
A General Randomized Incremental

Reconstruction Procedure

Kenneth L. Clarkson
Bell Laboratories, Lucent Technologies

Murray Hill, New Jersey 07974
clarkson@research.bell-labs.com

http://cm.bell-labs.com/who/clarkson/

July 30, 1997

Abstract

The technique of randomized incremental construction allows a variety
of geometric structures to be built quickly. This note shows that once such
a structure is built, it is possible to store the geometric input data for it
so that the structure can be built again by a randomized algorithm even
more quickly. Except for the randomization, this generalizes the technique
of Snoeyink and van Kreveld that applies to planar problems.

1 Introduction

Given a set S of n points in the plane, Snoeyink and van Kreveld have shown
that the points can be stored so that their Delaunay triangulation can be found
in O(n) time.[8] Snoeyink and van Kreveld have generalized this technique to
a variety of problems, but restricted to geometric structures that are planar
graphs. This note generalizes the technique even more, to the setting of ran-
domized incremental construction.

For concreteness, the ideas will first be described in the setting of Delaunay
triangulation, and then in general.

2 Delaunay triangulations

Given a set S of n sites (points) in the plane, their Delaunay triangulation
D(S) can be built by maintaining a Delaunay triangulation D(R) of a random
subset R ⊂ S, adding sites one by one to R and updating the triangulation.
The expected number of triangles generated site is added is O(1), and a simple
auxiliary data structure allows the addition of each site to be done in O(log r)
expected time, where r is the number of sites in R. (Such an algorithm was

1

proposed by Boisannat et al.[2] the first analysis of a similar, offline, algorithm
was given in Clarkson and Shor[4]. This readily shows that the expected overall
time of an online algorithm is O(n log n),[5] and subsequent analyses showed
that the expected cost of adding site r+1 is O(log r).[6, 1, 3, 7].) The dominant
cost of inserting a site p into R (and so into the triangulation) is the search
problem of finding the set of triangles of D(R) that conflict with p, in the sense
that p is inside the circumcircle of such a triangle. Such triangles will not be
in D(R ∪ {p}). By walking over the triangulation from a triangle that conflicts
with p, it is easy to find the remaining triangles that conflict with p, and so the
search problem reduces to that of finding a single triangle that conflicts with p.

Many methods for solving the search problem involve finding all triangles,
over the history of the triangulation, that conflict with p; the expected number
of such triangles is O(log r). A simple data structure allows the work for finding
these triangles to be constant per triangle.[1, 3]

Snoeyink and van Kreveld have shown that it is possible to order the points in
such a way that when the Delaunay triangulation is rebuilt, the search problem
is easy to solve, requiring constant time per point. Their approach involves
finding large sets of independent vertices of the triangulation, each with small
degree, following Kirkpatrick.

We give an alternative approach, as follows. Let Ri denote the random
subset R after i sites have been inserted, so that the sites can be numbered in a
permutation π as x1 . . . xn with Ri = {x1 . . . xi}. It will be convenient to define
Ri as equal to S, for i ≥ n.

Consider the sites as being inserted in “batches” of exponentially increasing
size: let M1 ≡ R1, and for j = 1 . . . dlg ne, let

Mj ≡ R2j \R2j−1 .

We will build a different permutation π′ of the sites x′1 . . . x′n such that the
corresponding sets R′

i ≡ {x′1 . . . x′i} have the property that R′
i = Ri when i is a

power of two; that is, the batch sets Mj are the same for either permutation.
By picking the permutation π′ properly, the sites within Mj will be ordered

in a way that allows the search problem for Mj to be solved quickly, with
respect to the Delaunay triangulation of R2j−1 : that is, for each p ∈ Mj , the
triangles in D(R2j−1) conflicting with p can be found quickly. The construction
of D(R2j) then proceeds incrementally. The sites of Mj are added in random
order, resulting in random subsets R′′

i for 2j−1 < i ≤ 2j . Note that R′′
i = R′

i =
Ri for i a power of 2. The searching problem is solved by finding all triangles
that conflict with p, for such triangles that appear in one of the triangulations
D(R′′

i), for 2j−1 < i ≤ 2j . Theorem 1 below implies that the expected number
of such triangles is O(1).

