ALGORITH_MS FOR CLOSEST-POINT PROBLEMS

A DISSIERTATION
SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE
AND THE COMMITTEE ON GRADUATE STUDIES
OF STANFORD UNIVERSITY
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

by
Kenneth Lee Clarkson
October 1984

This research and/or preparation was supported in part by the National Science
Foundation under grant MSC-83-08109.

©1985 by Kenneth Lee Clarkson

ii

1 certify that I have read this thesis and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Andrew C. Yao

I certify that I have read this thesis and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Donald E. Knuth

I certify that I have rcad this thesis and that in my opinion it is fully adequate, in
scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Ernst W. Mayr

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies & Research

iii

ABSTRACT

This dissertation reports a variety of new algorithms for solving closest-point prob-
lems. The input to these algorithms is a set or sets of points in d-dimensional space,
with an associated L, metric. The problems considered are:

»The all nearest neighbors problem. For point set A, find the nearest neigh-
bors in A of each point in A.

»The nearest foreign neighbor problem. For point sets A and B, find the
closest point in B to cach point in A.

»The geometric minimum spanning tree problem. For point set A, find the
minimum spanning iree for the complete weighted undirected graph associated
with A, where the vertices of the graph correspond to the points of A, and the
weight of an edge is the distance between the points defining the edge.

These problems arise in routing, statistical classification, data compression, and
other arcas. Obvious algorithms [or them require a running time quadratic in n,
the number of points in the input. In many cases they can be solved with algorithms
requiring O(n logf)“) n) time.

In this work, approximation algorithms for some cases of these problems have been
found. lor example, for the minimum spanning tree problem with the L; metric,
an algorithm has been devised that requires O(n]og";(]/p)) time to find a spanning
tree with weight within 1 p of the minimum. Several other algorithms have been
found with time bounds dependent on log(1/p) for attaining error p.

Algorithms have also been found that require linear expected time, for independent
identically distributed random inpul points with a probability density [unction
salislying weak conditions. Onc such algorithm depends on the lact that under
certain conditions, values that are identically distributed, but dependent, can be
bucket sorted in linear expected time.

An algorithm has been lound for the all nearest neighbors problem that requires
O(nlogn) expected time for any input set of points, where the expectation is on
the random sampling performed by the algorithm. This algorithm involves the
construction of a new data structure, a compressed form of digital trie.

CHAPTER 1.

INTRODUCTION

This dissertation presents a variety of algorithms for closest-point problems. In
§1.1, several such problems, their applications, and some of the previous work
on algorithms for them will be brielly described. The model of computation and
complexity measures used are discussed in §1.2, and the specific results obtained
are summarized in §1.3.

§1.1 Closest-Point Problems and Their Applications

1.1.1 The post office problem

The most fundamental closest-point problem is perhaps the post office problem:

Given a set S of n points in d-dimensional space, organize them into a data
structure so that given a point g, the closest point in § to g can be found
quickly.

For example, if S corresponds to the locations of a set of cities with post offices, and
you want to mail a letter to an address at site ¢, then the answer to this problem is
the city to which the letter should probably be sent. For clarity, the points in S will
be termed sites, and the point ¢ will be termed a query point. While the measure
of distance used is often the Lo norm, or Euclidean distance, this is not always the
case, and [requently different algorithms can be used for other L, norms.

The post oflice problem has many applications, such as data base queries, inter-
aclive computer graphics, statistical classification, and data compression. It also
arises as a subproblem in other applications.

There arc many ways that the construction of a data structure for the sites, or
preprocessing, can be done. The simplest kind of preprocessing might be to keep
the sites in a list, and find the closest site to a query point by simply looking through
all of the sites for the closest. In this case, the preprocessing time P, is O(n) (or
just zero), and the query time @, is O(n). Thus if k queries are performed, the

2 CHAPTER 1: INTRODUCTION

total time required to answer them is P, 4 kQ,, or O(kn). When the number of
queries is large, it is worthwhile to put more work into the preprocessing phase, to
make the query time as short as possible.

For the planar (d = 2) case, algorithms are available for the post office problem
requiring only O(nlogn) preprocessing, for an O(logn) query time. Several algo-
rithms with roughly this performance have been described, all based on the Vorono:
diagram for the sites. The Voronoi diagram for a set of sites is a collection of re-
gions, one for each site. (An example is shown in Figure 1.1.) The region for each
site consists of those points that are closer to that site than to any other. For the
planar case, Voronoi regions for several L, metrics are bounded by straight line seg-
ments, and only O(n) space is required to store descriptions of these segments in a
useful form. Shamos [Shal] devised an O(nlogn) algorithm for computing Voronoi
diagrams for the planar Euclidean case. Brown [Bro| has used the relationship be-
tween planar Voronoi diagrams and three-dimensional convex hulls to devise new
algorithms for such Voronoi diagrams. Lee and Wong [LW] have found O(nlogn)
algorithms for some other L, norms.

Figure 1.1. A Voronoi diagram for a set of sites.

