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Abstract

An algorithm for closest-point queries is given. The problem is this:
given a set S of n points in d-dimensional space, build a data structure
so that given an arbitrary query point p, a closest point in S to p can
be found quickly. The measure of distance is the Euclidean norm. This
is sometimes called the post-office problem. The new data structure will
be termed an RPO tree, from Randomized Post Office. The expected
time required to build an RPO tree is O(n!¥/210+9)) for any fixed ¢ >
0, and a query can be answered in O(logn) worst-case time. An RPO
tree requires O(n/%/213%9) space in the worst case. The constant factors
in these bounds depend on d and e. The bounds are average-case due
to the randomization employed by the algorithm, and hold for any set
of input points. This result approaches the Q(nrd/ 21) worst-case time
required for any algorithm that constructs the Voronoi diagram of the
input points, and is a considerable improvement over previous bounds for
d > 3. The main step of the construction algorithm is the determination of
the Voronoi diagram of a random sample of the sites, and the triangulation
of that diagram.

1 Introduction

The post-office problem is a fundamental problem of computational geometry,
having many applications in statistics, operations research, interactive graphics,
coding theory, and other areas.

Several algorithms that are asymptotically fast in the worst-case sense are
known for this problem in the planar (d = 2) case. They involve the construction
of the Voronoi diagram of the sites [12], [26], and the use of fast methods for
searching planar subdivisions resulting from that diagram [19], [17], [11]. By
these methods, a data structure requiring O(n) space can be constructed in
O(nlogn) time, so that a query can be answered in O(logn) time.
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The higher-dimensional cases are much less examined and understood. Dobkin
and Lipton have described a data structure requiring O(n2d+1) time and space
to construct, giving a query time of O(logn) [10]. Chazelle has given an algo-
rithm for the case d = 3 that requires O(n?) preprocessing for O(log® n) query
time [4].

Although the time and space bounds for RPO trees are rather large for large
d, they are a considerable improvement over previous general bounds. The key
step in the construction of the data structure is the determination of Voronoi
diagrams of small subsets of the sites. (For convenience, points in S will be
called sites.) The bounds depend on the complexity of these Voronoi diagrams.
If the diagrams have O(n) vertices, the construction requires an expected time
bounded by O(n®), where C is a constant independent of d. Indeed, when a
set of sites is uniformly distributed in a hypercube [1], or spatially Poisson-
distributed [13], their Voronoi diagram has linear complexity on the average.
These facts suggest that RPO trees may do considerably better in practice than
the worst-case bounds would show. On the other hand, in the worst case Voronoi
diagrams may require Q(n!%/21) storage [18], [24], so in a sense any algorithm
using Voronoi diagrams could not perform too much better than RPO trees.

1.1 Overview

The initial observation for the data structure is just this: if we want to find a
closest site in S to a point p, then knowing a closest site to p in some R C S
can help restrict the search in S. The terms candidate sets and candidate sites
help to formalize this notion.

DEFINITION. For a given subset R C S, and any point z, let r, denote
the distance of x to a closest site in R. Then the candidate region C(z) for
z, relative to R, is the ball of points whose distance to z is less than r;. The
corresponding closed ball will be denoted C(z). The candidate set for x is
SNC(z). The candidate region for a set of points A is C(A) = UzeaC(x), with
the candidate set SN C(A).

Thus, for a query point p and region A with p € A, the set SNC(A) contains
all the closest sites to p. If ¢ is a closest site in R to p, then the candidate set
SNC(A) contains all sites closer to p than ¢q. The key idea is to find some R C S,
and some collection of regions, such that for every region A in the collection,
the candidate set of A relative to R contains few sites.

Such a collection of regions can be found using random sampling, as follows:
take a random sample R of the sites, determine the Voronoi diagram V(R)
of that sample, and then compute A(V(R)), a triangulation of the Voronoi
diagram. (Voronoi diagrams are defined in §2; triangulations are discussed in
§3.) The result is a collection of simple regions with the following properties:

e The union of the regions covers R?, that is, R = Ugea(v(r)) 4;

e The number of regions is O(r[%/21), for r — oo, where r is the size of R;



e With high probability, the candidate sets S N C(A) are “small” for all
regions A € A(V(R)), specifically, |S N C(A)] = nO(logr/r) as r — oo;

e The regions in A(V(R)) are simple, so that for point p and A € A(V(R)),
we can tell in O(1) time if p € A, for fixed dimension d;

e For each A € A(V(R)), there is a site ¢ € R such that all points in A are
as close to ¢ as to any other site in R.

These properties suggest a two-step process for answering closest-point queries:
given query point p, determine a region A € A(V(R)) that contains it, then
determine the closest site to p in RU (S N C(A)) by linear search. For a suit-
able sample size, with high probability this procedure is faster than directly
searching S. By repeatedly taking random samples until a sample is found for
which the corresponding candidate sets are all small, a data structure with an
improved worst-case query time can be constructed. Since a random sample
will satisfy this condition with high probability, on average only O(1) sampling
repetitions need be done.

Rather than search the candidate sets in linear time, this construction can
be applied recursively, using a sample size r that is independent of the number
of sites. The resulting search structure is an RPO tree, in which the number of
children of a node is independent of the number of sites, as is the size of the set
of sites associated with each leaf node.

Each node t of an RPO tree corresponds to a collection of sites S’ that
contains the closest site to a set of potential query points. If ¢ is an internal
node, a suitable sample R’ C S’ is found, and for each A € A(V(R')), there is
a child ¢’ of ¢ for which a record ¢'.region is A. The children of ¢ form a list
t.children. A closest-point query can be answered by tracing down from the
root, moving from a current node ¢ to a child ¢’ € t.children, whose associated
t'.region contains the query point. If ¢ is a leaf node, the sites t.sites associated
with ¢ are given a linear search to answer the query.

The procedures Make_RPO_Tree and Answer-Query are shown in Fig. 1. The
procedure New_RPO_Tree returns a new RPO tree, whose regions and subtrees
are subsequently defined. From Theorem 16, the sample size r should be at least
about (d + 1)3. The constant K should be no smaller than r. The constant
arq = O(logr/r) is defined in Theorem 16.

