More Output-Sensitive Geometric Algorithms

extended abstract

Kenneth L. Clarkson
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

e-mail: clarkson@research.att.com

Abstract

A simple idea for speeding up the computation of extrema of a par-
tially ordered set turns out to have a number of interesting applications
in geometric algorithms; the resulting algorithms generally replace an ap-
pearance of the input size n in the running time by an output size A < n.
In particular, the A coordinate-wise minima of a set of n points in R? can
be found by an algorithm needing O(nA) time. Given n points uniformly
distributed in the unit square, the algorithm needs n+Q(n®®) point com-
parisons on average. Given a set of n points in R?, another algorithm can
find its A extreme points in O(nA) time. Thinning for nearest-neighbor
classification can be done in time O(nlogn)). A;n;, finding the A; ir-
redundant points among n; points for each class ¢, where n = EZ n; is
the total number of input points. This sharpens a more obvious O(n?)
algorithm, which is also given here. Another algorithm is given that needs
O(n) space to compute the convex hull of n points in O(nA) time. Fi-
nally, a new randomized algorithm finds the convex hull of n points in
O(nlog A) expected time, under the condition that a random subset of
the points of size r has expected hull complexity O(r). All but the last of
these algorithms has polynomial dependence on the dimension d, except
possibly for linear programming.

1 Introduction

This paper describes several output-sensitive geometric algorithms, all inspired
by a simple algorithm for finding minima of partially ordered sets. The minima
problem: given a set S of n elements with partial order < on its elements,
find the set F' C S of minimal elements, so that no e € F has g < e for any
g € S. The algorithm is this: process the elements of S in turn, maintaining
a subset E of F. For each p € S, check if e < p for some e € E; if so,
then p is not minimal and can be discarded for further consideration in the

algorithm Otherwise, although p is not necessarily minimal, it can be used
to find a minimal element of S that is not in E, by looping through S \ E,
maintaining ¢ € S with ¢t < p and with no ¢’ € S\ E having ¢’ < t.

The algorithm is described in C in Appendix 1.

This algorithm needs at most 2nA comparisons to find the A minima: each
element of S is compared with the elements of E, which has size no more than A.
When an element p is used to find a new member of E, n or fewer comparisons
are done, but this occurs at most A times; hence no more than 2nA comparisons
are required overall.

The algorithmic idea here is certainly trivial, and indeed there are other
methods to obtain such a running time: frequently a total order < on S is
known that is a “topological sort” on S, so that p < ¢ implies p < ¢q. If S is
sorted with <, then no element ¢ after p in the sorted order can have ¢ < p;
hence a similar algorithm can be used, but the step of finding a minimal t € S\ E
with ¢ < p can be skipped.

However, the total order < may not be available, and sorting by it may be
slower; it is always more complicated. In §2, the above algorithm is analyzed
when S is a set of points in the plane, uniformly distributed in a square, and
the partial order is coordinate-wise dominance. An earlier, more complicated
algorithm of Bentley et al.[2] was shown by Golin[6] to need an expected n+o(n)
comparisons (and the comparison time dominates the running time). The new
algorithm is shown here to have a comparable expected performance, in addition
to the O(nA) worst-case bound. The earlier algorithm can require Q(n?) work
in the worst case, even when A = 1.

Moreover, the idea of the new algorithm also applies to finding the extreme
points of a set S of n points in RY. An extreme point of S is a vertex of its
convex hull; such a point cannot be expressed as a convex combination of the
other points of S. Moreover, an extreme point e has the property that there is
a witness vector n such that n-e > n - ¢ for all other g € S.

The algorithm here is as follows: process the points of S in turn, maintaining
aset E C S of extreme points. Given p € S, it is possible in O(|E|) = O(A)
time, using linear programming, to either show that p is a convex combination
of points of E, or find a witness vector n for p, so that n-p > n-q for all ¢ € F.
While p is not necessarily an extreme point of S, one can obviously find the
point p' € S that maximizes n - p’, in O(n) time. Such a point is extremal, and
can be added to E; note that it cannot already be in E. As before, each point
of S requires O(A) work, except for A points that yield extreme points, and
these need O(n) work. Hence O(nA) work is required overall.