When the Voronoi diagramn for a set of sites is available, the post oflice queries
for those sites may be solved by determining the Voronoi region containing the
query point. Lipton and Tarjan [LT] and Kirkpatrick [Kir] have described asymp-
totically optimal, but complex, algorithms for this point location problem. Bilardi
and Preparata |[BP] have given an algorithm requiring linear expected space and
O(nlogn) space guaranteed in the worst case. Their approach stems from work
due to Dobkin and Lipton |DoL] and Preparata [P]. Relining an approach due to
Shamos [Sha2], and tuned by Lee and Preparata [LP], an asymptotically optimal
algorithm has been found by Edelsbrunner et al. [EGS).

While Voronoi diagrams are quite helpful for the planar case, they are less so for
d > 3. Tor these cases they require {2(n?) storage, and fast point location algorithms
for high dimensional Voronoi diagrams are not known. However, Dobkin and Lipton

1.1. CLOSEST-POINT PROBLEMS AND THEIR APPLICATIONS 3

[DoL] have described a searching technique for the post office problem that requires

A O(nzdi"l) preprocessing time and O(logn) query time.
1.1.2 The nearest foreign neighbor problem

When the number of post office queries is small, it is not worthwhile to spend a
lot of time on preprocessing, since this time may be larger than the time spent
on queries. For example, when there are n queries, spending more than O(n?)
time on preprocessing is not worthwhile. IHowever, Yao [Yao| has observed that it
is still possible to obtain o(n?) time algorithms for this case, by using grouping:
the sites are split into r blocks of size no more than [n/ﬂ, and Proje),a prepro-
cessing time is used for each block. Answering a post office query then requires
r(Qn/r] time, so the total time is O(rPpy /) + n'rQFn/ﬂ). By choosing r appropri-
ately, this implies that the algorithm of Dobkin and Lipton can be used to obtain
an O(nZ_UT‘H log'~ 2! n) algorithm [or this limited version of the post office
problemn.

It may be that not only is the number of post ollice queries relatively small, but
such queries may also be batched, that is, not answered until they are all received.
This version of the post office problem is also known as the nearest foreign neighbor
(NFN) problem. For many applications the post office problem may be solved in
this ofl-line manner. Sometimes only the closest of the query points is desired,
leading to the following problem:

Given sets of sites (points) S and T in d-dimensional space, find the closest
pairof sitesz€ Sand y € T.

We will call this the problem of finding an NFN pazr.

Little previous work has been done on either the NI'N or NFN pair problems, and
Yao’s grouping technique is the best method known for solving this problem exactly,
for higher dimensions (d > 2).

1.1.3 Geometric minimum spanning trees

One problem closely related to those above is the geometric minimum spanning
tree (MST) problem, which is:

Given a sct .S of n sites (points) in d-dimensional space, find a minimum
spanning tree for the complete undirected weighted graph G delined by these
sites.

The graph G has n vertices, each vertex identified with a site, with the weight of
an edge given by the distance between the two sites defining that edge. (See for
example Tarjan’s monograph [Tar2| for graph-theoretic terminology.)

4 CHAPTER 1: INTRODUCTION

This problem has many applications, including wire routing, statistical pattern
classification, and heuristics for the traveling salesman problem. As with the post
office and NFN problems, it is in fact a family of problems, depending on the
dimension and on the distance measure used to determine the edge weights.

Two simple facts are crucial for developing algorithms that ind minimum spanning
trees:

Fact 1.1. For any subset V' of the vertex set V of a graph H, any minimum
weight edge connecting a vertex in V' with one in V' \ V' appears in some
minimum weight spanning tree of H. '

Fact 1.2. For any maximal weight edge on a simple cycle of a graph H,
there is a minimum spanning tree of H that does not contain that edge.

Proofs of these facts can be found in Tarjan’s monograph ([Tar2], p. 71). Observe
that the problem of determining a minimum weight edge between two sets of vertices
is an instance of the NFN pair problem, for our geometrical version of the problem.

We will also need the following lemma, similar to Fact 1.2.

Fact 1.3. Suppose edge e connecting sites ¢ and b is the heaviest edge on a
simple cycle C of graph H, so that the weight of e is larger than the weight
of any other edge on that cycle. Then ¢ is not in any MST of H.

Suppose edge ¢’ connecting sites ¢ and d is on a simple cycle C' with e.
Suppose also that e and ¢’ have equal weight, and this value is larger than
the weights of any other edges on C’. Then if T is a set of edges forming an

MST of graph H, with e € T, then T\ {e} U {e'} is also an MST of H.

In other words, the uniquely heaviest edge in a simple cycle is not in any MST,
and if there are two heaviest edges, only one may be in an MST, and cither may
be arbitrarily chosen.

Proof. To prove the first claim, suppose € is in a minimum spanning tree 7. Then
deleting e from T results in two trees 7', and 7},, as shown in Figure 1.2. The rest
of C forms a path from a to b, and there is some edge f on C' with one endpoint in
T,, and the other endpoint in Tj,. If e i1s the uniquely heaviest edge, then f has less
weight than e, and it may be used with T}, and T} to form a tree with less weight
than 7". This would contradict the assumption that T is an MST. Thercfore, e
cannot be in any MS'T.