Before making a more detailed description of the algorithm, it may be helpful
to consider informally the simplest interesting example of a set SN C(A), which
occurs when A is a triangular region in the plane, a region in the triangulation
of the Voronoi diagram of a sample R. In Fig. 2, the set R = {q,p1,.-.,P5},
and A has vertices a, b, and ¢, part of a triangulation of the Voronoi region V,.
As will be shown in §4, the region C(A) has a particularly simple description:
it is simply C'(a) U C(b) U C(c). Since a, b, and c are vertices of V,, the circles
bounding C(a), C(b), and C(c) are Delaunay circles of the Voronoi diagram Vg.
To restate this fact, suppose p € A. Then since g € S, the closest site to p is



function Make RPO_Tree(S : Set_of_Sites) return ¢ : RPO_Tree;

t<New_RPO_Tree;
if | S| < K then t.leaf<+true; t.sites+S;
else
t.leaf «false;
repeat choose random sample R C S until VA € A(V(R)), |S N C(A4)| < a,4|S|;
t.children<0;
for A € A(V(R)) do
t'«Make RPO_Tree(S N C(A));
t'.region«A; t'.site< site g such that A C V;; t.children«¢.children U {t'};
od;
fi;
end function Make_ RPO_Tree;

function Answer_Query(t : RPO_Tree; p : query_point) return closest : site;
current_closest+ any site in R;
while not t.leaf do
choose any t' € t.children with p € t'.region;
if t'.site closer to p than current_closest then current_closest<t'.site;
t+t';
od;

closest+< site closest to p among those in t.sites U {current_closest};
end function Answer_Query;

Figure 1: Procedures Make RPO_Tree and Answer_Query.

contained in the disk defined by the circle centered at p that passes through gq.
This disk is contained in the union of the Delaunay disks at a, b, and c.

For the RPO construction to work, with high probability all these Delaunay
disks should contain few sites. Why should this be? The reason is based on the
fundamental fact that these Delaunay disks contain no sample sites. Intuitively,
this provides some evidence that these disks contain few sites: if some arbitrary
disk contains a large fraction of the sites, then with high probability, some
sample site will be chosen from that disk, and it cannot be a Delaunay disk.
This argument is made precise in §4.3.
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Figure 2: A triangle A € A(V,) and C(A).



1.2 Outline of the paper

To complete the description of the algorithms, it is necessary to specify the
triangulation procedure A, and to characterize formally the candidate regions
C(A) for A € A(V(R)). To analyze the algorithms, we must bound the number
of children that a node can have, that is, the number of regions in A(V(R)),
and also bound the size of the resulting subproblems, that is, the size of each
C(A) N S. Before addressing these questions, some notation and basic lemmas
will be given in §2. Many readers should be able to skim most of this section, or
refer to it as needed. In §3, the triangulation procedure is given, and a bound on
the size of its output is developed. In §4, it is shown that the candidate regions
to be used have simple descriptions, generalizing the above example. It is also
shown that with high probability, all the corresponding candidate sets have
few sites. Also given in this section are the modifications to the algorithms for
handling a variant of the post-office problem, in which all closest sites to a query
point are desired. In §5, the complexity analysis of the algorithms is completed.
Some concluding remarks are made in §6, with discussion of subsequent and
related work.

The basic idea for the RPO data structure is simple, and the critical algorith-
mic step is the fundamental operation of computing the Voronoi diagram, fol-
lowed by triangulation. Nonetheless, several factors complicate the discussion.
The algorithms generalize for an arbitrary dimension, so that the descriptions
and proofs of correctness are abstract. An operation of triangulation must be
applied to the unbounded polyhedral sets of a Voronoi diagram, as must the de-
termination of candidate regions. This is best done using the notion of “points
at infinity,” considering an unbounded polyhedral set as the convex hull of a set
of points, some of which are at infinity. This idea is made precise using two-sided
space, described in the next section. The sample R may be degenerate, that is,
not have full affine dimension. This possibility must be accounted for. These
factors imply that the description must be more abstract and complicated than
it otherwise would be.



2 Notation, terminology, and background

The notation in this paper will follow [14] in general, and use basic results from
that text. The concepts of oriented projective geometry [27] will also play a large
role. The following notation is gathered here for reference:

R? denotes d-dimensional Euclidean space;

A+ B is the pointwise sum {z +y | z € A,y € B}, for A, B C R%;
z+ A and A + z denote {z} + A, for z € RY;

aA denotes the product {az | z € A}, for a real number a and A C R%;

S,y denotes the sphere that has center z and that contains y. B, and B,
denote the corresponding open and closed balls;

A flat F C R? is an affinely closed set, that is, if z,y € F, then the straight
line through z and y is contained in F'

aff A denotes the affine closure of a point set A C R¢, that is, the intersection
of all flats containing A;

dim A denotes the affine dimension of A, that is, the dimension of the linear
subspace (aff A) — p, for p € A. A k-flat F has k = dim F;

conv A denotes the convex closure of A, that is, the intersection of all convex
sets containing A;

relint A is the interior of A relative to its affine closure;

relbd A is the boundary of A relative to its affine closure.

Rays and cones. For z,y € R¢, let ray, y denote
{z+aly—z)]|a>0}.

A cone C with apex a is a subset of ®? such that ray,y C C if and only if
y € C, for y € R4,

Polyhedral sets and polytopes. A polyhedral set is the intersection of a
finite number of closed halfspaces, and a polytope is a bounded polyhedral set.
A polyhedral cone is a cone that is a polyhedral set. A d-polytope (d-polyhedral
set) P satisfies d = dim P.

A supporting hyperplane h of a polyhedral set P satisfies hN P # () and
ht NP =0, where ht is an open halfspace defined by h. A face of a polyhedral
set P is the intersection of P with a supporting halfspace. Vertices, edges, and
facets are faces of affine dimension 0, 1, and d—1, respectively, for a d-polyhedral
set. In general, a face of P with dimension k is a k-face, and the set of such
faces is fr(P). The set fo(P) of vertices (or extreme points) of a polyhedral set
P will be denoted by vert P.