The “encoding” algorithm produces an ordering of Mj , as given in π′, by
constructing an ordered list L of the sites in Mj in the following way. List the
Delaunay triangles of D(R2j−1) in lexicographic order, where a triangle with
vertices x′a, x′b, x

′
c ∈ R′

2j−1 with a < b < c is given a sort key (a, b, c). (For
our purposes, supporting halfspaces of R2j−1 can be viewed as triangles with a
vertex at infinity; this “vertex” can be numbered as site n+1 for the sort keys.)

2

Walk through the list of triangles in order, and for each triangle, look at the
sites of Mj with which it conflicts. If such a site has not yet been put into L,
append it to the end of L.

The ordering of L gives the ordering of Mj for π′.
Using radix sort, the encoding can be found in time proportional to the

number of triangle/site conflicts.
The “decoding,” or reconstruction, algorithm sorts the triangles of D(R2j−1)

lexicographically, as in the encoding procedure, and walks simultaneously through
that sorted list of triangles and through Mj in order of π′. Suppose a triangle
T and a site p are currently under consideration. If they do not conflict, then
no site after p conflicts with T , and the next triangle on the triangle list can be
considered. If they do conflict, then the search problem has been solved for p,
and next site in the permutation π′ can be considered for T .

Plainly the work done for reconstruction, as described so far, is proportional
to the number of triangles plus the number of sites in Mj . It remains to show
that the rest of the searching requires O(1) expected time for each site in Mj ;
this will be shown in the general setting.

The rest of the reconstruction procedure, for sites in Mj , is randomized
incremental construction, as applied to a random ordering of the points of Mj .
Note that the result is a randomized incremental construction procedure using a
permutation π′′ that is random, but related to the random permutation π only
in that the sets R′′

i and Ri agree when i is a power of two.

3 The general case

The general setting for the reconstruction algorithm is the same as for “ran-
domized incremental construction,” for which the terminology and analysis of
Clarkson et al. will be used.[3] The setting of general randomized incremental
construction generalizes that of Delaunay triangulation, by generalizing from
point sites to other geometric objects, and from Delaunay triangles to geometric
regions determined by d or fewer objects, for some d. If a region is determined
by some set of objects, those objects will to support it. The conflict between a
Delaunay triangle and a site generalizes to some conflict relation between regions
and objects. For a given set of objects S, the randomized incremental paradigm
gives a way to construct F0(S), which is the set of all regions determined by
objects of S that do not conflict with any objects of S. The randomized incre-
mental paradigm builds F0(S) by maintaining F0(R) as a random subset R of
S is built up to S. The dominant cost is the searching problem, finding a region
of F0(R) with which a newly added object x conflicts.

This search problem can be solved in the randomized incremental paradigm
by examining the history of the construction, examining all regions of

Hr−1 ≡ ∪1≤i≤r−1F0(Ri)

that conflict with x.

3

The procedure described in the last section, for Delaunay triangulations, can
be generalized in a straightforward way to this setting. This implies a low cost
for finding a member of F0(R2j−1) with which a given object x ∈ Mj conflicts.
In most cases, the remaining cost of search is proportional to the number of
regions of

∪2j−1≤i≤2jF0(Ri)

with which a random x ∈ Mj conflicts. The following theorem holds.

Theorem 1 Let z ≡ 2j−1. Let σ = (x1 . . . xn) be a random permutation ,
giving random subsets Ti ≡ {x1 . . . xi}. For given j and r with z < r ≤ 2j, the
expected number of regions in

∪z<i<rF0(Ti)

with which object xr conflicts is no more than

d

z + 1
fz+1 +

∑
z<i≤r

d(d− 1)
i(i− 1)

fi,

where fi is the expected number of regions of F0(Ti).