Similarly, il the second situation in the lemma holds, then the edge [must be in
Hl 1 b
fact €', so that e may be removed and €’ added to form another MST. n

Since the complete weighted graph G induced by a set of n sites has @(nz) edges,
the problem of finding an MST of G can be solved in O(n?) time by using any one
of a number of available algorithms ([Tar2], Chapter 6). However, it is possible
to improve upon this time bound by quickly finding a subgraph G’ of G that is a
supergraph of a minimum spanning tree of G. That is, G’ has the same vertices

1.1. CLOSEST-POINT PROBLEMS AND THEIR APPLICATIONS 5

2
o™

Figure 1.2. A minimum spanning tree T'.

as GG, but the edge set of G’ is a subset of the edge set of G. Most algorithms
for geometric MSTs find such an MST supergraph with O(n) edges, and use o(n?)
time. For the planar case, one way to use this approach is to compute the Voronoi
diagram for the sites. An MST supergraph can then be found easily in lincar time
using information from this diagram. Another approach in the planar case is to
determine the relative neighborhood graph [Sup|. Unfortunately, ncither of these
approaches is helpful for d > 2. However, Yao has found another approach to
finding a sparse MST supergraph that does generalize to higher dimensions. This
approach involves the concept of a geographic neighbor (GN) graph [Yao].

A geographic neighbor graph is specified by a lamily of cones I whose union is R¢,
and with the apex of cach cone at the origin. For each site ¢ € S, and each cone
C € I, put an edge in the GN graph from ¢ to the closest site to ¢ in SN (C + q),
that is, to the closest site contained in the translation of C to have apex at q. These
edges form all the edges of a geographic neighbor graph. (Note that a GN graph has
O(n) edges.) We will call the problem of finding a GN graph the nearest geographic
netghbor (NGN) problem. Yao has shown that if the cones in I! are narrow, then
the resulting GN graph will be a supergraph of an MST.

A cone C € F' is narrow if

]na"x{“a”p ! Ilep} > ||a o b”p’
for every two points a and b in C not at the origin 0. That is, in the triangle
with vertices at a, b, and the origin, the edge ab is not the longest.

Suppose that edge e is the edge in the GN graph for a site ¢ and cone C. Then
any edge from site ¢ to a site s € SN (C + ¢) is a longest edge in a 3-cycle of
G containing e. By Fact 1.3 above, for any MST containing that edge, there is
another with e instead. Thus only e need be included in an MST supergraph. Thus
the GN graph is an MST supergraph.

6 CHAPTER 1: INTRODUCTION

Tor example, such a GN graph results for d = 2 when the cones used are the eight
regions resulting from splitting the quadrants about the origin with the lines y = =
and y = —z (See Figure 1.3).

®

Figure 1.3. The regions for a GN graph, d = 2.

Using this reduction of the MST to the NGN problem, the grouping approach
mentioned above, and the post ollice algorithm of Dobkin and Lipton, Yao has
devised algorithms for the MST problem that require O(ng“lmdll logl'_l"lzd-l.1 n)
Lime [Yao]. These algorithms, are applicable for the cases where the Ly, L, and
Ly norms are used. Quile recently, Bentley, Gabow, and Tarjan [BGT] have lound
a way to compute an NGN graph for the L case in O('r.'.]og;d nloglog n) time, with
a similar result for the Lo, case.

[Taving found an MST supergraph with O(n) edges, it remains to actually determine
the MST. Ifredman and Tarjan [F'T] have recently found a remarkable algorithin
for this task that requires O(nlog™ n) time in the worst case. Alternatively, the
edges may be sorted by weight, and Kruskal’s algorithm (['].‘a,r‘?,], p. 73) used with
the resulting sorted edge list. With the edges sorted, Kruskal’s algorithm requires
O(na(m,n)) time, where m is the number of edges, and a(m,n) is a very slow
growing [unction, arising from the use of a union/find algorithm ([Tar2], Chapter 2).
This approach has the advantage of the usce of simple algorithms. Also, in some
cases sorting the edges by weight may be done more quickly than in O(nlogn)
time.

1.1. CLOSEST-POINT PROBLEMS AND THEIR APPLICATIONS 7
1.1.4 The all nearest neighbors problem

Another batched form of the post office problem is the all nearest neighbors (ANN)
problem:

Given a set S of n sites in d-dimensional space, find the nearest neighbors
in set S of each site in S.

The ANN problem has applications in statistical classification. In such applica-
tions, the sites correspond to objects to be classified, and the coordinates of the
sites correspond to various qualitics of those objects, measured quantitatively. The
distance between two sites is thus a measure of the resemblance of the corresponding
objects. '

In hierarchic clustering, groups of sites that cluster together are sought, in an at-
tempt to find groups of similar objects. One approach to such clustering, described
by Murtaugh [Mur|, is to find reciprocal neighbors, those pairs of sites that are near-
est neighbors to each other. Each such pair is a cluster, as the two sites are close
to each other and not to other sites. Such clusters may be merged, and represented
by a single representative site. The clustering process is then repeated. Each phase
of this algorithin requires the solution of the all nearest neighbors problem.

Conversely, results from the solution of the ANN problem have been used to show
that a sct of sites is random, and doesn’t contain clusters. Hopkins [Hop| describes
a test in which the distribution of distances from a random point to the closest
sites to it is compared with the distribution of nearest neighbor distances among
the sites. If these distributions match, then the sites may be said to be random.

