Approximation Algorithms
for Planar Traveling Salesman Tours
and Minimum-Length Triangulations

Kenneth L. Clarkson
AT&T Bell Laboratories
Murray Hill, New Jersey 07974

Abstract

This paper gives a partitioning scheme for the geometric, planar trav-
eling salesman problem, under the Euclidean metric: given a set S of
n points in the plane, find a shortest closed tour (path) visiting all the
points. The scheme employs randomization, and gives a tour that can be
expected to be short, if S satisfies the condition that a random subset
R C S has on average a tour much shorter than an optimal tour of S.
This condition holds for points independently, identically distributed in
the plane, for example, for which a tour within 1 + € of shortest can be
found in expected time nk?2*, where k = O(loglog n)®/e*. One algorithm
employed in the scheme is of interest in its own right: when given a simple
polygon P, it finds a Steiner triangulation of the interior of P. If P has n
sides and perimeter Lp, the edges of the triangulation have total length
LpO(logn). If this algorithm is applied to a simple polygon induced by a
minimum spanning tree of a point set, the result is a Steiner triangulation
of the set with total length within a factor of O(logn) of the minimum
possible.

1 Introduction

The Traveling Salesman Problem (TSP) needs no introduction (but see [LLKS85]).
This paper gives an algorithm for the planar geometric case: given a set S of n
points in the plane, find a shortest possible path that visits all the points. Even
in this special case of the TSP, no known polynomial-time algorithm does better
in general than that of Christofides, which finds tours within a factor of 3/2 of
the optimal length [Chr76]. In fact, unless P = NP, no approximation scheme
can guarantee a tour within 1+ € of shortest and run in (n/e)°") time [Pap77].
In this discouraging situation, Karp’s approximation schemes are a pleasant
surprise: if the points are identically, independently distributed (i.i.d.), one of
Karp’s methods find a tour almost surely within 1 + € of shortest, and requires

Approximation algorithms for TSP and triangulation 2

O(nlogn) + O(n)2'/<" /¢* time [Kar77, Ste8la, LLKS85]. Such probabilistic re-
sults give some idea of the usefulness of Karp’s methods, but suffer from some
restrictions placed on the probability distribution of the input.

One of Karp’s methods, fixed dissection, requires the density function to
be (approximately) known. Both fixed dissection and Karp’s other approach,
adaptive dissection, require the density function of the input points to be zero
outside a bounded region. These limitations are needed for the approximation
guarantees for the algorithms, and for the time bounds for fixed dissection. Also,
the optimal tour must be of cost Q(y/n) for the approximation guarantees;
although this condition holds for independently identically distributed (i.i.d.)
points under mild conditions [Ste81b], it is easy to describe families of point
sets for which it does not (and for which the scheme given here gives provably
good results).

The algorithm given here has an expected time bound holding for any point
set, and can give a short tour when, roughly, a tour of a small random subset
of S is expected to be much shorter than any tour of S. Such a condition holds
for any ii.d. point set for which the expected tour length T'(n) for n points
satisfies T'(n) = Q(n®) for some o > 0. As noted, this is true with @ =1/2 for
density functions satisfying mild conditions, so the approximation guarantees
will be expressed under this assumption; the results can be easily generalized
by replacing some constants by functions of a as appropriate.

A key result for the TSP approximation scheme is an algorithm for com-
puting a low-length Steiner triangulation of a simple polygon. Given a simple
polygon P with n sides and perimeter Lp, the algorithm returns a triangula-
tion A*(P) of the interior of P: a collection of edges that divide the interior of
the polygon into triangles, so that every side of the polygon is an edge in the
triangulation. The triangles meet only at common edges or vertices. The total
number of triangles is O(n). The length of the triangulation, the total of the
lengths of the edges, is LpO(logn). (Sometimes this total length is called the
weight or cost.) The algorithm requires O(nlog® n) time in the worst case.