Proof. The proof can be readily adapted from the proof of Theorem 4 of [3]:
in that proof, the history

H ≡ H(x1, . . . , xr−1) ≡ ∪1≤i<rF0(Ti)

is compared with the history

H ′ ≡ H(xr, x1, . . . , xr−1) ≡ ∪1≤i<rF0({xr} ∪ Ti),

the “alternate history” of the construction, where xr is added first. Here we can
change the comparison to that between H and

Ĥ ≡ H(x1, . . . , xz, xr, xz+1, . . . , xr−1),

the alternate history where xr is added at the beginning of Mj . We have

|H|+ |Ĥ \H| = |Ĥ|+ |H \ Ĥ|,

where H \ Ĥ is the set of regions we want to count, those in H that conflict
with xr and appear in some F0(Ti) for i > z. The set Ĥ \H comprises regions
supported by xr, and appear after those in F0(Tz). Hence the expected size
E|H \ Ĥ| is bounded by

E|H| − E|Ĥ|+ E|Ĥ \H|. (1)

The rest of the proof follows analogously to the proof of Theorem 4 of [3].
For completeness, we briefly complete the proof here. A region of Ĥ \H may be

4

in F0(T ′
z) and supported by xr, where T ′

i ≡ Ti ∪ {xr}. The expected number of
such regions is dfz+1/(z + 1), since the probability that xr, a random member
of T ′

z, supports a given region of F0(T ′
z) is d/(z + 1).

A remaining region of Ĥ \H first appears at some i, for z < i < r; that is,
such a region is in F0(T ′

i) but not in F0(T ′
i−1) or F0(Ti). Hence it is supported

by xr and by xi. Since xr and xi are random elements of T ′
i , the probability

that they support a given member of F0(T ′
i) is at most d(d− 1)/(i + 1)i: for a

given member of F0(R′
i), there are at most

(
d
2

)
pairs from R′

i that support it,
and

(
i+1
2

)
pairs altogether. Hence the expected size

E|Ĥ \H| ≤ d

z + 1
fz+1 +

∑
z<i<r

d(d− 1)
i(i + 1)

E|F0(T ′
i)|

=
d

z + 1
fz+1 +

∑
z<i<r

d(d− 1)
i(i + 1)

fi+1. (2)

To bound E|H \ Ĥ| using (1), it remains to bound the expected size E|H|.
This is

∑
m<r dfm/m, as in Theorem 3[3]: count each region of H by its first

appearance, at which, for some m, the region is in F0(Tm) but not in F0(Tm−1);
this implies that xm supports the region. The probability that a random member
of Tm supports the region is d/m, and therefore the expected number of new
regions when xm is added is dfm/m. A similar bound holds for E|Ĥ|, and so
E|H| − E|Ĥ| is −dfr/r.

Putting this bound with (1) and (2), theorem follows.
In the case of Delaunay triangulation, d = 3 and fi = O(i), so the above

implies that the search cost in reconstruction is expected O(1) per site.

References

[1] J.-D. Boissonnat, O. Devillers, R. Schott, M. Teillaud, and M. Yvinec. Appli-
cations of random sampling to on-line algorithms in computational geometry.
Discrete Comput. Geom., 8:51–71, 1992.

[2] J.-D. Boissonnat and M. Teillaud. A hierarchical representation of objects:
The Delaunay tree. In Proc. 2nd Annu. ACM Sympos. Comput. Geom.,
pages 260–268, 1986.

[3] K. L. Clarkson, K. Mehlhorn, and R. Seidel. Four results on randomized in-
cremental constructions. Comput. Geom. Theory Appl., 3(4):185–212, 1993.
http://cm.bell-labs.com/who/clarkson/4res.html.

[4] K. L. Clarkson and P. W. Shor. Applications of random sampling in
computational geometry, II. Discrete Comput. Geom., 4:387–421, 1989.
http://cm.bell-labs.com/who/clarkson/rs2m.html.

[5] L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental con-
struction of Delaunay and Voronoi diagrams. Algorithmica, 7:381–413, 1992.

5

[6] K. Mulmuley. Randomized multidimensional search trees: Further results
in dynamic sampling. In Proc. 32nd Annu. IEEE Sympos. Found. Comput.
Sci., pages 216–227, 1991.

[7] K. Mulmuley. Computational Geometry: An Introduction Through Random-
ized Algorithms. Prentice Hall, Englewood Cliffs, NJ, 1994.

[8] J. Snoeyink and M. van Kreveld. Good orders for incremental
(re)construction. In Proc. 13th Annu. ACM Sympos. Comput. Geom., pages
400–405, 1997.

6