Two polyhedral sets A and B are said to be combinatorially equivalent if
there is a bijective mapping A from the faces of A to those of B such that
F Cc G if and only if A(F) C A(G), for all F and G faces of A.

The set of extreme rays of a polyhedral set P is the set of rays e emanating
from the origin such that there is some point ¢ for which g+ e is an edge (1-face)
of P. The convex hull of the extreme rays of P is the characteristic cone cc P.
From [14, 2.5.2], if z,y € P and e is a ray from the origin, then  + e C P if
and only if y + e C P. (Looking ahead, this is equivalent to the condition that e
corresponds to a “point at infinity” in P, and that P is convex even when such
points are included.) This fact and the convexity of P imply that x +cc P C P
for any z € P. It can be shown that cc P is the maximal such cone.

A set is said to be line-free if it contains no straight lines (no 1-flats). A line-
free cone is pointed [14, p. 24], that is, it has only one apex, which is a vertex.
Many basic facts about polytopes generalize nicely to line-free polyhedral sets,
using the notion of “ideal points” defined below.

Complexes. A complez is a collection of polyhedral sets such that every face
of a polyhedral set in the complex is also in the complex, and the intersection of
two polyhedral sets in the complex is a face of each of them. (In the complexes
considered here the empty set ) is a face.) A polyhedral set of dimension % in a
complex is a k-face of that complex, and the terminology of vertices, edges, and
facets carries over for complexes. The facial lattice of a complex is the set of
faces of the complex, together with the inclusion relations between those faces.

One example of a complex is the boundary complex B(P) of a polyhedral set
P, the set of facets of P and their faces. Another example of a complex is the
Voronoi diagram of a set of sites, described below.

Two-sided space, homogeneous coordinates, and ideal points. It
will be helpful conceptually and computationally to use the notion of “points at
infinity,” also known as ideal points, as opposed to the usual real points in R¢.
These classes of points together make up what will be denoted T'¢, or two-sided
space. (The name will be explained below.)

To represent points in T¢, homogeneous coordinates will be used: a real
point z € R? is represented by z; = [z,;2,] if 2 = 2,/x,, where 2, € R? and
Zs € R, zs > 0. (The terminology is borrowed from projective geometry [23],
although in this case, the coordinates cannot really be said to be homogeneous.)
An ideal point z € T? is represented by the homogeneous coordinates [z,;0],
where z, € R and z, # 0. The point = can be considered the “endpoint”
of raygz,. If z is an ideal point and y is real, we will say that conv{z,y} is
ray, (v, +y). Indeed, if z € conv{z,y}, for any points z and y, then for any
representations zp, Th, yn, We have z, = azTh + ayys, for some a,, @y > 0, and
conversely. This provides a general definition of convex combination for points
in T4,

Note that homogeneous coordinate representations are not unique: if zp
is a homogeneous representation of z, then so is Szp, for any 8 > 0. (This



convention is different from that of projective geometry, where 8 need only be
nonzero. This follows [21] and [15], and is needed to distinguish ideal points in
“opposite directions.”) The two-sided nature of T¢ derives from its containment
of two copies of R¢, since [z,;1] and [z,; —1] represent distinct points in T for
every z, € R?¢. There is a correspondence between points in T¢ and the d-sphere

St = {z € B | ||z|| = 1}.

A point with homogeneous coordinates zj corresponds to zp/||zn||, where zp,
is interpreted as a point in E4tl. The ideal points of T correspond to those
points of S¢ on the hyperplane 2, = x4,1 = 0. The two halves of S¢ separated
by the set of ideal points correspond to the two sides of 7.

In general, the only points in 7'? considered will be those satisfying z; > 0.
This set of points is termed the “front range” of T'?, and will be denoted by
F?. A closed convex set P C E¢ will be extended by including [b — a;0] in P
whenever ray, b C P. This implies that the set of points on S¢ corresponding
to P is also closed. A straight line will thus have two ideal “endpoints,” and so
on for all flats. (Note that this gives a meaning to “flat” that is different from
Stolfi’s [27].) This convention will extend the definition of the sum A + B for
unbounded A and B. The notation for a sphere S; , can be extended to allow
the center z to be an ideal point. In this case, S, , is a hyperplane normal
to x, and passing through y. The closed ball Pl.,y is the corresponding closed
halfspace. An analytic relation describing such spheres is given below in the
discussion of Voronoi diagrams.

The set re A will denote the real points of A, and id A will denote the ideal
points of A. Note that re A = re B implies that id A = id B, for A and B closed
and convex.

With this extension to the front range F'?, a line-free unbounded polyhedral
set P C R has an implicit additional defining halfspace. That is, id P is an
additional facet of P, the ideal facet. This facet corresponds to cc P in a natural
way, and the correspondence extends to the faces of id P, so that the vertices
of id P correspond to the extreme rays of cc P. Thus vert P is extended to
include ideal points. The following simple lemma helps in generalizing facts
about polytopes to facts about polyhedral sets.

Lemma 1 Let C be a polyhedral pointed cone with apex a. Let h be a supporting
hyperplane of C with hNC = {a}. Let v be a normal vector to h contained in
the same halfspace containing C. Then P = C N (h + v) is a polytope.

Proof. See Appendix A. O

It is easy to show that C' = Uycaray,y, and that z € P if and only if
z' = [z —a;0] € id C. This bijective map satisfies (az + By)’ = az' + By’, for
a + B = 1. This implies that id C' and P are combinatorially equivalent. Thus
Lemma 1 brings id C' into the “real” world of R?.

The following lemma is a generalization of [14, 2.4.5] from polytopes to line-
free polyhedral sets.



Lemma 2 If P C E? is a line-free d-polyhedral set then P = conv vert P.

Proof. See Appendix A. O

Simplices and triangulations. A simplez is a simple kind of polyhedral
set: a d-simplex is a polyhedral set with d 4+ 1 vertices and affine dimension d.
Note that vertices will be allowed to be ideal. For example, a triangle with two
ideal vertices is a cone, and a triangle with one ideal vertex is bounded by a line
segment and by two parallel rays from the endpoints of that line segment.