The clusters thal result from hicrarchic clustering have some resemblance to a
minimum spanning tree of the sites. Indecd, every pair of sites with one site a
necarest neighbor of the other corresponds to an edge in a minimum spanning tree,
using Tfact 1.1. Thus algorithms for the ANN problem may be helpful for the MST
problem.

Shamos [Sha] describes other applications of the ANN problem in geography, math-
emaltical ecology, and molecular physics.

While algorithms for the post office problem may be applied to the ANN problem,
as noted above many of these algorithms are only suitable for the case d = 2,
while the applications mentioned require d to be large. Bentley [Ben] has found an
O(nl()gd “''n) time algorithm for solving the ANN problem, and Zolnowsky [Zol]
has shown that an algorithm using a version of k-d trees requires 15-)('.'1,101:{"z n) time
to solve this problem.

8 CHAPTER 1: INTRODUCTION
§1.2 Computation Models and Performance Bounds

All of the results mentioned above concern the worst-case performance of algo-
rithms that are exact, and use very simple primitive arithmetic operations. These
three characteristics are typical of many, if not most, of the results in the algo-
rithms literature. In recent years, interest has grown in computational models and
performance bounds that differ [rom these. All of the new results described in this
dissertation lack at least one of these characteristics. In this section, such issues
will be discussed, along with the general nature of the new results.

While it is sometimes necessary to guarantee that an algorithm will run quickly,
for all possible problem instances, more often it is sufficient to know that the
algorithm is fast on the average, or that only in rare cases is the runtime excessive.
In Chapter 4, algorithms are described that have nearly linear expected running
times, lor random input data. The sites are assumed to be independently identically
distributed random variables, with a probability density function that is unknown,
but satisfies certain weak conditions.

It 1s not always possible to know whether or not input data, even if random, satisfy
assumptions regarding their distribution. However, if an algorithm itself performs
randomization, then we know that expected-time performance estimates will be
satisfied. In Chapter 3, such a randomized, or probabilistic, algorithm will be
described for constructing a data structure that is then used to solve the all nearest
neighbor problem.

The input values for the algorithms described here are known only to a fimited
precision, and the complexity of the algorithms depends on that precision. In
Chapter 2, several approximation algorithms are described with complexities that
depend on the bits of precision of accuracy desired. The result is that when site
coordinate values arc given i’ flixed poinl notation, the dependence of the running
time of the algorithms on the total size of the input is relatively mild. However,
when the the input coordinate values are given in, for example, floating point, this
dependence may be excessive. [Furthermore, on many machines most arithmetic
operations are primitives taking eflectively constant time lor the input values in
a practical range. In this context, counting the total number of operations per-
formed is a reasonable measure of complexity, and this is done in Chapters 3 and 4.
Furthermore, the floor, or least integer, function is assumed to require constant
time, and is used in the algorithms in Chapter 4. The algorithins of Chapter 3 use
also the logarithm and the bilwise exclusive-or functions, both assumed to require
constant time. These functions are gencrally available on many machines; They
may be avoided if numeric representations can be readily accessed.

1.3. SUMMARY OF RESULTS 9
§1.3 Summary of Results

The following is a summary of the specific results reported in this dissertation. The
notation used is:

»S is a set of n points in d-dimensional space.

»T is a set of m points in d-dimensional space.

»c is the problem scale, the ratio of the distance between the farthest pair
of sites to the distance between the closest pair of sites.

»a is the absolute error in the answer returned, as a fraction of the distance
between the farthest pair of sites.

»p is the relative error in the answer returned.

»o(, k) is a wery slowly growing function of j and k, appearing in the
analysis of union/find algoritkms ([Tar2], Chapter 2).

Unless otherwise indicated, the input to the algorithms is S. The asymptotic
bounds are as n — oo. The constant factor depends on the dimension d, and in
general will be exponential in d.

Chapter 2 is concerned with approximation algorithms:

»An algorithm is given for solving the all nearest neighbor problem for the Eu-
clidean case in O(nlog¢) time. This algorithm can be used to find all the sites at
distance within « of the closest to each site, requiring O(nlog o) time to do so.

»An algorithm is given for solving the nearest foreign neighbor problem for S
and T, with the L; norm used. The algorithm requires O((n + m) logda) time
for finding a site pair at distance within e of the closest pair.

»An algorithm is given for solving the minimum spanning tree problem for S, with
the L; norm, in ()[1»’.;101[;'1_1 plog o) time. A spanning tree is found with weight
within a factor of 1 + p of the minimum possible.

»An approximation algorithm is given for the minimum spanning trce problem,
for d = 3 and the Euclidean norm, that requires O{n(logn + log o)/p) time.

In Chapter 3, a probabilistic algorithm for the all nearest neighbors problem is

described:

»An algorithm is given for building a cell-tree, a compressed form of digital trie,
in O(nlogn) probabilistic time. The logarithm, floor, and bitwise exclusive-or
functions are assumed available al unit cost.

»An algorithm is given for solving the all nearest neighbors problem in O(n) worst-
case time, given a cell-tree for the input sites.

