also adding corresponding edges. Also, let every edge of V be weighted by the
distance between its endpoints. Then an algorithm for the single-source path
problem on graphs can be applied, and the shortest path tree from s may be
found in O(n2) time. This tree has the property that the path in the tree from
s to each vertex is a shortest path. Given the visibility graph V , a shortest path
from s to t may therefore be found in Θ(n2) time.

In order to obtain a faster algorithm for short path motion planning, one useful
step is to eliminate unnecessary edges from V , and find a subgraph Vε of V such
that a shortest path in Vε from one vertex to another is a short path in V . For
this approach to be useful, Vε should have few edges.

Chew has applied this approach to motion planning [Che86], and it has been pre-
viously been applied to the geometric minimum spanning tree problem [Yao82].

In the geometric minimum spanning tree problem, a set S of n points is given
in the d-dimensional Euclidean space Ed, and a minimum spanning tree (MST)
is desired for the weighted undirected graph G defined for those points: the
vertices of the graph are the points, and for each pair of points, there is an edge
in G, weighted by the distance between the points. Here again, application of
algorithms for general weighted graphs gives a Θ(n2) algorithm for this problem.
It was shown by A. Yao that to obtain an MST of this graph G, it is enough to
find a minimum spanning tree of a certain subgraph Ǧ, obtained as follows: for
every point a ∈ S, consider the 12 cones around a, as shown in Figure 1. For
each such cone C, include in Ǧ the edge from a to the closest point in S∩C. The
resulting subgraph has at most 12n edges, and contains a minimum spanning
tree of G. Therefore, if Ǧ can be obtained quickly, an MST can be found in
o(n2) time.

Another fact holds true about this subgraph Ǧ: for any a, b ∈ S, the total length

of a path a Ǧ−−−− b from a to b is at most a factor of 1 +
√

3 larger than the
distance between a and b. That is, a shortest path in Ǧ is an ε-short path in G.

Intuitively, this fact holds true because each step of a path in Ǧmakes reasonable
progress. Suppose b is in a cone Ca, where Ca is one of the cones with apex
at a by which Ǧ is defined. Suppose there is an edge in Ǧ from a to c ∈ Ca,
so that c is a closest point in S ∩ Ca to a. Then if the goal is to travel from a

3

a

b
c

Figure 1: Cones for edges of Ǧ incident to a

to b, moving from a to c makes some progress: the distance to b is reduced by
an amount proportional to the distance between a and c. If the remainder of a
path from a to b satisfies the same condition, then overall the length of a path

a Ǧ−−−− b will be within a small factor of the distance between a and b. The
same also holds for the shortest path in Ǧ between a and b.

Of course, this result is not very interesting, since the shortest path between
two points is a straight line, in the absence of obstacles. However, a similar fact
holds true even if obstacles are present. To see this, first note that it suffices
to show that the result holds for pairs of vertices that are visible to each other,
since a path in V corresponds to a sequence of such pairs. If an edge a V−− b
exists for two vertices a and b, so that a and b are visible to each other, then
consider the edge a Vε−− c such that c, b ∈ Ca for some cone Ca with apex a. As
for the obstacle-free case, movement from a to c makes proportional progress
toward b. With obstacles present, this is not a sufficient condition for showing
the existence of a short path a Vε−−−− b. For example, in Figure 2, moving from
a to c′ makes no real progress toward b, since an obstacle forces motion back
to a if a relatively short path to b is to be obtained. Thus, it is critical that
c is a visible obstacle point that is closest to a in Ca, as this implies that no
such obstacle can be present, and no “garden paths” are taken. This condition
ensures the result desired.

4

a

bc

c ′

Figure 2: Edge a Vε−− c has c closest to a in Ca.

To obtain ε-short paths, the above construction is modified by using Θ(1/ε)
cones, each with an angular span proportional to ε.

In the three-dimensional case, an analogous technique is used, complicated by
the fact that a shortest path need not pass through vertices of the obstacles.
It must, however, pass through edges of the obstacles [SS84], so that the nodes
(vertices) of the appropriate visibility graph V in E3 are all the points on the
edges of S. In the algorithm given here, an analog of the cone construction for
E2 is (conceptually) applied to every node of the visibility graph, yielding a
subgraph Vε with the same nodes but with a small number of graph edges per
node. (Actually, to simplify the computation of Vε, some additional nodes are
included in it.) A shortest path in Vε is an ε-short path, as in the planar case.

Although Vε in E3 has uncountably many nodes, its connectivity relations can
be represented finitely due to the piecewise linearity of the distance function
between obstacle edges. (For each cone C, this distance function is a linear
approximation to the Euclidean distance from a point a to a point in Ca.) The
result is that Vε paths between obstacle edges are combinatorially equivalent
within certain intervals on the those edges. (The number of such intervals on

an edge of S is O(nλ(n))/ε2, where λ(n) = O(α(n)O(α(n)O(1))) is an extremely
slowly growing function, arising in the study of Davenport–Schinzel sequences
[SCK+86].) The preprocessing phase of the algorithm determines the set Kε of
these intervals, and the appropriate information for each interval to represent
Vε.
The shortest path problem on Vε is still not sufficiently discretized to allow
computation. To do this, the approach like that of [Pap85] is followed, and the
edges of S are split up into a set P of small line segments. The endpoints of
these segments form some of the vertices of a subgraph Vε/P of Vε, such that a
short path from a point on an edge can be found via an endpoint of the segment
of P containing that point. A discrete shortest path algorithm can then be
applied to Vε/P .