A simplicial complex is a complex composed of simplices. A triangulation T
of a complex C is a simplicial complex that is a subdivision of C. Every vertex
of T is a vertex of C, every facet of 7 is a simplex, and the union of the facets
of T is the union of the facets of C.

In §3, a particular kind of triangulation of C, denoted A(C), will be described.
Construction of this complex is an essential procedure in the algorithm given in
this paper. The complexity of A(C) and of its construction procedure are also
considered in §3.

The triangulation A may involve “simplices” of even greater generality than
those shown above. For example, suppose dim S = 2 but dim R = 1, specifically,
R is a set of sites on the & axis. Then each Voronoi region V, of R will be a strip
bounded by two parallel lines. This can be viewed as an interval A, that is, a
1-simplex, added to the y-axis. That is, V, = A + [, where [ is the y-axis line.
In general, when d > dim R, the regions of A(V(R)) will have the form A + f,
where A is a simplex and f is a flat orthogonal to aff A. This generalization is
formalized by Lemma 6.

Duality. For a complex C, a dual D of C is another complex for which
there is an inclusion-reversing correspondence between faces of C and those of
D. That is, there is a bijective mapping ¥ from the set of faces of C to those
of D such that for faces F' and G of C, the inclusion F' C G holds if and only if
U(F) D ¥(G). The facial lattice of C can be determined from the facial lattice
of D, and vice versa.

One particular dual relation between polyhedral sets is quite useful. For a
set A C E¢, the polar set A* is

{y | yn-2n >0 for all z € A}.

When P is a line-free d-polyhedral set in E? with the origin in its interior, the
polar set P* of P is a polytope, even when P is unbounded. Moreover, P* is
dual to P. The ideal facet of P, if any, corresponds to the origin, which will be
a vertex of P*, for unbounded P.

Voronoi diagrams. The Voronoi diagram V(R) of a set of sites (points)
R in R is the partition of R? into blocks, such that all points in a block have
exactly the same closest sites. The Voronoi region V, associated with a site
g € R is the polyhedral set containing all points at least as close to g as they are
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to any other site. If v € revert V, for some site g, then the sphere (ball) centered
at v with radius ||v — ¢|| is termed a Delaunay sphere (ball) of the sites R. (A
ball in the plane is also called a disk.) At least d + 1 sites are on a Delaunay
sphere, and none are inside it.

It is well known that V; is unbounded if and only if ¢ is on the convex hull
of R. Furthermore, each unbounded edge of V, is normal to a facet of conv R
that contains q.

Brown [3] has shown that the computation of a Voronoi diagram in £?¢ can
be reduced to the problem of computing a convex hull in E4t1. The reduction
is done by means of a mapping from E? to E?t!. One mapping that achieves
this reduction is the function Y : E¢ — E%*! which sends y € E? to the point
(Y1,---,Ya,—y -y/2) € E¥L. For z,q € E¢, we have y € S, , if and only if

(z1,-.-,24,1)- T(y) = (z1,---,24,1) - Y(q)-

This implies aff Y (S, ,) is a hyperplane. Furthermore, if B, , is a Delaunay ball,
then Y(R)NY(B,,,) is empty, so that aff Y(S,,,) contains a facet of conv Y (R).
It follows that conv Y(R) gives a dual complex to V(R).

Note also that the analytic condition for y € S, 4 can be extended coherently
to ideal = by zp, - (Y(y) — Y(g)) = 0, where z}, is interpreted as a point in E4+1.
For ideal y and z, the appropriate condition is y, - z, = 0.

3 Triangulating polytopes and Voronoi regions

3.1 A triangulation procedure and its correctness The procedure
A to be used for triangulating a complex C is straightforward: the procedure
produces a set of simplices triangulating each face of C, considering these faces
in increasing order of their affine dimension. Note that if 1 > dim P, then the
face P is a simplex. If 1 < dim P, then arbitrarily pick v € vert P, and let A(P)
be the collection

{conv({v}US)|S € A(F), F afacet of P,v ¢ F}.

For example, if P is a polygon, then for every edge e of P not containing vertex v,
the triangle defined by e and v is in A(P). Note that once A(P) is computed,
it is “fixed,” so that the same triangulation of P is used whenever a face is
triangulated for which P is a facet.

To apply A to a polyhedral set, that set must have a vertex. However, not all
polyhedral sets have vertices. (An example of such a polyhedral set is given in
the discussion of triangulations in §2.) We will first show that A can be applied
to line-free polyhedral sets, and then discuss the extension of A to arbitrary
polyhedral sets.

Lemma 3 A line-free polyhedral set P has a verter.
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Proof. If P is a real polyhedral set, the result is a special case of [14, 2.4.6].
If P is an ideal polyhedral set (say some ideal facet of an unbounded polyhedral
set), then the result follows from Lemma 1 and [14, 2.4.6]. O

This lemma implies that some choice v € vert F' can be made in A. To show
that P is the union of the simplices in A(P), the following lemma is useful.

Lemma 4 For a line-free polyhedral region P, if v € vert P and a € P, then
the point b =ray, a Nrelbd P is on a facet of P that does not contain v.

Proof. See Appendix A. 0O

Theorem 5 Given a complex C containing only line-free polyhedral sets, A(C)
is a triangulation of that complex. (Note that the simplices in A(C) may have
ideal vertices. )

Proof. Induction on dimension will be applied to each polyhedral set P in
C to show that A(P) returns a set of simplices covering P. Let a € P. Then
ray, a intersects relbd P at v and at some point b. (If P is ideal, map the points
involved to the polytope of Lemma 1.) By the previous lemma, b is on some
facet F' not containing v. Since by inductive assumption, b is in a simplex A of
a triangulation of F, it follows that a € conv({v} U A), and the set of regions
returned by A covers P.

The other properties of a triangulation follow by similar straightforward
induction. 0O

To extend the triangulation procedure A to polyhedral sets that do not have
vertices, the following lemma is useful.

Lemma 6 Let P C T? be a closed polyhedral set. Then there is a subspace L of
mazimum affine dimension for which x+L C P for any x € P. Furthermore, if
L* is any flat that is orthogonally complementary to L, then P = (PNL*)+ L,
where PN L* is a line-free polyhedral set.