10 CHAPTER 1: INTRODUCTION

In Chapter 4, algorithms that are fast on the average are reported:

»An algorithm is given for building a cell-tree in O(n) expected time, for indepen-
dently identically distributed (IID) sites with a probability density function f(z)
that is O(1/ | :1:||d+1], as ||z]] — co. The density function must be bounded, ex-
cept for a finite number of poles, where f(z) = O(1/ ||z — P”d_ﬁ), as ||z —p|| = O,
for point p and some 8 > 0. The algorithm uses the floor function.

»An algorithm is given for finding a minimum spanning tree supergraph, for the
L, norm and d = 2, in O(n) expected time, when the cell-tree for the input sites
is available.

»An algorithm is given for solving the minimum spanning tree problem exactly,
for all L, norms and dimensions d, in O(na(m,n)) expected time, for IID sites
that are uniformly distributed in a d-cube. Here m = O(n) is the number of

edges in the MST supergraph found. The floor and exponential (¢*) lunctions
are required.

CHAPTER 2.

APPROXIMATION ALGORITHMS

In this chapter several approzimation algorithms for closest-point problems will be
described. Several features are shared by these algorithms. For instance, they all
require running times linear in the number of points, and these running times also
depend on the logarithms of certain numerical parameters, such as the accuracy
achieved, or the problem scale.

Algorithms with these general characteristics have of course been described before,
but more commonly in the context of numerical analysis, and not for problems
with a combinatorial nature. Radix-based sorting and digital tree searching meth-
ods ([Knu], §5.2.5, §6.3) arc notable cxceptions. The use of binary search in algo-
rithms for cost-to-time ratio cycle network problems [Law] results in a logarithmic
dependence on paramecters of the input. Approximation algorithms requiring time
polynomial in 1/p to achieve p relative error have been described [or NP-complete
problems (|GJ], §6.1-2). Brown {Bro] found algorithms for determining the diam-
eter of a planar point set to relative error p in O(n/,/p) and in O(n 4 1/p) time.
Bentley, Taust, and Preparata [BI'P] have described an O(n + 1/p) algorithm for
finding convex hulls.

The basic idea for the algorithms given here is like that for many iterative numer-
ical procedures: Knowledge of the solution to some precision is used to determine
a solution at double that precision. An algorithm for solving the original prob-
lem is created from one for solving an “improvement” problem. Unlike numerical
procedures, however, a solution is not a value or a vector, but a combinatorial
object, such as a set ol nearest ncighbors. This approach seems in several cases to
result in relatively simple and even practical algorithms, as well as improvements
in asymptolic running time.

Quite recently, Gabow [Gab] has described scaling algorithms for network opti-
mization problems. These algoritlims share many properties with those described
here, and indeed Bentley, Gabow, and Tarjan [BG'T| have applied this approach to -
closest-point problems, finding similar algorithms. Our algorithms are also similar
in many ways to the “coarse to fine” algorithms of multiresolution image processing

[Ros]. _ | :

12 CHAPTER 2: APPROXIMATION ALGORITHMS

§2.1 The All Nearest Neighbor Problem

2.1.1 Quadtrees

We will begin with a description of the simplest of the approxiimation algorithms,
that for the all nearest neighbors problem. Tirst, some terminology will be given
for guadtrees, which will be heavily used in the algorithms to follow. Quadtrees are
geometric scarch trees that are analogs of digital search tries. Defining them more
precisely:

Uy is the unit d-cube [0, 1)“, assumed to contain the sites.

The cells forming a quadtree are from the hierarchy defined as follows: Uy is
in the hierarchy, and if a cell C is in the hicrarchy, so are the 2¢ equal-sized
cubic cells obtained by cutting the cell in half in each coordinate. Such a
cell 1) is a quadtree child of C if it contains at least one site. The set of
quadtree children of C' will be denoted Children(C). A quadtree cell is a

cube
R lai/2%, (a; + 1)/25),

1<i<d
for some integers k> 0,0 <a; < 2%, 1 <17 <d.

Chaldren(S) will be used to denote the set of children of a set of quadtree
cells S. Parent(S) is defined analogously.

A quadtree cell containing only one site will be termed a singleton cell.

The quadiree for a set of sites is the rooted tree with root UUy. A node C in
the quadtree has Children(C) as its children in that rooted tree. Generally,
we will consider the descendents of the root only to the singlelon-cell size,
the Largest size at which all cells are singlelons. Assuming that the farthest
pair distance lor the sites 1s within a constant factor of the side length of
Uy, such descendents are O(log o) generations from the root,.

Quadtrees were originally defined for the planar case, in which a node has as many
as four children. For simplicity, the term will be used for the higher dimensional
cases. Quadtrees have been used frequently in solving geometric problems. Samet
(|Ros], p. 212) surveys a number of their previous uses. An example of a quadtree
for a set of sites is shown in igure 2.1.

2.1.2 Algorithm ANN,

Algorithm ANN ,, for solving the all ncarest neighbor problem, will now be de-
scribed. In the general step, a set Cells of quadtree cells of a particular size is
considered. For each €' € Cells, an upper bound NN_Distance(C) is known for the
nearest neighbor distances to sites in Cells. Thal is, for any site s in C, the closest

2.1. THE ALL NEAREST NEIGHBOR PROBLEM - 13

5o \

L

i

Figure 2.1. An example quadtree.

sites in Cells to s are no farther than NN_Distance(C). Also known for each C is
NN_Set(C), the cells whose closest distance to C is no more than NN_Distance(C),
and therefore may contain nearest neighbors for sites in C'. Using this information,
the general step determines the corresponding information for Children(Cells). In
determining NN_Set(C’) for such a cell ' € Chzidren((”e”s), only the cells in
Children (NN_Set(Parent(C'))) need be examined.