The approximation of Vε using small segments is done when a pair of source

5

and destination points is given. Two such approximations, using sets P1 and
P2, are done: first, a (1/2)-short path is found, using an approximation in which
the number of segments |P1| is a function of ρ. Next, given that the length of
the shortest path is roughly known, an approximation is done in which the size
of the line segments in P2 is a function of that shortest path length. This two-
phase computation allows a complexity bound that depends on the sum of log ρ
and 1/ε and not on their product, in contrast with the algorithm of [Pap85].

1.4 Preliminaries

Before proving results about a subgraph Vε of the visibility graph V , some
preliminary definitions and results are necessary.

Obstacles. First a word about the nature of the obstacles: It is assumed that
the obstacle set S forms a closed polyhedral region. Such a region is a subset
of Ed whose boundary is the union of a collection of convex polytopes. These
polytopes form a complex: that is, the intersection of two polytopes P and Q in
the collection is either empty, or another polytope in the collection that is a face
of P and Q. Paths from point to point must be contained in the complement
of the interior of the obstacle region.

Some geometric notation. The following geometric notation will be useful,
and is collected here for reference:

vertS denotes the set of vertices of the obstacle set S;

edgeS denotes the set of edges of the obstacle set S;

ab denotes the closed line segment from point a to point b;

∆abc denotes the closed triangular region with vertices a, b, and c;

Da,b denotes the Euclidean distance from point a to point b;

diamR denotes the diameter of R ⊂ Ed, that is, supa,b∈RDa,b;

intR denotes the interior of R ⊂ Ed;

bdR denotes the boundary of R ⊂ Ed;

Graphs. The graphs considered here are undirected and weighted. An edge
between vertices x and y of a graph G will be denoted by x G−− y, and a path
between x and y will be denoted by x G−−−− y. This notation will also be used
as a predicate, so that x G−−−− y asserts that there is a path between x and y
in G. The vertices of a graph may also be called nodes, to avoid confusion with
the vertices of polyhedra.

The weight, or length, of an edge x V−− y will be denoted by `(x V−− y), and is

equal to Dx,y. The length of path x V−−−− y, or x = x0
V−− x1

V−− x2
V−− · · · V−−

6

xm = y, is

`(x V−−−− y) =
∑

0≤j<m

`(xj
V−− xj+1).

Cones. A cone Ca ⊂ Ed with apex a is a closed, convex polyhedral set with the
property that if a point b is contained in Ca, then so is the ray from a passing
through b. If C is a cone and a is a point, the cone Ca will be the translation
of C that has a as its apex.

The angular diameter of a cone Ca, denoted adiamCa, is defined by

adiamCa = sup
x,y∈Ca

arccos
(x− a) · (y − a)

‖x− a‖‖y − a‖ .

The following useful property of cones was noticed by Yao[Yao82]:

Lemma 1.1. If Ca ⊂ Ed is a cone with π/3 > adiamCa, then for any x, y ∈ Ca,

Dx,y < max{Dx,a, Dy,a}.

Proof. Omitted. Use the law of cosines with ∆axy.

Yao also proved the following result [Yao82]:

Lemma 1.2. For given dimension d and angle ψ, it is possible to construct
a family Fψ of cones, all of which have apexes at the origin, and having the
properties that

Ed =
⋃

C∈Fψ

C,

for the space Ed of interest, and also

ψ > adiamC,

for every C ∈ Fψ.

For d = 2 or 3, it is straightforward to construct such families Fψ so that the
number of cones in Fψ is O(1/ψd−1) as ψ → 0.

An approximate distance function. The algorithms given here will not
require the evaluation of the Euclidean distance Da,b between points a and b, as
an approximation DC

a,b can be used. This function is defined relative to a cone
C with apex at the origin, as follows: Fix a unit vector uC contained in C. For
a, b ∈ Ed with b ∈ Ca, define DC

a,b as (b − a) · uC . (If b /∈ Ca, the function is
undefined.) The following lemma is easily proven:

Lemma 1.3. For a cone C with apex at the origin, and for a, b ∈ Ed with
b ∈ Ca,

DC
a,b ≤ Da,b ≤ DC

a,b/ cos adiamC.

7

2 A subgraph for ε-short paths in the plane

In this section, a graph Vε will be defined that is a subgraph of the visibility
graph V for a set S of obstacles. The subgraph Vε is defined for a given value
ε > 0, and satisfies the condition that for a, b ∈ vertS with a V−−−− b, there is a
path a Vε−−−− b in Vε such that

`(a V−−−− b) ≤ (1 + ε)`(a Vε−−−− b).

As noted above, to prove this property of Vε for all paths in V , it suffices to
prove it for all edges of V . Also, the number of edges in Vε is O(| vertS|/ε).
The subgraph Vε is constructed as follows: For given ε > 0 with ε ≤ π, construct
a family of cones Fψ, where

ψ =

{

min{π/12, ε/2} if ε ≤ π/2
ε/6 if π/2 ≤ ε ≤ π

For each C ∈ Fψ, and for each a ∈ vertS, include a Vε−− c, where c ∈ Ca ∩ vertS

satisfies a V−− c, and

DC
a,c = min{DC

a,b | b ∈ Ca ∩ vertS, a V−− b}.