Proof. (Recall that L* and L orthogonal means that L and the subspace
L* — z are orthogonal, where x € L*. That is, every vector in L* — z is
perpendicular to every vector in L. Since L* and L are extended to include
ideal points, the sum L + L* is the front range of T%.)

For re P, the lemma is a restatement of [14, 2.5.4]. The extension to id P
follows from this, since re P = re(P N L*) + re L implies equality for the ideal
parts as well. O

In the particular case where P is a Voronoi region, the flat L* can be taken
to be aff R, so that L is (aff R)*, the subspace orthogonal to aff R. Observe that
if I is a straight line contained in a Voronoi region Vg, then [ = (conv{a,c}) U
(conv{a, —c}), where a € rel and ¢ € idl. For any other site ¢ € R, ¢ € V,
implies that ¢’ ¢ B4, so that ¢, - (Y(¢') — T(g)) > 0. But —c € V; as well,
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so ¢ - (Y(¢") — Y(g)) < 0. Therefore for any ¢' € R, we have ¢’ € S; 4, and so
aff R C S.,. That is, aff R is perpendicular to ¢, and I C (aff R)*.

To use this lemma to extend A for Voronoi regions containing lines, simply
define A(V}) to be the set of regions {4 + (aff R)L | A € A(V, Naff R)}.

3.2 Complexity of the complex A(V(R))

In the worst case, the Voronoi diagram V(R) has ©(r[%/21) faces. This follows
from the correspondence discussed in §2 between V(R) and conv Y(R) C E%t!,
and from the Upper Bound Theorem [20] applied to (d + 1)-polytopes. As
is shown below, the number of simplices in A(V(R)) has the same O(r[%/21)
bound. First a bound will be proven for A(P), in the case where P is a simple
polytope, defined below. Next it will be shown that for every polytope P, there
is a simple polytope P with the same number of facets, such that A(P) has at
least as many simplices as A(P).

Lemma 7 For a simple d-polytope P with n facets, the triangulation A(P) has
O(nl?/21) simplices, as n — co.

Proof. A simple polytope satisfies the condition that every vertex of the
polytope is contained in exactly d facets of that polytope. Suppose P is a
simple polytope. Then the dual P* has the property that every facet of P*
contains exactly d vertices. (The dual and some of its properties are described
in §2.) That is, the facets of P* are all simplices, which is the definition of a
simplicial polytope. The faces of a simplex are all simplices [14, §4.1]. That is,
each k-face of P* is a k-simplex and has k + 1 facets. This means that dually,
every (d —1— k)-face of P is a facet of k + 1 faces of P. Put another way, every
k-face of P is a facet of d — k faces of P.

What does this fact imply for A(P)? For a polytope F, let |A(F)| denote
the number of simplices in A(F). Then the definition of A(F) and the above
fact imply that

YIAE) =D IAF) < (d-k+1)Y |AF)].

Fefi(P) Fefi(P) F'e€fr_1(P)
F'efr_1(F)

The second relation holds because |A(F")| appears d — k + 1 times in the second
sum. Putting these relations together,

P)| =Y |A(F)| <d > |A(F)| = d!| vert P).

Fefq(P) Fefo(P)

By the results of [20], | vert P| = O(nl%/2]) when P is a d-polytope with n facets,
so the lemma follows. O

Before proving the corresponding lemma for nonsimple polytopes, a defini-
tion is needed.
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DEFINITION. Let P C 8?:1 be a d-polytope and let h be a hyperplane with
F = hnN P afacet of P. Let h be a hyperplane with nonempty intersection with
P, and with all vertices of vert P\ vert F' in the open halfspace h*. If F is in the
open halfspace iz_, then the polytope P = PN At will be said to be obtained
from P by pushing the facet F.

This operation of pushing a facet of a polytope is the dual of the operation
of pulling a vertex [14, §5.2]. The (polar) dual polytope of a pushed polytope
P can be obtained by pulling a vertex of P*. In [14, §5.2] it is shown that
the operation of pulling vertices, when applied successively to every vertex of
a polytope, results in a simplicial polytope. Dually, the operation of pushing
facets yields a simple polytope.

The following lemma is a restatement of [14, 5.2.2], together with some
relevant discussion in that section.

Lemma 8 Suppose PcRlisa d-polytope obtained from the d-polytope P by
pulling v € vert P. Then the faces of P are exactly the following:

o faces of P that do not contain v;
o faces of the form conv{v,G}, where

— G is a face of P not containing v, and

— @ is contained in a facet of P that contains v;

Furthermore, for every face F of P containing v, there is a facet F' of F that
yields a face conv{v, F'} of the second type.

Proof. All claims except the last statement are from [14, 5.2.2]. The last
statement follows by considering conv(vert F' \ {v}), which does not contain v,
and is either a facet of F' or contains a facet of F'. O

Using the inclusion-reversing correspondence between faces of a polytope
and faces of its dual, the following lemma shows what pushing a facet will do:

Lemma 9 Suppose PcRiisa d-polytope obtained from the d-polytope P by
pushing a facet F = hNP of P. Then the faces of P correspond to the following:

e faces of P that do not meet F';
o faces of the form hn G, where

— G is a face not contained in F, and

— G contains a vertex of F.

Furthermore, for every face H of F, there is a face G of P such that H is a
facet of G, and G yields a face hNG of the second type.

Proof. The lemma follows directly from the previous one, and duality. O
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Lemma 10 For a line-free polyhedral set P of dimension d and with n facets,
the triangulation A(P) has O(nl%/2]) simplices, as n — cc.

Proof. If P is a line-free polyhedral set with the origin in its interior, the
dual P* is a polytope, and the operation of pushing the ideal facet of P can be
defined using the dual operation of pulling the origin, which will be the vertex
of P* corresponding to id P. The analogue of Lemma 9 holds for the case of
pushing id P, using duality. A

From Lemma 7 and the above discussion, it suffices to show that if P is
the result of pushing facet ' = h N P of P, then |A(P)| > |A(P)|. Lemma 9
implies that for every face of P, there is a face of 13; that is, there is an injective
mapping m : B(P) — B(P). The lemma follows using induction on dimension.
a

Lemma 11 The complez A(V(R)) has O(r[%/21) regions, and O(r!%/?1logr)
time suffices for its construction. The constant factors are e9(41089)

Proof. Without loss of generality, we need consider only a bound on the size
of A(V(R)) when d = dim R.