The main surprise for this algorithm is perhaps that it has apparently not
been reported before. It is worth remarking, however, that the algorithm is
polynomial in d, and hence likely much faster for large d than many algorithms
that compute the full convex hull; sometimes only the vertices of the hull are
wanted. In §3, the recursive application of this idea yields an algorithm for
convex hulls that needs O(nA) time for a hull with A faces (of all dimensions).

The algorithm uses O(n)+0O(d?) space. This performance is roughly comparable
to the algorithms of Rote or Avis and Fukuda[l1, 1]; moreover, the algorithm’s
cost per output face can be substantially smaller than Q(n).

By combining current technology for extreme points [9, 7] and for half-space
range queries|8], it is possible to obtain an algorithm that requires O((nA)!~¢?),
where ¢4 = Q(1/d).

In §4, the basic idea above is combined with a randomized incremental algo-
rithm for convex hulls to obtain an algorithm that requires O(nlog A) time to
compute the convex hull of a set of n points in R¢, under the following condi-
tions: the expected number of facets of the hull of a random subset of r points
of S is O(r), for all r, and the hull of S has A facets. The former condition
always holds for d < 3, and frequently does for many natural distributions.
The algorithm is somewhat simpler than one previously given for d = 3 with
the same complexity.[4] (Like the earlier one, this one also can be “derandom-
ized” for d < 3 to obtain a deterministic algorithm with the same asymptotic
complexity.[3]) This result is perhaps best interpreted as a rough theoretical
justification for algorithms like Quickhull[5, 10], which find extreme points on
their way to computing the hull.

As further evidence of the interest of this approach, §5 gives an output-
sensitive algorithm for the problem of thinning a point set for nearest-neighbor
(NN) classification. Here we are given a set S of sites (points) in R?, and each
site is given a class number from 1 to k. A thinning problem motivated by
nearest-neighbor (NN) pattern classification is to find all sites p € S whose
Delaunay neighbors all have the same class as p. Such a site is redundant for
purposes of NN classification, and so its removal from S can speed up classifica-
tion without affecting accuracy. The algorithm given here can do this thinning
in O(nlogn) >_; Ain; time, finding the A; irredundant points among n; points
for each class i. The time is polynomial in d, as is a necessity for the high-
dimensional data used in NN classification.

The final section gives some concluding remarks.

2 Analysis for planar points

This section analyzes the minima algorithm of §1, assuming that the input points
are uniformly distributed in a square. (The results hold for any distribution for
which the z and y coordinates of the input points are independent random
variables.) Here most of the work is done in finding the first minimal point,
when E is empty: starting with ¢ assigned to the first input site (point), the
algorithm loops through the remaining sites p of S; if ¢ < p, p can be discarded
as a minimum. If p < ¢, the point ¢ can be discarded as a minimum and p
becomes the new t. This section will show that ¢ < p for all but O(n°/®) such
comparisons, on average, and that subsequent work is O(n%/8), so that the total
expected number of comparisons is n + O(n5/ 8); this is not too far from Golin’s

analysis of the algorithm of Bentley and others.[6, 2]

Observe that ¢t takes on a series of values t3, k > 0, with ¢; < t; for ¢ >
j- We can bound the expected number of wasted comparisons (with points
incomparable to t) by bounding the expected number of these for each ¢, and
summing these for k£ > 0.

When ¢, is a point (o, 8) with 0 < a, 8 < 1, the expected number of com-
parisons until some ty41 < t; is found is min{n,1/aB}. During that period,
the expected number of wasted comparisons is (a+ S — af)/ min{n,1/af}. We
need a bound on the expectation of this quantity, given that t = t.

The following lemmas will be useful.