In order to prove the desired results about Vε, it will be useful to prove facts
about the triangle ∆bcd shown in Figure 3, where a V−− b, a Vε−− c, and d is
a point on ab with DC

a,c = DC
a,d. Here C ∈ Fψ is a cone with b, c ∈ Ca. To

prove the desired result about Vε, it will be shown that there is a path c V−−−− b
contained in ∆bcd, such that the path a Vε−− c V−−−− b is short. Furthermore,
the path c V−−−− b has the property that all edges in that path are shorter than
`(a V−− b). This provides the foundation for an inductive proof of the desired
result about Vε.
Lemma 2.1. For points a, b, c, d as in Figure 3, it holds that cd ∩ intS = {}.
Proof. Omitted. The basic idea is to show that cd ∩ intS 6= {} implies that
there is some point c′ ∈ vertS contained in ∆acd such that DC

a,c′ < DC
a,c, and

a V−− c′, contradicting the choice of c.

Proof. It will be shown that cd ∩ intS 6= {} implies that there is some point

c′ ∈ vertS contained in ∆acd such that DC
a,c′ < DC

a,c, and a V−− c′, contradicting
the choice of c.

Indeed, let c′ ∈ S satisfy

DC
a,c′ = min

x∈S∩∆acd
DC
a,x.

8

a b

c

d

C a

Figure 3: A path from a to b via c.
Conditions a V−− b, a Vε−− c, and DC

a,c = DC
a,d hold.

Then c′ is visible from a, since otherwise some point in S ∩ ∆acd would be
closer to a (as measured by DC). Also DC

a,c′ < DC
a,c, since cd ∩ intS 6= {}

implies (int ∆acd) ∩ intS 6= {}, and any point of int ∆acd is closer in DC to a
than c.

It remains to show that c′ ∈ vertS. It is easy to see that c′ ∈ bd(∆acd ∩ S), or
more particularly, c′ ∈ ∆acd ∩ bdS ⊂ bd(∆acd ∩ S). Since bdS = ∪e∈edgeSe,
it follows that c′ ∈ ∆acd ∩ e, for some e ∈ edgeS.

For a line segment xy ⊂ Ca, the minimum value of Da,z for z ∈ xy is attained
either at x or y (or perhaps both). Therefore c′ is an endpoint of ∆acd ∩ e,
for some e ∈ edgeS. It follows that either c′ is an endpoint of e, or e crosses
bd ∆acd and c′ ∈ bd ∆acd. However, c′ /∈ cd, since DC

a,c′ < DC
a,c. Furthermore,

c′ /∈ ac, since a V−− c implies that ac∩ intS = {}, which implies no edge of edgeS

crosses ac. Similarly, no edge of edgeS crosses ad since a V−− b. Therefore, c′ is
an endpoint of e, and c′ ∈ vertS.

To sum up, cd ∩ intS 6= {} implies that there is some point c′ ∈ ∆acd ∩ vertS

with DC
a,c′ < DC

a,c, and a V−− c′. This contradicts the choice of c, so that cd∩intS
must be empty.

Lemma 2.2. For points a, b, c, d as in Figure 3, there is a path c = x0
V−− x1

V−−
x2

V−− · · · V−− xm = b such that xi ∈ ∆bcd, for 0 ≤ i ≤ m, and every xi is a
vertex of the convex hull of S ∩ ∆bcd.

Proof. Omitted.

(Note that if a, c, and b are collinear, then the lemma is trivially true, so it can
be assumed that ∆abc has positive area.)

Let S∗ denote the the convex hull of S ∩ ∆bcd. Note that c and b are vertices
of S∗, since they are in S ∩∆bcd and are vertices of ∆bcd. This implies that cb
is an edge of S∗.

9

To show that xi
V−− xi+1, for 0 ≤ i ≤ m, first it will be proven that

S∗ ∩ intS ⊂ cb, (1)

and then it will be proven that

vertS∗ ⊂ vertS. (2)

Since S∗ is the convex hull of S ∩ ∆bcd, the intersection S∗ ∩ int(S ∩ ∆bcd) is
empty. It is shown in the next paragraph that

bd(S ∩ ∆bcd) ⊂ cb ∪ bdS, (3)

so that
S∗ ∩ S = S∗ ∩ S ∩ ∆bcd ⊂ cb ∪ bdS.

This implies (1), as desired.

It is easy to show that S and ∆bcd closed implies

bd(S ∩ ∆bcd) = (∆bcd ∩ bdS) ∪ (S ∩ bd ∆bcd).

By Lemma 2.1, cd ∩ S ⊂ bdS, and since a V−− b, also bd ∩ S ⊂ bdS. Therefore
S ∩ bd ∆bcd ⊂ cb ∪ bdS. Since ∆bcd ∩ bdS ⊂ S, (3) follows.

Claim (2) above follows from (3), since vertS∗ ⊂ vert(S ∩∆bcd), and from (3),
vert(S ∩ ∆bcd) ⊂ cb ∪ vertS. Since cb ∩ vertS∗ = {}, relation (2) follows, and
so the lemma.

Lemma 2.3. If A and B are closed, bounded, and convex subsets of Ed with
A ⊂ B, then the surface area of A is no more than the surface area of B.
Therefore, for points a, b, c, d as in Figure 3, the path c V−−−− b described by the
previous lemma has the property that

`(c V−−−− b) ≤ Dc,d +Dd,b.

Proof. The general statement is proven in [Egg58, 5.3], from which the partic-
ular claim follows.

(This lemma is a special case of the more general condition that if A and B are
convex sets with A ⊂ B, then the surface area of A is no more than the surface
area of B.)