Let Zg denote the polytope conv Y(R), dual to V(R) from the discussion
of §2. It is easy to see that Zg has the same facial lattice structure as V(R)
(is combinatorially equivalent). It follows that A(Zg) has the same number of
simplices as A(V(R)). Lemma 10 then gives the desired bound.

The time required to construct A(V(R)) is dominated by the time necessary
for determining V(R): the projection Pg can be computed in O(r) time, and
V(R) can be triangulated in time linear in the number of its faces.

Several algorithms are known for computing V(R) in O(rlogr) time when
2 = dim R [12], [22]. As noted in §2, the computation of V(R) can be reduced
to the computation of the convex hull of Y(R). This can be done in O(r? +
rl4/211ogr) time [25]. For d > 2, this is O(r[*/?1logr). O

4 Candidate regions and sets for Voronoi dia-
gram triangulations

4.1 Candidate regions have a simple description The following the-
orem characterizes the candidate regions of line-free simplices in A(V(R)). The
general case is considered in Theorem 13 below.

Theorem 12 Let line-free A € A(V(R)), with A C V, for a site g. Then the
candidate region C(A) is

C(4) = U Bag-

aEvert A

15



(As noted above, the points in vert A are vertices of Voronoi regions, and the
balls are either Delaunay balls or halfspaces corresponding to convex hull facets.
The ideal vertices of A are ideal vertices of V,, which correspond to unbounded
edges of V, that are normal to a convex hull facet containing q.)

Proof. It suffices to show that C'(A) C Ugevert 4Ba,q, as the reverse inclusion
follows by definition. That is, we must show that if x € A, then

Cx)=BryC |J Bag

a€vert A

Suppose y ¢ B, for all a € vert A. The theorem follows if this condition
implies that y ¢ B, ,.
From §2, y ¢ B, if and only if a; - (T(y) — Y(¢)) > 0. By Lemma 2,
A = convvert A, and so
Th= Y 0

a€vert A
for some a, > 0, not all zero. Therefore,

xh-<r<y>—r<q)>=( ) aaah>-<r(y>—r(q>)= 3 aean(X(y)-1()) > 0.

a€vert A a€vert A

This implies y ¢ By 4, and the lemma follows. O

Note that the only property of the line-free polyhedral set A on which the
proof depends is that A C V,, so that an analogous result holds for any such
polyhedral set.

This characterization of C'(A) must be extended to the case where A is not
necessarily line-free.

Theorem 13 Let A € A(V(R)), with A CV, for a site q. Then the candidate
region C(A) is
C(A) =C(Anaff R)U (F¢\ aff R).

Proof. From the discussion following Lemma 6, A has the form (ANaff R) +

(aff R)*. Also from that discussion, aff R C S., for ideal c if and only if
c € (aff R)*. Since C(A) D B, for all ¢ € id(aff R)*, we have

CAH2F'\ [ Seq
ceid(aff R)+
that is, C(A) D F?\ aff R.

The theorem now follows by showing that C(A) Naff R C C(ANnaff R) N
aff R. Let z € A. First, suppose z is a real point. Then by the discussion
following Lemma 6, z = z + y, for z € re AN aff R and y € re(aff R)*. Since
[zr/2s +yr/ys; 1] is a homogeneous representation for z, we have, for w € aff R,

zn - (Y(w) = T(q)) = [&r/25;1] - (T(w) = T(q)) + [yr/y5; 0] - (Y (w) = T(q)),
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but [y,/ys; 0] € id(aff R)*, and so
zn - (Y(w) — Y(q)) < 0if and only if xj - (T(w) — Y(q)) < 0.

That is, C'(2) Naff R = C(z) Naff R. If 7 is an ideal point not in (aff R)*, then
2n = axp, + Byn, for some z € id(ANaff R), y € id(aff R)*, a > 0, and 8 > 0.
In this case, similarly, C(z) N aff R = C(z) N aff R. Finally, if z € id(aff R)*,
then C(z) = B,,4, and S, , = aff R, so that C(z) Naff R = ). Thus C(4) and
C(ANaff R) agree on aff R, and the theorem follows. O

4.2 Reporting all closest sites

While an RPO tree allows a closest site to a query point to be found, sometimes
it is of interest to find all the sites closest to a given point. In this case, the
distinction between C(A) and C(A) becomes important. For example, suppose
the sites are all on the surface of a sphere S, 4, and the query point is the center
of the sphere c. Here the set C(c) NS will be empty, but the set C(c)NS = S.
To handle such situations, it will be shown below that, roughly speaking, for
most points z € A € A(V(R)), C(z) is contained in C(A).

Theorem 14 Under the conditions of Theorem 12, let x € A, and F be the
face of A with x € relint F. Let F' = FNaff R. Then C(z) C C(A)Cn(F),
where

Ca(F)= () SagnaffR.

a€vert F’

(The existence and uniqueness of such a face F is readily established using
elementary properties of polytopes, as given in [14, §2.6]. Note that when z is
in the interior of some V,, the associated region Cn(V,) is trivial: it is easy to
show that Cn(A) = {¢}. Note also that in the two-dimensional case, the region
Ch(e) for some Voronoi edge e is simply the intersection of the two Delaunay
circles of the endpoints of e. This intersection contains only the two sites of R
that define e.)