Lemma 1 The probability density function of ty is fr(a, 8) = In(1/a)*In(1/8)* /K12

Proof. Omitted. O

Lemma 2

. ol jin(1/a)’
/aJ In(1/a)* = k!jk+1 Z i!/)

0<i<k

for j #0, and

/ In(1/a)* _In1 Ja)FtT

(67 o

Proof. Omitted. 0O
Note that the sum converges to 1/a/ as k — oo, and the summand has
roughly that maximum value, at ¢ = jln(1/a),

Theorem 3 The expected wasted work in finding the first element of E is
O(n®/8).

Before proving this theorem, the bound on the running time that it implies:

Theorem 4 The total expected number of comparisons of the algorithm is n +

O(n®/®).

Proof. (Sketch) It’s not hard to show that with high probability, k will get
large enough that with high probability, both coordinates of the first element
of E will be less than (logn)/+/n. This implies that with high probability, the
number of points that survive comparison with that first element is \/n logo(l) n,
giving a bound of Ay/nlog”® n on the remaining work, with high probability.
Since the expected value of A is O(logn), the expected work after finding the
first element of E is O(n®/%). O

Proof. (of Theorem 3) The proof is divided into two main cases, depending
on the location of tj, and the corresponding bound for the expected number of
points compared to t.

Case 1: aff > 1/n. Consider first the region of the unit square with
af > 1/n, so that ty, is compared with 1/a points on average, and the expected
wasted work for ¢, in this region is no more than

/1/n //m<) 1n(1/a)k!1;1(1/ﬂ) i

By symmetry we can replace 1/a+1/8 by 2/, and so by using Lemma 2 obtain,
within a constant factor,

U In(1/e)" In(na)k+1
/1/n IS I

With a change of variables a = s7~!, where s = \/n, we obtain

(In s)2k+1

1
m/l(l—V)k(lﬂL’Y)kHﬁCh-

Using 1 + 2 < €%, the integral is no more than

1
2/ exp(kIn(l — %) +yIns) dy.
-1

The integral is no more than twice the maximum value of the integrand; maxi-
mizing this for given k, and then maximizing the whole expression with respect
to k, the desired bound is obtained.

Case 2: a8 < 1/n. For the portion of the unit square with « or 3 less
than 1/n, we may bound the expected waste by twice

1 1/n n akn k
[[s B
0 0 .

This is n times

/Oln 1/8) dﬂ/l/" l/a o
/ Bln(1/5 dﬂ/l/" In(1/a

Using Lemma 2, we seek n times

(1/n)? (2lnn)? 1 (Inn)?
Lge 2t () D
0<i<k 0<i<k

We wish to bound the sum of these values over all &, so by summing over k > 4
and then over i, we obtain

%exp(ln n) +exp ((Inn)/2) =1+ v/n.

Now consider af < 1/n and «,8 > 1/n. By symmetry, it’s enough to

consider
1/v/n

1/na
/ n(a+ B) fiu(a, B) dB da,

1/n
and again with symmetry, this is no more than

1 1/na
[[nanapdsda
1/n JO

The expected work for t; = (o, 8) with af < 1/n and a, 8 > 1/n is therefore
within a constant factor of

/1 /“"amlnu/a)’“ln(lm)’“ 48 da.
1/nJ0

k2

Using Lemma 2, we have

1 k i
ln(l/a). (In(na) do,
1/n ilk!

0<i<k
With a change of variables a = s7~! as in Case 1, where s = y/n, we obtain
1 In s)itk+1 1 .
Ly B [-t 1)

ilk!
0<i<k -1

First consider the integral between —1 and 0: push the integral outside to
obtain

1 0 1 itk .
o il L= A +7)'s"dy,
s 1 ilk!
—lo<i<k
which is no more than
Ins [° T=y A4+ o7
— s Vs TS dry,
s Ja

which is less than s = y/n upon evaluating the integral.