For each xi
V−− xi+1, let yi be the point such that xiyi is parallel to cd, and

yixi+1 is parallel to db. Then by the triangle inequality,

`(xi
V−− xi+1) ≤ Dxi,yi +Dyi,xi+1 ,

10

so that
`(c V−−−− b) ≤

∑

0≤i<m

Dxi,yi +Dyi,xi+1 .

But
Dc,d =

∑

0≤i<m

Dxi,yi ,

and
Dd,b =

∑

0≤i<m

Dyi,xi+1 ,

so the lemma follows.

The elements are almost in place for an inductive proof that Vε contains short
paths. The following two lemmas provide a means of using induction on the
length of the edges of V .

Lemma 2.5. For any given points a, b, c ∈ Ed, it holds that

diam∆abc = max
{x,y}⊂{a,b,c}

Dx,y.

Proof. Omitted.

Lemma 2.4. For points a, b, c, d as in Figure 3, and with ψ < π/4, if x, y ∈
∆bcd, then Dx,y < Da,b.

Proof. Omitted. Note that it is enough to show that Dc,b, Db,d, and Dc,d are
each less than Da,b.

By Lemma 2.5fix, it is enough to show that Dc,b, Db,d, and Dc,d are each less
than Da,b.

Plainly Db,d < Da,b. The fact that Dc,b < Da,b follows from

D2
c,b = D2

a,b +D2
a,c − 2Da,cDa,b cos θ

= D2
a,b +Da,c(Da,c − 2Da,b cos θ),

where θ ≤ ψ is the measure of 6 cab. By Lemma 1.3,

Da,c ≤ Da,b/ cos adiamC = Da,b/ cosψ,

so Da,c < 2Da,b cos θ if

Da,b/ cosψ < 2Da,b cosψ < 2Da,b cos θ.

The fact that Dc,b < Da,b follows, since ψ < π/4 implies cos2 ψ > 1/2.

A similar argument shows that Dc,d < Da,d, which implies Dc,d < Da,b.

11

Theorem 2.5. Let S be a set of obstacles, V a vertex visibility graph, and Vε
the subgraph of V defined above. Then for any points a, b ∈ vertS, if a V−−−− b
then a Vε−−−− b, and

`(a Vε−−−− b) ≤ (1 + ε)`(a V−−−− b).

Proof. As noted previously, it is enough to show that the above conditions
hold when the path a V−−−− b consists only of a single edge.

The proof will proceed by induction, using the ordering on the edges of V implied
by their length.

For the inductive basis, suppose a V−− b satisfies

`(a V−− b) ≤ min
x,y∈vertS

`(x V−− y).

If a Vε−− b does not hold, then there is some c with a Vε−− c, hence by Lemmas 2.3
and 2.4, there is some c′ ∈ ∆bcd with c′ V−− b and `(c′ V−− b) < `(a V−− b). This

contradicts the assumption about a V−− b, so that a Vε−− b.

Now suppose a V−− b is an arbitrary edge of V , and by the inductive hypothesis,
the claim holds for all edges of V that are shorter than a V−− b. There is a point c
with a Vε−− c, and with c, b ∈ Ca, for some cone C ∈ Fψ. By Lemmas 2.2 and 2.4,

there is a path c V−−−− b with all edges in that path shorter than `(a V−− b). By

the inductive hypothesis and Lemma 2.3, there is a path b Vε−−−− c such that

`(c Vε−−−− b) < (1 + ε)`(c V−−−− b) ≤ (1 + ε)(Dc,d +Dd,b).

This implies

`(a Vε−− c Vε−−−− b) < Da,c + (1 + ε)(Dc,d +Dd,b).

The theorem follows from

Da,c + (1 + ε)(Dc,d +Dd,b) ≤ (1 + ε)Da,b, (?)

which readily follows from the relation

1 + (1 + ε)(sinψ − cosψ) ≤ 0.

To prove the theorem, it remains to show that

Da,c + (1 + ε)(Dc,d +Dd,b) ≤ (1 + ε)Da,b. (1)

12

Let θa denote the angle 6 dac at a in ∆acd, and similarly let θc and θd denote the
angles at c and d in ∆acd. Then by the law of sines, Da,c = Da,d sin θd/ sin θc
and Dc,d = Da,d sin θa/ sin θc, so (1) is equivalent to

Da,d
sin θd
sin θc

+ (1 + ε)(Da,d
sin θa
sin θc

+Dd,b) ≤ (1 + ε)Da,b,

or
sin θd + (1 + ε)(sin θa − sin θc) ≤ 0. (2)

The fact that a, b, c, and a + uC are all in Ca implies that θa ≤ ψ and θc ≥
π/2 − ψ, so that the left hand side of (2) is bounded above by

1 + (1 + ε)(sinψ − sin(π/2 − ψ)) = 1 + (1 + ε)(sinψ − cosψ).

It is easy to verify that the relationship between ε and ψ in the definition of Vε
ensures that this value is less than zero. This implies that (1) holds, and the
inductive step is accomplished.

3 Finding ε-short paths in the plane

In the previous section, a subgraph Vε was given, satisfying the condition that
Vε contains ε-short paths between any two vertices of an obstacle set S. With
such a subgraph available, an ε-short path between any points s and t can be
found readily: Given s and t, augment Vε with s and t as two more vertices, and
include for s and t edges analogous to those in Vε. That is, for s, and for every
C ∈ Fψ, find the vertex x of Vε in Cs that is visible to s, and is closest among

all such visible vertices in Cs. Make s Vε−− x. Perform the analogous operation
for t and every C ∈ Fψ. Then Theorem 2.5 holds for the graph Vε augmented
in this way, and a shortest path in Vε from s to t is an ε-short path from s to t.
Using the algorithm of Fredman and Tarjan[FT84], such a path can be found
in O(n log n+ n/ε) time.