Ifor example, a set of three quadtree cells is shown in Figure 2.2 below. Cells A
and B have some number of sites greater than 1, and singleton cell C has only one
site. The nearest neighbor set for all three of these cells is {A, B}. (Note that the
nearest neighbor set for A contains A, since A has more than onc site, while C is
not in its own nearest ncighbor set.) In determining the nearest neighbor set for the
children of these cells, therefore, only the children of A and B need be considered.

Figure 2.2. One refinement step of ANN .

Algorithm ANN , may be viewed as an approximation scheme, with accuracy de-
pendent on the smallest quadtree cell considered, and hence on the number of

14 CHAPTER 2: APPROXIMATION ALGORITHMS

procedure ANN ,(Sites : Set_of Poinis);
co The number of sites is assumed to be greater than 1.
The sites are assumed to be scaled to be contained in Uy. oc;
begin
Conlents (Uy) — Sites;
NN _Set(Uy) + {Uy}; Cells — {Uy};
while not all cells in Cells are singletons do
New_Cells «— Children(Cells);
co The sites forming the contents of each child are determined at this step oe;
for each C' € New_Cells do
C « Parent(C');
possible_NN_Set(C') « Children(NN_Set(C));
if |Contents (C')| = 1 then possible. NN_Set (C'} « possible_NN_Set(C')\ {C'} fi;
NN_distance(C') «— min{dwax(D',C") | D' € possible_NN_Set(C')};
NN_Set(C') — {D' | D' € possible_NN_Set(C'), dpin(D',C") < NN,dzszance(C')}
Cells «— New_Cells;
od;
od;
end;

Figure 2.3. Algorithm ANN ,.

iterations of the general step. We will present it as an exact algorithm, in which
quadtree cells are considered down to the size such that all cells of that size are
singletons.

The algorithm is given in pseudocode in Figure 2.3. Some additional notation used:

For a quadtree cell C, the value Diameter(C) is the distance between the
farthest pair of points on its boundary. For the Ly norm, this is v/d times
the side length of C.

For quadtrce cells A and B, the value d,,.x(A, B) is an cstimate of the
farthest distance between sites in A and in B. The value of dy,x (A4, A) will
be defined to be Diameter(A). When A # B, and cach has more than one
site, dyux(A, B) is delined as the larthest distance between the points on
the boundaries of A and B. I A has one site and B has more than one,
dmax (A, B) will be the distance of the site in A to the farthest point in B,
which will be on the boundary of B. Il both A and B are singleton cells,
dimax(A, B) will be the distance between the sites in A and B.

The function dy,;, (A, B) is defined analogously to dyux (4, B).
Iirst, we show that ANN , is correct:

Theorem 2.1. Algorithm ANN , returns all and only the ncarest neighbors
for each site in Sites.

Proof. The invariant established is that at the beginning of the main loop, any
nearest neighbor to a site s in a cell C € Cells is in NN_Set(C). This implies
that possible NN_Set(C') contains all such nearest ncighbors, when s € ¢’ and
C' € Chaldren(C). (If C' is a singleton cell, however, and contains only s, then C'
itself does not contain a nearest neighbor to s.) The value NN_Distance(C') thus

2.1. THE ALL NEAREST NEIGHBOR PROBLEM 15

provides an upper bound on the nearest neighbor distance to s, and the computa-
tion of NN_Set(C’) preserves the invariant. Thercfore, for a singleton cell C, the
invariant implies that NN_Set(C) is a superset of the set of nearest neighbors of the
site in C. Every cell in New_Cells is a singleton cell during the last exccution of the
body of the main loop, so that the last evaluations of dy,, and dy,.x are performed
between singleton cells. These evaluations return the true distances between the
sites, so that only the nearest neighbors of a site s are contained in the NVN_Set for
its cell. Therefore, that NN_Set is the set of nearest neighbors of 5.

Theorem 2.2. Algorithm ANN , requires O(nlogo) time.

Proof. Clearly the statements prior to the main loop require O(n) time. Determin-
ing Children(Cells) and the Contents of those children requires ©(n) time, since
each site must be examined. The time required in the inner loop is proportional to

> |possible_NN_Set(C")| .
J'ENew_Cells

This is no more than 2%¢ times the sum

> |NN_Set(C)|.

CeCells

By Lemma 2.3 below, this quantity is linear in |Cells|. Since |Cells| < n, it fol-
lows that cach iteration of the main loop requires O(n) time. Furthermore, the
number of steps is O(logo): By appropriate scaling, the diameter of the set of
sites is proportional to the side length of the root quadiree cell, and quadiree cells
with diameter smaller than the closest distance between any pair of sites must be
singleton cells. The total time required is therefore O(nlogo).