Proof. Tt is easy to show that € relint F'implies that £ = 2+, ert pr a0y
for some z € (aff R)! and some q, all strictly greater than zero. (This holds
necessarily only if F' N aff R is a simplex.) For a point y, reasoning similar
to that in the proof of Theorem 12 implies that when y ¢ C(A), we have
ap - (Y(y) — Y(q)) > 0 for all a € vert F'. Thus,

zh-(T@)—T@) = D awan-(Y(y) - T(g)) >0.

a€vert F’

If z, - (Y(y) = Y(g)) > 0 then y ¢ C(z), so suppose z - (Y(y) — T(g)) = 0.
Since a, > 0 and ap - (Y(y) — Y(q)) > 0 for all a € vert F', we must have
ap - (Y(y) — Y(q)) = 0 for all a € vert F'. The y for which this holds are
precisely those in Cr(F). O
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When all sites closest to a query point are desired, the function Make_RPO_Tree
is modified so that for each face F' of a region A € A(V(R)), the sites F.sites =
Cn(F)N S are stored for the node v with v.node = A. When answering a query,
the variable current_closest represents a set of sites, the sites so far found clos-
est to the query point p. At each step of Answer_Query, the face F' of A with
query point p € relint F' is found, and the distance of the sites in F.sites to p
is compared with the distance of those in current_closest. (Note that all sites
in F.sites are equidistant from p, and similarly for current_closest.) If the sites
in Fl.sites are the same distance as those in current_closest, they are added to
the set current_closest. If they are closer, they replace that set, and if they are
farther, that set is unchanged. If current_closest is maintained as a list of lists
of sites, this updating operation requires constant time.

4.3 Candidate sets are likely to be small

The theorem below implies that, with probability 1/2, the candidate sets gen-
erated by Make_RPO_Tree all contain few sites. This ensures that an RPO tree
can be created that has height O(logn), and allows a bound on the tree’s total
size.

As a warm-up, here is a lemma regarding the Delaunay balls.

Lemma 15 For S C E¢, let R C S be a random sample (without replacement)
of size r. Let P, be the probability that any open Delaunay ball B has |SN B| >

an. Then P, <1/2, for
I (2G2)

T or—d-1"
That is, 1 — P, > 1/2, where 1 — P, is the probability that for all Delaunay balls
B, it holds that |SN B| < an.

a

Proof. Suppose that R’ C R is the set of the first d + 1 samples taken. If
d = dim R', then the sphere containing R’ defines an open ball B. Now suppose
[SNB| > an. Then the probability that none of the remaining » —d— 1 samples
are taken from SN B is bounded above by (1—a)"~¢~1. That is, with probability
at least 1 — (1 —a)"~ %!, B will not be a Delaunay ball of V(R). For sufficiently
large a, the latter probability is large.

Now let X be the set of all subsets of R of size d + 1, let Bg: be the open
ball defined by subset R’ € X, and let B(X) be the set of open balls defined
by these subsets. Let B,(X) C B(X) be the set of all such balls B satisfying
|[SN B| > an. If no ball B € B,(X) satisfies RN B = {, then every ball in
B(X) that does not contain any sample sites must not be in B, (X). That is,
every Delaunay ball of R must contain a proportion of sites smaller than a.

What is an upper bound on the probability P, that at least one B € B(X)
has B € B,(X) and RN B = (7 For a given ball B € B(X), the joint
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probability of these two conditions is no more than the conditional probability
that RN B = () given B € B,(X). The latter probability is the same as that
for the ball defined by the first d + 1 sample sites. Since the probability of the
union of a set of events is not more than the sum of the probabilities of the
individual events, we have

P, =Prob{3R' € X | Bg € B,(X) and RNBg =0} < (d:— 1) (1—a) =21
When a > In(2(,},))/(r —d — 1), this probability is no more than 1/2, using
the relation —In(1 —a) > afor0<a<1. O

This lemma is not a proof of the desired result for general C(A), since not
all regions C(A) are the union of Delaunay balls. However, the proof of the
following theorem is quite similar to that of the lemma.

Theorem 16 For S C E?, let R C S be a random sample of size r. Let P, be
the probability that any one of the regions A € A(V(R)) has |SNC(A4)| > an.
Then P, <1/2, for

(@+1)n ((d+1)2(,],))

* 2 0rd = r—d—1

That is, 1 — P, > 1/2, where 1 — P, is the probability that for all A € A(V(R)),
it holds that |S N C(A)| < an.

Proof. By Theorems 12 and 13, for A € A(V(R)) with A CV,,

C(4) = U  [BugU(F*\aff R)).

a€vert(ANaff R)

The simplex A Naff R has at most 1 + dim R vertices, so the number of regions
making up this union is no more than d+ 1. Let &' = a/(d+1). The condition
|S N C(A)] > an thus implies that |S N C(I)| > o'n, where I is a region
B,y U (F4\ aff R). It suffices to prove that with probability 1/2, all such
regions contain no more than a'n sites.

A region I may have a real or a ideal. If a is real, there is a set of 1 + dim R
sites R’ C R such that I is the union of F'?\ aff R’ with the relatively open ball
defined by the (dim R)-sphere in aff R’ that contains R'. If a is ideal, there is a
set of dim R sites R’ and a site s € R such that I is the union of F¢\ aff(R'U{s})
with the open half-flat of aff (R’ U {s}) that is bounded by aff R’ and that does
not contain s.

Let X be the set of all nonempty subsets of R of size d + 1 or less, together
with the set of pairs (R',s) where R' C R, s € R, and 1 < |R'| < d. Let I,
be the region corresponding to z € X as above, and let I(X) be the set of
regions corresponding to the elements of X. Let I, (X) be the subset of I(X)
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containing regions I € I(X) satisfying |S N I| > a'n. We have, for any given
region I € I(X),

Prob{RNI =@ given I € [,,(X)} < (1-— al)r—d—l‘
The probability
Prob{Iz € X | I, € I,,(X) and RN I, = 0}

is greater than P,, and is bounded above by (1 —a')"~?~! times the size of X.
It is easy to see that |X| = (d+1)(,},) +d(d+1)(,},), or |X] = (d+1)*(,},)-
The theorem follows, using manipulations as in the lemma above. O

5 Time bounds for Make RPO_Tree and An-
swer_Query

To bound the time needed for Make_RPO_Tree, we will first consider the work
done by the procedure, aside from the recursive calls, and then bound the work
for those calls.