How can such an augmented subgraph Vε be found quickly? It is shown in this
section that this can be done using conical Voronoi diagrams, or C-VoDs. Given
an obstacle set S and a cone C, the C-VoD for C and S is a set of regions, with
a region Vx for every x ∈ vertS. For any point y ∈ Vx, a DC-closest point to
y in Cy is x. More formally, the region Vx is defined as follows: Let V ∗

x denote
the set of points in (−C)x \ {x} that are visible to x; that is, V ∗

x is the set of
points y with y 6= x and with x ∈ Cy. For y ∈ E2, let

D∗
y = min{DC

y,x′ | x′ ∈ vertS, y ∈ V ∗
x′},

and
V ∗∗
x = {y ∈ V ∗

x | Dy,x = D∗
y}.

13

a b

c

d

C a

Figure 4: Some regions of a C-VoD.

Then to break ties, Vx is defined as the set of points y ∈ V ∗∗
x such that if y ∈ V ∗∗

x′ ,
then x is to the right of x′ when facing in the direction of uC . This convention
makes the Voronoi regions disjoint. Note that in this definition x /∈ Vx. See
Figure 4 for an example.

It is easy to see that for x ∈ vertS, the edge x Vε−− y can be included if y ∈ Vx,
where either y ∈ vertS or y is a source or destination point. It is shown in
the full paper that a C-VoD is a polygonal subdivision with O(n) edges, a C-
VoD can be constructed in O(n logn) time using a sweepline algorithm, and
the C-VoD region containing each vertex is determined as a by-product of that
algorithm. Thus the construction of the C-VoDs for every C ∈ Fψ will allow
the construction of a subgraph Vε in O(n logn)O(1/ε) time. Augmentation of
Vε for given source point a and destination point b can be done in O(n/ε) time,
within the bound required for determining a shortest path tree.

In the remainder of this section, the problem considered is that of computing a
C-VoD for an obstacle set S and a fixed cone C.

It will be convenient to use a coordinate system (x, y) so that uC = (0, 1). For
a point a ∈ E2, ax will denote the x coordinate of a, and ay the y coordinate.
For a, b ∈ E2, the partial order a ≺ b will be true just when either ay > by, or
ay = by and ax < ay. That is, either uC · ay > uC · by, or uC · ay = uC · by and
b is to the right of a when facing in the direction of uC . The relation a � b is
defined in the obvious way as b ≺ a, and a � b means that either a ≺ b or a = b.
The relation � is similarly defined.

Here are some basic properties of C-VoDs, using these definitions.

Lemma 3.1. For a cone C and a polyhedral obstacle set S consisting of two
points a and b with a ≺ b, the C-VoD region Vb = V ∗

b , and Va = V ∗
a \ V ∗

b .

Proof. For c ∈ E2 with a, b ∈ Cc \ {c}, the distance DC
y,a = (a − y) · uC , and

DC
y,b = (b− y) · uC , so either DC

y,a > DC
y,b, or DC

y,a = DC
y,b, and b is to the right

of a. In either case, y ∈ Vb by the definition of Va. Thus, c ∈ Va only when
c ∈ V ∗

a but c /∈ V ∗
b . The lemma follows.

14

The following generalization of Lemma 3.1 follows readily.

Lemma 3.2. For a polyhedral obstacle set S and a point a ∈ vertS, the C-VoD
region

Va = V ∗
a \

⋃

b∈vert S
a≺b

V ∗
b .

Proof. Omitted.

From Lemma 3.2 follows:

Lemma 3.3. For a ∈ vertS,

bd Va ⊂ bdV ∗
a ∪

⋃

b∈vert S
a≺b

bd V ∗
b .

Proof. Omitted.

To characterize the boundary of Va, the following fact about the boundary of
V ∗
a will be useful.

Lemma 3.4. For a ∈ vertS, either a point b ∈ bdV ∗
a is in bd(−C)a ∪ bdS, or

there is some c ∈ vertS with a, c, and b on a line, c between a and b.

Proof. Omitted.

Lemma 3.5. For a ∈ vertS,

bd Va ⊂ bdS ∪
⋃

f∈vert S
f�a

bd(−C)f .

By Lemma 3.3, if b ∈ bdVa, then b ∈ bd V ∗
c , for some c � a. Suppose b /∈

bd(−C)c ∪ bdS. Then by Lemma 3.4, there is some d ∈ vertS with a, d, and
b on a line, d between a and c. Let d∗ be the “lowest” such d, the one closest
to b. Plainly d∗ � a, and either b ∈ intV ∗

d or b ∈ bd(−C)d ∪ bdS. In the
former case, b and a neighborhood of b are not in Va, by Lemma 3.2, and so
b /∈ bd Va, contradiction. In the latter case, b is in the set indicated in the
lemma statement.

The above lemma, and the next one, imply that bdVa has a simple structure.