Lemma 2.3. At cach refincment step,

> |NN_Set(C)

CeCells

is linear in | Cells|. -

The lemma follows from the fact that the number of cells for which a given cell
is an approximate nearest neighbor is bounded by a constant dependent on the
dimension. Roughly speaking, this is due to the fact that if a cell is a nearest
neighbor of too many cells, those cells must be closer to each other than to the given
cell. This observation simply extends to equal-sized cells the observation made by
Bentley about points [Ben|. For example, in [igure 2.4 below, a cell C is shown
together with sites for which it contains a nearest neighbor, and similarly a site p is
shown. Associated with each of the neighbor sites is its nearest netghbor circle, the
circle centered at the site with radius equal to its nearest neighbor distance upper
bound. By definition, such a circle cannot contain other sites. Furthermore, each -

16 CHAPTER 2: APPROXIMATION ALGORITHMS

Figure 2.4. Nearest neighbor spheres for points and cells.

NN circle must at least touch C (or p). Only a limited number can do so without
containing another site.

Proof of Lemma 2.3.

Let NN_Set~'(C) = {D | C € NN_Set(D)}. Clearly

> |NN_Set(C)|= > |NN_Set™'(C)|.

CeCells CeCells

We will bound the latter sum by bounding | NN_Set ™" (C)l for a given cell C. Let
NN,car denote the cells D in NN_Set ~(C) with dy,;, (C, D) < 2Diameter (C), and
let NN, denote NN_Set_'{(C}\ NN,car- Then |NN,eor| is O(1), with a constant
dependent on the dimension, since the cells in NN, ., have a diameter equal to
Diameter (C), and are confined to a region of volume proportional to Diameter(()‘)“.

To bound the number of cells in NN_Set™(C), it remains only to bound the
number of cells in NNg,,. Note that any cell D € NNy, is a singleton cell: If
| Contents(D)| > 1, then

NN_Distance (D) < dyux(D, D) = Diameter (D),

so C cannot be in NN_Set(D). We will denote the singleton cell containing a site s
by D,. Let r = Diameter(C)/2, and R = 5Diameter (C)/2. Choose a coordinate
system in which the center of C is at the origin. Then for every D, € NNy, we
know that ||s|| > R. Also, for every D,, D; € NNg,e,

l|3” s i S dmiu(ca D.,) _<_. dmux(ca Ds) S NN_Distance (Ds) S ”3 - t” . (2'1)
Let NN{, . be the set of sites

R
{s"|s' = 57—, D, € NNpy }.

lsll”

Then ||s'|| = R for any s’ € NNg,.. We will show, for cvery s',t' € NN/, ., that
R—r=|s]—r<|s—¢|. This implies that | NN, | is bounded, since every s’

2.1. THE ALL NEAREST NEIGHBOR PROBLEM 17

in NN, is the center of a ball of radius at least R — r that contains no other site
in NN . Lquivalently, every s’ is the center of a ball of radius (R — r)/2 not
intersecting any other such ball. Only a finite number of such balls can fit into the
ball of radius R + (R — T)/2 centered at the origin.

To show that ||’ — /|| > R—r for all s',# in NN;, , we will assume otherwise and
show that this COIILl'Ld]Ctb . Now
B A —r
H sl

implies that

sl
“lel

Without loss of generality, we can assume that ||¢]| > ||s||, so that

s
< nsu—r% < sl

= [lell = llsl -

-
|-

By the triangle inequality,

ls =l < (llsll -) + (el = Nlsl) = lieli = -

This contradicts (2.1). Therefore,
|'NNfl-l| — |NNfI.[‘| =0(1 H

so that |[NN_Set ™" (C)| = O(1). Thus

S NN Set(©)) = Y |NN.SetTNC) = 3 O(1) = O(| Cells]).

CeCells CeCells CeCells

This is the fact desired. =

Note that this proof does not depend on the prop-ert.ics of the L, metric used.
2.1.3 Turther results and variations

Algorithm ANN , may be modified in a few ways to provide possible improvements
in running time. When the NN_Set of a singleton cell C consists of singleton cells,
then the nearest neighbors of C are known exaclly, and no further processing of
NN_8et(C) need be done. Also, the definitions of d,,.x and dy,;;, could be modified
so that exact diameter and distance values are used when the number of sites in
the cells considered is smaller than some constant value.

18 CHAPTER 2: APPROXIMATION ALGORITHMS

Recently Bentley, Gabow, and Tarjan [BGT] have independently devised an al-
gorithm essentially the same as ANN,. They were the first to show that this
algorithm has an O(n) time bound for all L, metrics. Their proof of an analog of
Lemma 2.3 involves the use of the concept of a narrow region, mentioned in §1.1.3.
From the definition of a narrow region, a site s cannot be a nearest neighbor to
more than one site in any narrow region associated with s. This observation, and
the fact that a bounded number of narrow regions will cover R¢, implies the analog
of Lemma 2.3.

Similar reasoning can be used to show that an O(knloge) algorithm can be de-
vised for the all kth nearest neighbor problem. In this variation of the all nearest
neighbors problem, all sites that are within kth closest to a given site are desired.
The analog of Lemma 2.3 in this case is the fact that a site cannot be kth nearest
neighbor to more than k sites that are in a given narrow region associated with
the site. Suppose that there are k& + 1 sites in a narrow region for which this is
truc. Then the site farthest [rom s is closer to the other k sites than it is to s, a
contradiction.