Now for the integral between 0 and 1, and three subcases:

k > 2Ins. Here we bound the sum over i by s1¥7, and bound (1 — 7)* by
e " < 5727, s0 part of (1) is bounded by

Ins Ins)k [t
~ Z (k') / sdy < s.
: 0

k>2Ins

k < lIns. Here the sum over i is bounded by k times its maximum value at
the i = k term, with the bound

1 (In 5)2k+2 /1 ok
- | =77 dy,
2 T), A=)

0<k<Ins

which is bounded by O(n®/8), as in Case 1.
Ins < k < 2Ins. Rearrange the subsum of (1) to 1/s times

2Ins .
Ins)k+1 1 ;(Ins)?

> B [a-yr ¥ avy o,)

k=Ins) 0 0<i<k)

and consider first the portion of the integral with v < ¢, where € = (k/Ins) — 1.
We bound the sum over i by s'*7, obtaining

1 k+1 €
z (In Z); /0 (Il 2y g

In s<k<2Ins
which is O(1) times

max (11’1 S)2s(l+e)—(1+e) log(l—{—e)s(l—i-e) 1n(1—’y)+2’y_

0<y<e<t
For given € > 1/3, this is maximized by v = (1 — €)/2, and by v = € for
e < 1/3. In either case, the expression is maximized at € = 1/3, and gives
(ln 8)2327(4/3) In2 _ O(n5/8).
Finally, for the portion of the integral in (2) when v > ¢, we may bound
the sum over ¢ by In s times the maximum value of the summand, at ¢ = k, to

obtain an expression as in the subcase k& < Ins, or Case 1, and also obtain the
bound O(n®/%). O

3 Space-efficient convex hulls

The limiting resource for finding convex hulls in higher dimensions is often not
time, but space. A large space requirement also affects computation time if the
algorithm has little locality of reference, as may be true for many convex hull
algorithms.

Avis and Fukuda gave an algorithm that computes the convex hull of a set
S of n points in R?, and needs little more space than is required to represent
the input. Their algorithm needs O(nA) time to output all feasible bases of
the (projective) dual polytope. The number of such bases is the same as the
number of vertices of the dual polytope, or facets of the hull, if the hull polytope
is simplicial. However, for degenerate data, the number of bases may be much
larger than the number of facets of the hull. Rote gave an algorithm that
removes the dependence on the number of bases, with a time bound of O(nA)
for computing the facets of the hull. This section gives an algorithm with
performance similar to Rote’s, and with some similar characteristics, but derived
in a quite different way.

Following discussion of the algorithm, there is some speculation as to the
performance of the new algorithm relative to the earlier ones.

The algorithm here is based simply on the application of the basic algorithm
of §1, applied recursively in the dimension. The algorithm outputs the faces of
the convex hull conv S in lexicographic order, where the faces are described by
a list of their incident vertices, sorted in increasing order. (Each input point is
arbitrarily given a unique number between 1 and n.)

The algorithm is perhaps best described in the dual setting of the computa-
tion of the intersection P of a collection of halfspaces. Here an extreme point of
S corresponds dually to an irredundant halfspace for P: a halfspace for which
the intersection of its boundary plane h with P is a polytope of dimension one
lower, so that hN P is a facet of P.

The algorithm first finds the irredundant halfspaces of P, corresponding
to the extreme points of S. These halfspaces can be found in time O(n) per
halfspace: for each halfspace, solve the linear programming problem of checking
that there is a point on its boundary that is contained in the interior of every
other halfspace.

Now the algorithm picks the lowest numbered irredundant halfspace, call
it 1, and recursively computes the facet corresponding to halfspace 1. Having
done so, it recursively computes the facet corresponding to the next higher-
numbered halfspace, say 2. However, consider the ridge, if it exists, that is the
(d — 2)-dimensional polytope contained in the intersection of the boundaries of
halfspaces 1 and 2. Since that ridge was reported recursively when halfspace 1
was processed, it need not be reported (or processed recursively) when process-
ing halfspace 2.