Lemma 3.6. For a ∈ vertS, Va is starshaped from a. That is, if b ∈ Va, then
ba ⊂ Va ∪ {a}.
Proof. Suppose b ∈ Va. Then any point in ba is visible to a. Suppose c ∈ ba,
but there is some d ∈ vertS with c ∈ V ∗

d , and d � a. Then d cannot be visible
to b, since that would contradict b ∈ Va. By a proof like that for Lemma 2.1,
these conditions imply that some f ∈ vertS in ∆bcd is visible to b. But by the

15

assumptions about c and d, we have f ∈ (−C)a and f � a, which imply b /∈ Va,
contradiction. As shown in the lemma below, the boundary (of the closure)
of a C-VoD region Va is the union of a set of line segments and rays. Let a cone

segment e be a ray or line segment that has an endpoint at some a ∈ vertS,
and satisfies e ⊂ bdCa. Let an edge segment be a line segment that is a subset
of some edge in edgeS.

Theorem 3.7. For a ∈ vertS, the boundary of the closure of Va is the union
of cone segments and edge segments.

Proof. The lemma follows immediately from Lemmas 3.5 and 3.6.

Theorem 3.8. For an obstacle set S with n edges, the total number of edges
in a C-VoD of S is O(n).

Proof. Since there are O(n) vertices of S, and at most 2 cone edges per vertex,
there are O(n) cone edges. Each edge segment is either a whole edge, or is in
some Va, and has one endpoint in bd(−C)a. Thus there are O(n) edge segments,
and so by Theorem 3.7, there are O(n) edges.

Theorem 3.9. For an obstacle set S with n edges, a C-VoD of S can be
computed by a sweepline algorithm in O(n logn) time.

Proof. Omitted.

Sweepline algorithms are well known. For this problem, a sweepline algorithm
somewhat like Fortune’s [For86] can be used. Fortune’s algorithm uses a ge-
ometric transformation, so that the transform of the Voronoi region for a site
is not encountered in the sweep until the site is. This transformation is not
necessary in this case, because by sweeping in the appropriate direction, the
Voronoi region for a vertex is encountered when that vertex is swept over.

4 A graph for ε-short paths in E
3

In this section and the next, an algorithm is described for finding ε-short paths
through polyhedral obstacles in E3. As described in §1, the algorithm combines
the ideas of the last section with those of Papadimitriou [Pap85].

The graph V in E3 is defined analogously to the planar case, except that in
E3, the graph’s nodes are all the points of edgeS. The graph Vε is also defined
analogously to the planar case. A family Fψ of cones is constructed with angular
diameter ψ = Ω(ε), so that the number of cones in Fψ is Θ(1/ε2). It will be
assumed that the cones in Fψ have three sides. The nodes of Vε are of two
types, the ordinary nodes, and the Steiner nodes. The set of ordinary nodes
corresponds to the nodes of V , that is, the set of points on edges of S. The set of
Steiner nodes results from the following procedure for constructing Vε: For each

16

ordinary node a and each C ∈ Fψ, find the point b in S ∩Ca that is DC-closest
to a. (If a ∈ e ∈ edgeS and e ∩ Ca 6= {}, include no Vε edge for a and C.)

Note that b need not be not an obstacle edge, that is, b is not necessarily an
ordinary node. If b is not an ordinary node, make b a Steiner node. In either
case, include the edge a Vε−− b.

With the inclusion of graph nodes in the interiors of the obstacle facets, it is
necessary to include in Vε edges among the nodes on each obstacle facet. Such
nodes are the Steiner nodes, together with the ordinary nodes on the edges of
the facet. The edges can be defined as in the planar case, using a cone family
Fψ′ , such that between any two nodes on a facet, there is a path in Vε that is
ε′-short, for some ε′ > 0. It will be useful to pick a value of ε′ that is less than
ε, although ε′ = Θ(ε) will hold.

The advantage of defining Vε with the use of Steiner nodes is that the compu-
tation of Vε becomes easier, due to the simpler criterion for determining the Vε
edges. The disadvantage of this definition is that the proof that Vε contains
ε-short paths becomes harder. The next lemma gives the desired condition.

Lemma 4.1. Let S be a set of obstacles in E3, V the visibility graph, and Vε
the graph defined above. Then for any points a and b on edges of S, if a V−− b
then a Vε−−−− b, and

`(a Vε−−−− b) ≤ (1 + ε)`(a V−− b).

The lemma says that there are ε-short paths between ordinary nodes that are
visible to each other. To prove the lemma inductively, it will be useful to also
have certain facts about paths involving Steiner nodes:

Lemma 4.2. With terminology as in Lemma 4.1, let a be an ordinary node,
and let b be a point on some obstacle facet F with a visible to b and with ab
perpendicular to F . Then there is some node c ∈ F with b, c ∈ Ca for some
C ∈ Fψ, such that a Vε−−−− c and

`(a Vε−−−− c) +Dc,b < (1 + ε)Da,b.

Proof of Lemmas 4.1 and 4.2. (Sketch) These two lemmas will be proven
jointly.

Suppose a Vε−− c, where c, b ∈ Ca for some C ∈ Fψ. Then by considering the
intersection of the plane determined by a, b, and c with S, a proof similar to
that for the planar case can be given. The proof is more complicated, however,
because of the Steiner nodes, and because the number of nodes is infinite.