§2.2 The Nearest Foreign Neighbor Problem

In this section some approximation algorithms for the nearest foreign neighbor
problem will be described. These algorithms are applicable when the L; distance
measure is used. For this case, a restricted class of NI'N problems is easy, and it
will be shown that any L, NFN problem can be reduced, at least approximadtely,
to a series of these easy problems. In §2.2.1, an algorithm for a planar case of the
NI'N pair problem is informally deseribed. In §2.2.2, the same approach is used in
an algorithm for the NI'N- problem in higher dimensions. '

The algorithms described yield values for the nearest foreign ncighbor distances
that have a absolute error, relative to the problem scale. Thal 1s, if the sites fit in
a cell of side length 1, then NI'N distances will be returned that have an absolute
error no more than a.

2.2.1 The planar NFN pair problem

To motivate the algorithm for NFNs to be described, we quote an observation by
Guibas and Stolli [GS]:

Lemma 2.4, Let S and 7' be two sets of sites in the plane that are separated
by a horizontal line and a vertical line. Then the L, closest site in S to any
site 1n 1" is the one closest to the intersection of the two lines.

The situation is like that in Figure 2.5. The lemma follows from the fact that any
Manhattan path between a site in S and a site in 7" can be replaced by a path of
cqual length passing through the intersection p of the separating lines. Such a path
is shortest only if its sections from S to p and from p to T' are shortest.

2.2. THE NEAREST FOREICN NEIGHBOR PROBLEM 19

Figure 2.5. An easy L; NFN problem.

Using this lemma, therefore, the NIFN problem for two sets of sites S and 7" in this
configuration can be solved easily. The site in T' that is closest to every site in S
can be found in linear time, as can the closest site in S to those in T'. Thesc two
sites form an NFN pair for the two sets.

For applications of NFN algorithms to finding MSTs, we will nced to solve NF'N
problems for sets of sites in quadtree cells. For example, S may be contained in
a quadtree cell A, with T in a quadtree cell B. When A and B are in the same
generation of quadtree cells, and so are of equal size, their relationship in terms of
L.emma 2.4 is quite simple. Fither A and B (and so S and T') can be separated by a
horizontal line, or else their boundaries are within the same range of y coordinates.
A similar relationship holds true for the z coordinate, and in general:

Two (equal-sized) quadiree cells A and B are separated in a given dimension
z; if there is a z; = a plane with A on one side and B on the other. If A and
B are not scparated in the z; dimension, they are aligned in that dimension.

In this terminology, if two quadtree cells are separated in both dimensions, then by
Lemma 2.4, the NFN problem may be solved for their sites in lincar time.

On the other hand, the input sets S and T may be in quadtrec cells that are
aligned in some dimension, as in Figure 2.6 below. In this case, Lemma 2.4 does
not immediately apply. However, suppose that the cells in the quadtrees rooted at A
and B are preprocessed so that for each cell in those quadtrees, the site closest to
each corner of that cell is known. An NI'N pair can be lound recursively as follows:
If the two (equal-sized) cells that are input for finding an NFN pair are scparated
in both dimensions, then simply find the NFN pair in constant time. Otherwise,
find the NIFN pairs between all pairs of children of the input cells and return the
minimum distance pair from among all of those. Some of these children will be °
separated in both dimensions, and their NI'N pairs can be found immediately, as
for the “dashed” pairs in IMigure 2.6. The other pairs, which are aligned in the =
coordinate, must have their NI'N distances determined recursively.

20 CHAPTER 2: APPROXIMATION ALGORITHMS

2.
\\

S

< N

Figure 2.6. Diagonally located cells.

In an equivalent iterative procedure, at each iterative step pairs of cells of a given
size that are separated in both dimensions are processed using Lemma 2.4. Some
pairs of cells from A and B will be aligned, and indeed there will be rows of cells
from A and B, with each cell from A aligned with all the cells in a row of B, and
vice versa. At each iteration, when processing the children of the cells in such a row
of A, only the children of the cells in the corresponding row of B need be examined.
For any cell considered at a step, note that the closest site to its sites can be known
exactly, among those sites not in its horizontal row. Furthermore, along such rows,
all but the two cells closest to the corresponding opposite row can be climinated
from comsideration, as these cells must have closer sites to those in the opposite cell.
Thus the NFN pair distance is known at each step, with an accuracy within twice
the side lengths of the current cells, and only cells containing a site with distance
within that estimate nced be considered [urther.

Figure 2.7. Aligned horizontal rows.

The time bound for this procedure depends on the number of iterations, which
determines the side length « of the smallest cells processed. This side length is half
of the accuracy o to which the NN pair distance will be known. It is casy to see
that this time bound is O((5 + k) log(1/«)), for finding the NFN pair between cells
with 7 and with k sites.

2.2.2 The general L; NI'N problem

A genceralization of Lemma 2.4 can be stated as:

Lemma 2.4'. Given sets of sites S and T', and point p = (cy,c¢z,...,¢q), if
the hyperplanes z; = ¢y, z3 = ¢g, ..., g = ¢4 all separate S and T, then a
closest site s € S to p is a closest site to T. That is, s is as close to any site
in T" as is any site in S.

The proof of this is analogous to that for Lemma 2.4,