In the general case, the algorithm is considering a face that is contained in
the flat (affine subspace) that is the intersection of some set T' of j boundary
planes, and is finding the polytope P’ that the intersection of the remaining
halfspaces with that flat. Such a problem can be viewed, by a change of vari-
ables, as a lower-dimensional version of the original problem. The algorithm
finds the irredundant halfspaces whose intersection with the flat gives P’, and
then recursively computes the facets corresponding to halfspaces whose numbers
are higher than any of those in T', doing so in increasing order of those num-
bers. Thus a lexicographic order is preserved, and each j-tuple of halfspaces
that yields a (d — j)-face is reported once.

With degenerate input, however, it could occur that a j-face, say a 0-face
or vertex, can be represented by more than one distinct d-tuple of halfspaces.
Here we can use lexicography to remove this redundancy: we seek to report only
the lexicographically first j-tuple that yields a given face. Degeneracy will be
manifested during the testing to find irredundant halfspaces: the test is given
a flat w and a collection of halfspaces, and for each halfspace with boundary
h, checks if there is a point in A N w that is in the interior of every halfspace
of the collection. In the degenerate situation, it may be that there is no such
point, but there is a point in A N w that is either contained in the interior or
is on the boundary of each halfspace. If all the latter halfspaces have numbers
higher than h’s, the test of h for irredundancy will be considered “passed,” but

otherwise not. This should result in nonredundant reporting of faces in the
degenerate case.

When the collection of halfspaces is found that is irredundant in determining
a given face, O(n) work is done per halfspace, using the trick of §1. While
only facets of that face that are determined by higher-numbered halfspaces
are recursively computed, nonetheless O(n) is paid even for lower-numbered
halfspaces. However, the work for a given face determined by j halfspaces is
wasted in this way at most j times, so the overall work remains O(nA) for A
faces reported.

While this algorithm is comparable asymptotically to Rote’s, it is difficult
to predict with confidence its relative speed in practice. On the one hand, the
algorithm reports all faces of the intersection, and not just the vertices, so there
would seem to be a d! penalty relative to Rote’s. Also, the algorithm does linear
programming at each step, which Rote’s wouldn’t necessarily do at all if there
were no degeneracies. On the other hand, a halfspace that is redundant for a
face is redundant for the facets of that face, and so there is a potential for a
substantial reduction in the number of halfspaces in the test performed for a
face. For example, in the Voronoi diagram of sites in R® uniformly distributed
in a cute, a given site has about 15 Delaunay neighbors on average, each cor-
responding to a Voronoi polygon. The Voronoi edges and vertices for a site
can be found using only those 15 neighbors, and so the work is dominated by
the time to find the Delaunay neighbors. There are about 7n Voronoi vertices,
on average, however, so the “leverage” for Rote’s algorithm is 2 here and not
41 = 24, as might be expected.

4 Output-sensitive convex hulls

This section gives an algorithm for finding the convex hull of a set S of n points
in R%. The algorithm combines a randomized incremental approach with the
incremental computation of a set of extreme points of S. The randomized incre-
mental portion allows the extreme points to be found quickly; the extreme points
allow the randomized incremental algorithm to quit early when the number A
of extreme points is small.

The discussion below assumes that 2dlog A < logn; otherwise the random-
ized incremental algorithm by itself gives the desired expected bound.

The algorithm can be sketched as follows: adding points at random one
by one to a random subset R of S, maintain the convex hull of R, together
with auxiliary conflict graph information, as discussed in [4]. (This auxiliary
information lists, for each facet of conv R, those sites of S\ R that see the facet,
and lists for each site the facets it sees.) Also maintain a set E of extreme
points of S, starting with some initial set of fixed size. Build E incrementally,
adding a point to it when R is first of size r at least |E|In |E|, so that a point
in added to E, (and |E| increases) about every logr steps. Mark the points of

S active initially. To add a point to E, pick an active point p of S, and check
if p is outside the convex hull of E. If not, mark p as not active. If so, find a
witness vector n for p, such that n-p > n - ¢ for all ¢ € E. (Finding such a
witness, or proving that none exists because p € conv E, is discussed below.)
Given the witness vector n, find d facets of conv R such that n is a positive
linear combination of the outward normals of these facets. This implies that
any point p € S that maximizes n - p must see one of these d facets, and so is in
one of the conflict lists for these facets. By examining these lists, such a p € S
can be found and added to E.