The motivation for Lemma 4.2 is the situation shown in Figure 5, where a is an
ordinary node, b and c are Steiner nodes, a is visible to b, a Vε−− c, and b, c ∈ Ca

17

a

c
C a

b

Figure 5: A bad case for Lemma 4.1 without Lemma 4.2.

for some cone C. The problem here is to find an ε-short path from a to b via
c. This situation could arise as a subproblem in finding an ε-short path from a
to some other ordinary node. There is no obvious means of making sure that a
path exists in Vε between c and b without including edges in Vε that are between
two Steiner nodes on different facets. Such a course leads to the introduction
of yet more Steiner nodes, and so on. To avoid such a difficulty, Lemma 4.1
is proven in such a way that the only subproblems arising that involve Steiner
nodes have the form described in Lemma 4.2. Figure 6 gives an indication of
how this is done, and why a subproblem of the form of Lemma 4.2 is solvable.

Let S∗ denote the intersection of S with the quadrilateral region abce. Let pc
denote a “point at infinity” in the direction perpendicular to c′c′′, and pb a a
point at infinity in the direction perpendicular to b′b′′. Then the convex hull
of S∗ ∪ {pe, pb} gives a path consisting of a segment sc perpendicular to c′c′′,
a series of edges between ordinary nodes, and a segment perpendicular to the
facet containing b. Although the segment sc is not necessarily perpendicular
to the facet containing c, a further construction gives a path to c that includes
such a segment.

A note about the inductive argument of the proof: While the proof for E2 used
induction on the length of edges in V , in E3 the argument that the induction
“grounds out” must be more delicate. Given nodes a and b, consider the Vε
edges generated by attempting an inductive proof along the lines of that for
E2. If the set of edges generated becomes arbitrarily large, then there will be
edges in that set that become arbitrarily small. This implies the existence in
the set of edges of a sequence of edges ai

Vε−− bi, where for some e, f ∈ edgeS,
it holds that ai ∈ e and bi ∈ f , and the lengths of the edges become arbitrarily
small. This implies that ai and bi are converging to the point pef = e ∩ f .
However, since these graph edges can be “short circuited” by passing through
pef , such sequences are not present in a shortest path in Vε from a to b, so that
the process of generating edges for an inductive proof terminates either by such

18

a

c

C a
b

c ′

c ′ ′

b ′

b ′ ′

s c

Figure 6: Proof of Lemma 4.2 by picture.

short circuiting, or by stopping with edges in Vε.

5 Finding ε-short paths in E
3

5.1 Combinatorial characterization of V
ε

An important concept in manipulating Vε is that of combinatorial equivalence of
points in edgeS. Suppose e ∈ edgeS has endpoints a and b. For 0 ≤ β ≤ 1, let
p = βa+(1−β)b. For cone C ∈ Fψ and point p, let pC denote the point in S so
that DC

p,pC minimum over all points in S. Let hC(β) denote that value of DC
p,pC

as a function of β. Then it is easy to see that hC(β) is piecewise linear, and e is
naturally divided into segments within which this function is linear. Two points
in e will be said to be C-combinatorially equivalent if they are in the same such
segment of e. Two points in e will be said to be combinatorially equivalent if
they are C-combinatorially equivalent for all C ∈ Fψ. The set of line segments
forming the equivalence classes for this relation over all obstacle edges will be
called the combinatorial characterization of Vε, and will be denoted Kε. Given
Kε and associated labels for its segments, it is possible to quickly determine for
any a ∈ e ∈ edgeS the Vε edges from a.

For each facet F of S, let hCF (β) denote the value of DC
p,pF as a function of β,

where pF is the closest point to p in Cp∩F . Note that the function hC(β) takes
the minimum value at β of all of the functions hCF (β), That is, hC(β) is the
“lower envelope” of these functions. Each function hCF (β) is piecewise linear,
with O(1) pieces. This implies that hC(β) corresponds to a Davenport–Schinzel
sequence. Such sequences are discussed in [SCK+86], where an analysis is given
implying that hC(β) has a number of pieces that is almost linear in the number

19

of facets F . Since these pieces correspond to the blocks of C-combinatorial
equivalence, we have specifically:

Lemma 5.1. The number of segments in a partition of an edge of S by C-

combinatorial equivalence is bounded by nλ(n), where λ(n) = O(α(n)O(α(n)O(1))),
and α(n) is a form of inverse of Ackermann’s function.

Theorem 5.2. For a given obstacle set S ⊂ E3, the combinatorial characteriza-
tionKε of Vε hasO(n2λ(n)/ε2) segments, and can be computed inO(n2λ(n) log n)/ε2

time.

Proof. Omitted. The characterization is determined for each edge and each
C ∈ Fψ in turn, using a merging procedure to determine the associated lower
envelope.

5.2 Finding ε-short paths in V
ε

Having performed the preprocessing step of finding the line segment set Kε,
which is a combinatorial characterization of Vε, it remains to show how to
compute an ε-short path between two given points s and t. As described in the
introduction, this involves two phases, which use partitions P1 and P2 of edgeS,
and corresponding subgraphs Vε/Pi of Vε. A segment in Pi (i = 1 or 2) will
be called a Pi-segment, and a segment in Kε will be called a Kε-segment. The
length of a segment f will be denoted by `(f).

Given Kε and a partition Pi, the nodes and edges of Vε/Pi are defined as follows:
The nodes of Vε/Pi include the endpoints of segments in Kε and Pi. If a is the

endpoint of a segment in Pi, include in Vε/Pi all edges a Vε−− b. If a is the endpoint
of a segment in Kε, where a is the endpoint of some block of C-combinatorially
equivalent edges, include in Vε/Pi the corresponding edge a Vε−− b, where b ∈ Ca.
Include in the nodes of Vε/Pi all nodes incident to the above edges. Finally,
include a graph edge between nodes that are adjacent on an obstacle edge, and
compute a C-VoD for the nodes of Vε/Pi on each obstacle facet, using the family
of cones Fψ′ mentioned above.