Lemma 17 Let t(n) denote the expected time required by Make RPO_Tree.
Then t(n) satisfies

t(n) < Kinr!*Nogr + Korl*/?1¢ (lenTr) :

when n > K. The constants K, and Ko are at most exponential in O(dlogd),
and K3 is (d+ 1) + O(1/logr), as r — oo.

Proof. From Theorem 16, the repeat—until loop for determining a suitable
A(V(R)) will end after two iterations on the average, and require O(r[4/21 logr)
each iteration, by Lemma 11.

The other operations in Make_RPO_Tree require O(n) or O(r) time, except
for the recursive calls and the determination, for each A € A(V(R)), of SNC(A4).

From the proof of Lemma 7 and precise bounds on the number of vertices of
a d-polytope with r facets [14, §4.7], the constants K; and K> are dominated
by d!, which is exponential in O(dlogd).

From Theorem 16, the size of each subproblem is a;, 4n. The bound for K3
follows from the value of a, 4 and elementary approximations. O

Theorem 18 The expected time t(n) required by Make RPO_Tree is bounded
by t(n) = O(n[?/210+9)) a5 n — oo, where
_ In(K3Inr) + (In K3)/[d/2]
In(r/Ks3lnr) ’

for fized r and d.
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Proof. By “unrolling” the recurrence for ¢(n) to depthm = ln(n/K)/In(r/KsInr),
we have
t(n) = O(nrl ¥ log r(Ky Ksr! #2171 In 1)™),

and the desired expression follows by algebraic manipulations. 0O

Theorem 19 The worst-case time required by procedure Answer_Query is bounded

by
K + Kor!¥?In(n/K)/In(r/KsInr).

This is O(logn) as n — oo, for fized r and d.

Proof. This is just the work in searching through the children of an RPO
tree, times the depth of such a tree. O

6 Conclusions

We have seen that a simple, natural approach to the post-office problem may
be used to gain great improvements in asymptotic efficiency over methods pre-
viously known for d > 3. In addition, this approach has an advantage of con-
ceptual and programming simplicity over previous asymptotically fast methods
for d < 3.

The approach given here may be used to yield fast algorithms for other
proximity problems. For example, suppose a convex three-dimensional polytope
P is given, and a data structure is to be found such that given a plane h with
hN P = (, the vertex of P closest to h is to be determined quickly. This
problem is equivalent to determining the point of vert P closest to the ideal
point normal to h, and is also equivalent to linear programming in 3-D with
multiple objective functions. The problem may be solved with nearly linear
preprocessing and logarithmic query time using an approach analogous to that
given in this paper.

After the preliminary report of these results [5], later work has shown that
these ideas have applications in many other areas of discrete and computa-
tional geometry, such as arrangement searching, determining the separation of
polytopes, constructing order k& Voronoi diagrams [6], computing line-segment
intersections, bounding (<k)-sets in E¢ [7], computing the diameter of a point
set in E3, incremental construction of geometric structures [8], and triangu-
lating simple polygons [9]. Independently of this work, the concept of the
Vapnik-Chervonenkis (VC) dimension [28] has been applied to, for example,
the problem of halfspace range queries, resulting in a randomized algorithm for
the construction of a data structure for such queries [16]. This concept has also
been applied to questions of learnability [2]. While apparently not equivalent,
the two approaches (the VC dimension and that of this paper) are similar in
spirit, and provide a useful means of applying divide-and-conquer to computa-
tional geometry.
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Appendix A

Proofs of three technical lemmas are given below.

LEMMA 1. Let C be a polyhedral pointed cone with apex a. Let h be a
supporting hyperplane of C with hN C = {a}. Let v be a normal vector to
h contained in the same halfspace containing C. Then P = CnN (h+v) is a
polytope.

Proof. (Note that such a hyperplane h exists because a is a face.) Since C
and h + v are polyhedral sets, it follows that their intersection is a polyhedral
set. It remains to show that P is bounded. If not, then P contains a ray, by
[14, 2.5.1]. Such a ray has the form ray, y, where z,y € Pand v- (y — z) = 0.
Since C is a cone, the point (z — a)/||z — a|| + a € ray, z is in C, for every
xz € ray,y. As ||z]| - oo, with z on ray, y, the points (z — a)/||z — a|| + a
converge to (y — z)/||ly — z|| + a. Since C is closed, this point is in C. But
(y — 2)/|ly — z|| + a € h, contradicting the choice of h. O

LEMMA 2. If P C E? is a line-free d-polyhedral set then P = conv vert P,

Proof. The lemma is true for polytopes by [14, 2.4.5]. The unbounded case
will first be considered for polyhedral cones, and then in general.

If C is a line-free polyhedral cone, then as mentioned above, C' is pointed,
so that Lemma 2 applies to C. Using the correspondence above between z € P
and z' € id C, the fact that P = conv vert P implies that id C' = conv vertid C.

Since
C= U conv{a,z},
z€id C

it follows that for any y € C,

Yh = Qqap + § OzTh,
z€vertid C

for some ag,a; > 0, x € vertid C. That is, C' C convvert C. Tt is easy to show
that C' D conv vert C, so the lemma follows for line-free polyhedral cones.

To prove the lemma for general line-free polyhedral sets, we appeal to [14,
2.5.6], which directly implies that a line-free polyhedral set P can be expressed
as P = cc P + convrevert P. Since cc P is line-free if P is, the relation cc P =
conv vert cc P holds. The lemma follows. O

LEMMA 4. For a line-free polyhedral region P, if v € vert P and a € P, then
the point b =ray, a Nrelbd P is on a facet of P that does not contain v.

Proof. (The relative boundary of P is generalized to include id P.) Since
relbd P is the union of the facets of P [14, 2.6.3], b is on some facet of P.
Suppose v ¢ id P. Then the lemma follows by induction on dimension: suppose
v and b are on the same facet F. Then assuming the lemma, for the polytope F',
b is on some facet of F' not containing v. Such a facet of F' is the intersection
of F with another facet F' of P [14, 2.6.4], and so b € F' but v ¢ F’. Suppose
v € id P. If a is a real point, then so is b, and the lemma follows. If a € id P,
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then we map v, a, and so b to a polytope as in Lemma 1, and the lemma follows
by the above argument. 0O
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