A witness vector, that proves that a point p is outside conv E, can be found
in O(log A) time, assuming appropriate preprocessing of E in A%M) time. For
d = 3, a planar point location data structure or Dobkin and Kirkpatrick’s
hierarchical decomposition can be used for this purpose. In higher dimensions,
the best algorithm for this is due to Matousek and Schwarzkopf[7].

To bound the running time of this algorithm, note that a point is tested
with respect to containment in conv E at most once, and as just mentioned,
this requires O(log A) time. To find d facets of conv R whose normals contain a
given vector requires time at most O(rl%/2]) = O(A9), and this is done A times.
The conflict lists of these d facets contain O(n/r)logr = O(n/|E|) sites, with
probability 1—1 /AQ(I), using standard random sampling arguments, and so the
total time to search these lists is no more than O(n) 3=, ;.4 1/J = O(nlog A).
The maintenance of conv R and its conflict lists, up to size r < Alog A, requires
O(nlog A) expected time,[4] and so O(nlog A) is needed overall.

5 Thinning

In nearest neighbor classification a set S of n points in R? is given, with each
site p € S having a class number c,. Given a query point g, it is classified by
giving it the same class number as that of the closest site to it. It may be that
some site is redundant for this purpose, because no point in R? would change
classification upon removal of that site from S. The operation of removing such
redundant sites is called thinning. (In particular, thinning that is “decision
boundary preserving.”)

A site p is redundant if and all only if all its Delaunay neighbors have the
same class number as p does; since the Delaunay neighbors of a given site can
be found in O(n?) time using standard methods with linear programming, thin-
ning can be done in O(n?) time, with polynomial dependence on the dimension
(except perhaps for linear programming). Suppose the number of sites with the
same class as p is np, and the number of sites of class ¢ is n;. Then since the ap-
propriate linear programming problem for site p requires only n,, constraints, the
time bound for thinning can be better expressed as »_, O(n)n, = O(n) 3_, n?;
when there are k equal-sized classes, this represents an improvement by a factor
of k in running time over O(n?).

10

These observations apparently are new.[13, 12]

Suppose that there are A, irredundant sites the same class as p, and A4;
irredundant sites of class i. This section will next give a thinning algorithm
needing O(n)), Ain;logn time. Except possibly for linear programming, the
algorithm has polynomial dependence on the dimension.

The algorithm applies a similar trick to thinning as this paper has used for
extreme points and minima: for each class, maintain a set F; of irredundant
sites of that class, and add sites to E; one by one. The algorithm begins with
each F; empty, and proceeds as follows: pick a site p, and check if the current
E; proves redundant. To do this check, take every site g with ¢, # ¢p, and
check if there is any point 2 in R¢ that is equidistant from p and ¢ and closer
to both than to any sites in E;. For given p and ¢, this can be done via linear
programming with |E;| constraints. If there is no such g, then p is redundant.
If there is such a ¢ and x, the sites in E; do not show that p is redundant. This
does not mean that p is irredundant, but it does mean that p and x can be used
to find an irredundant site of class 7 that is not in E;. To find such a site p',
consider the line segments pz and Zq. All points on those segments are closer
to p or ¢ than to any sites in E;. Moreover, in walking from p to ¢ along those
segments, the classifications of points on the segments will begin as ¢, and end
as ¢q. This means there is some point ¢’ on those segments that is equidistant
from some sites p’ and ¢', and closer to those sites than any others, and with
¢p = ¢p # ¢g. The site p' is therefore irredundant, and by construction cannot
be in E;, since the distance from z' to p’ must be less than the distance of z’
to any site in E;. Hence p' can be added to E;.