The justification for this construction is the following lemma:

Lemma 5.3. Suppose segment f ⊂ e ∈ edgeS, with the points of f C-
combinatorially equivalent for some C. Then there is an endpoint a∗ of f for
which the following holds. Let a∗ Vε−− b∗ with b∗ ∈ Ca∗ . Then for any a ∈ f and
edge a Vε−− b with b ∈ Ca,

Da,a∗ + `(a∗ Vε−− b∗) +Db∗,b ≤ `(a Vε−− b) + 2`(f).

In other words, approximating edges a Vε−− b using a∗ Vε−− b∗ results in an additive
error proportional to the length of f .

20

Proof. Omitted.

Lemma 5.4. The number of nodes in Vε/Pi is at most |Kε|/ε+ |Pi|/ε2 and the
number of edges is at most |Kε|/ε2 + |Pi|/ε3.
Proof. Omitted.

It remains to define the collections of segments P1 and P2. The set P1 is used
with K1/4 to determine the length of a (1/2)-shortest path between two points
s and t. Roughly following [Pap85], a segment e ∈ edgeS is partitioned for P1

as follows: the section of e consisting of points within Ds,t of s is partitioned
by segments of length ε1 = 1/8n. The other section(s) e∗ of e is partitioned
as follows: choose a coordinate system on e∗ with the closest point to s as the
origin. Divide e∗ with the sequence of points

xj = ε1Ds,t(1 + ε1)
j−1,

for j = 1, 2, Then |P1| = n2 lognρ, and the additive error for passing
through an ordinary node of Vε/P1 is no more than 1/8n times the length of the
shortest possible path from s to t that passes through that node. Observe that a
shortest path from s to t using Vε/P1 passes through 2n ordinary nodes, 2 nodes
per edge. The result is that by finding the shortest path in Vε/P1 augmented
for s and t, the length Q of the shortest path from s to t is known with relative
error at most 1/2.

Given this estimate Q for the shortest path length, the collection P2 is defined
as follows: For the set of points on an edge e that are within 2Q of s, partition
that set into segments of length εQ/2n. The shortest path on Vε/P2 is an ε-short
path. We have:

Theorem 5.5. Given a set S of polyhedral obstacles in E3, and points s and
t, an ε-short path between s and t can be found in

O(n2λ(n) log(n/ε)/ε4 + n2 lognρ log(n log ρ))

where n is the number of obstacle faces, and ρ is the ratio of the length of the
longest edge in S to the distance between s and t.

Proof. The theorem follows from the previous lemmas, using the bounds for
|Kε|, |Pi|, and the corresponding number of edges in Vε/Pi. The algorithm of
[FT84] requires O(m+n logn) time for the single-source shortest path problem
on a graph with m edges and n vertices.

6 Generalization to lp norms

By varying numerical parameters slightly, the algorithms and data structures
of this paper can be applied to finding ε-short paths under arbitrary lp norms.
By suitable choice of a factor γp, the quantity γpD

C
a,b is a good estimate of the

lp-distance between a and b ∈ Ca.

21

References

[AAG+85] Takao Asano, Tetsuo Asano, L. Guibas, J. Hershberger, and H. Imai.
Visibility-polygon search and Euclidean shortest paths. In Proc. 26th

IEEE FOCS, pages 155–164, 1985.

[Che86] P. Chew. There is a planar graph almost as good as the complete
graph. In Proc. 2nd Symp. on Comp. Geometry, pages 169–177,
1986.

[Egg58] H. G. Eggleston. Convexity. Cambridge University Press, Cam-
bridge, 1958.

[For86] S. J. Fortune. A sweepline algorithm for Voronoi diagrams. In Proc.

2nd Symp. on Comp. Geometry, pages 313–322, 1986.

[FT84] M. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in im-
proved network optimization problems. In Proc. 25th IEEE FOCS,
pages 338–346, 1984.

[Mou84] D. Mount. On finding shortest paths on convex polyhedra. Technical
report, Department of Computer Science, Univ. of Maryland, 1984.

[Pap85] C. H. Papadimitriou. An algorithm for shortest-path motion in three
dimensions. Information Processing Letters, 20:259–263, 1985.

[RS85] J. Reif and J. A. Storer. Shortest paths in Euclidean space with
polyhedral obstacles. Technical Report CS-85-121, Department of
Computer Science, Brandeis Univ., 1985.

[SB86] M. Sharir and A. Baltsan. On shortest paths amidst convex poly-
hedra. In Proc. 2nd Symp. on Comp. Geometry, pages 193–206,
1986.

[SCK+86] M. Sharir, R. Cole, K. Kedem, D. Leven, R. Pollack, and S. Sifrony.
Geometric applications of Davenport-Schinzel sequences. In Proc.

27th IEEE FOCS, pages 77–86, 1986.

[SS84] M. Sharir and A. Schorr. On shortest paths in polyhedral spaces. In
Proc. 16th Annual SIGACT Symp., pages 144–153, 1984.

[Yao82] A. C. Yao. On constructing minimum spanning trees in k-
dimensional spaces and related problems. SIAM Journal on Com-

puting, 11:721–736, 1982.

[Yap85] C. K. Yap. Algorithmic motion planning. In J. T. Schwartz and C. K.
Yap, editors, Advance in Robotics, Volume I. Lawrence Erlbaum
Associates, 1985.

22