A key step here is to find 2'; this can be done by computing the intersection
of the Voronoi diagram of S with the segments pZ and Zq. These intersections
can be found in O(nlogn) time, however, since the squared distance of a point
z on a line £ to a point p can be expressed as the sum of squared distance of
p to £ and the squared distance of x to the projection of p to £. This implies
that the intersection of a Voronoi diagram with a line can be computed as an
additively weighted Voronoi diagram on that line.

6 Concluding remarks

A more careful analysis of the coordinate-wise dominance algorithm would be
of interest. The analysis here should be generalizable to higher dimensions by
someone less faint-hearted than the author.

The O(nlog A) algorithm of §4 should be simpler; heuristically there is no
reason to keep track of the hulls of two different sets. Perhaps a simpler but
still provably good algorithm can found, particularly for d < 3.

11

for (min=0,dis=num_points-1; min<=dis;) {
for (pp=0; pp<min && !prec(pp,dis); pp++);
if (pp<min) {
dis—-;
} else {
swap(dis,min);
for (inc=min+1; inc<=dis;) {
if (prec(min,dis)) dis--;
else if (prec(dis,min)) swap(dis--,min);
else swap(dis,inc++);
}
min++;
}
}

Figure 1: The minima algorithm, in C

Appendix

The triviality of the algorithm has the fortunate consequence that implementa-
tion is also trivial. The C code fragment of Figure 6 is part of an implementation
of the algorithm; the elements of the set are in an array, and pairs of elements
at two locations are compared with the prec function, and swapped by the
swap function. The minima are kept at the beginning of the array, and the
non-minimal, discarded elements are kept at the end. Note that in the usual
case, where an element is discarded, no swapping is done.

References

[1] D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex
enumeration of arrangements and polyhedra. Discrete Comput. Geom.,
8:295-313, 1992.

[2] J. L. Bentley, K. L. Clarkson, and D. B. Levine. Fast linear expected-time
algorithms for computing maxima and convex hulls. In Proc. 1st ACM-
SIAM Sympos. Discrete Algorithms, pages 179-187, 1990.

[3] B. Chazelle and J. Matousek. Derandomizing an output-sensitive convex
hull algorithm in three dimensions. Technical report, Dept. Comput. Sci.,
Princeton Univ., 1992.

[4] K. L. Clarkson and P. W. Shor. Applications of random sampling in com-
putational geometry, II. Discrete Comput. Geom., 4:387-421, 1989.

12

[5] W. F. Eddy. A new convex hull algorithm for planar sets. ACM Trans.
Math. Softw., 3:398-403 and 411-412, 1977.

[6] M. J. Golin. Probabilistic analysis of geometric algorithms. Ph.D. thesis,
Dept. Comput. Sci., Princeton Univ., Princeton, NY, 1990.

[7] J. Matousek and O. Schwarzkopf. Linear optimization queries. In Proc.
8th Annu. ACM Sympos. Comput. Geom., pages 16-25, 1992.

[8] J. Matousek. Reporting points in halfspaces. Computational Geometry:
Theory and Applications, pages 169-186, 1992.

[9] J. Matousek. Linear optimization queries. J. Algorithms, 14:432-448, 1993.

[10] F. P. Preparata and M. I. Shamos. Computational Geometry. Springer-
Verlag, Berlin, 1985.

[11] G. Rote. Degenerate convex hulls in high dimensions without extra storage.
In Proc. 8th Annu. ACM Sympos. Comput. Geom., pages 26-32, 1992.

[12] G. T. Toussaint, B. K. Bhattacharya, and R. S. Poulsen. The application
of Voronoi diagrams to nonparametric decision rules. In Computer Science
and Statistics: The Interface, pages 97-108, 1985.

[13] G. Wilfong. Nearest neighbor problems. In Proc. 7th Annu. ACM Sympos.
Comput. Geom., pages 224-233, 1991.

13