This algorithm can be used to triangulate point sets as follows: given a
point set S, build a simple polygon P(S) by enclosing the minimum spanning
tree of S by a small iso-oriented rectangle with one side containing a point of
S (See Figure 1. Here the edges of the tree each give two edges of P(S), and
so it is quite degenerate in a sense.) The triangulation A*(P(S)) has a length
within O(logn) of the length of the minimum spanning tree of S, and so is
within O(logn) of a minimum length triangulation of S. (This holds whether
the triangulation is Steiner or not, since a Steiner triangulation has at least
v/3/2 times the length of a minimum spanning tree [DH90).)

Plaisted and Hong [PH87] give an algorithm for (non-Steiner) triangulation
of a point set, with a length within O(logn) of optimal. Recently Smith has sped
up their algorithm, to a worst-case time bound of O(n? logn) [Smi89]. Thus the
new algorithm is faster; also, it may produce much shorter triangulations in
some cases. (Applications in finite element analysis and numerical interpolation

Approximation algorithms for TSP and triangulation 3

Figure 1: A simple polygon induced by an MST.

seem to require a non-Steiner triangulation, however.)

1.1 The rest of the paper.

The next section gives the main ideas for the basic algorithm, and then a more
complex algorithm with a better time bound. Section 3 gives the algorithm for
polygon triangulation. The final section gives a few concluding remarks.

2 The basic algorithm

The new algorithm uses Karp’s observation that a planar subdivision of low
length gives a correspondingly cheap tour. This fact is stated below, using the
notation T'(S) for the length of an optimal tour of point set S, and L¢ for the
total length of a set of line segments C. We will view a triangulation A either
as a collection of line segments, or as a collection of regions, as appropriate.

Theorem 1 Suppose A is a triangulation of length La. Then for any point set
S, the optimal tour length T'(S) satisfies

T(S)+3La/2>) T(pNS).

pEA

Also, there is a tour of length T*(S), where

T*(S) <3La+ »_ T(pNS),
pEA

obtainable in O(n) time, given optimal tours in each pN S.

Approximation algorithms for TSP and triangulation 4

Proof. The proof is essentially the same as in [Kar77], and is omitted. The
procedure for computing T*(S) is to use the triangulation and optimal subtours
to obtain an Eulerian graph whose vertices include the points of S. A tour can
then be obtained via “shortcuts.” 0O

Given this theorem, and the triangulation procedure for point sets discussed
above, the following algorithm for the TSP suggests itself: given a set S of n
points, and € > 0, find a random subset R C S of size # = ¢2n/K log® n, where
K is a constant. Using algorithm A* of §3, compute a triangulation A*(P(R)),
and then use the procedure of Theorem 1 to compute a tour.

How fast is this algorithm? Plainly A*(P(R)) can be computed in polyno-
mial time; our main concern then is the time for computing the optimal subtours
within each triangle in A*(P(R)). The following lemma will help in bounding
this cost.

Lemma 2 IfS C E? is a set of n points in general position, and R is a random
subset of S of size r, then with probability at least 1 —rOMe=27/" eyery triangle
in A*(P(R)) contains no more than x points of S.

Proof. The lemma is similar to results in [Cla87]; every triangle in A*(P(R))
has vertices that are the intersection of lines that pass through points of S. That
is, the triangles in A*(P(R)) are all in a set Fs of O(n!?) triangles, each triangle
defined by b < 12 points of S. The probability that a given triangle of F that
contains z points of S and defined by b points will appear in A*(P(R)) is no
more than O(r/n)be=*("=b/"; summing this over all triangles in F gives the
bound. O

Thus for the given subset size of the above algorithm, with high probability
every p € A*(P(R)) contains O(log#)n/# = O(log®n)/e? points of S. This
is fairly small as a function of n, but unfortunately if we use an exponential
algorithm for computing the subtours, the algorithm is superpolynomial in n.
To find a polynomial algorithm, we must be a little more devious; the resulting
algorithm and its timing analysis are given below.

How good a tour does the algorithm produce? From Theorem 1, it is enough
to show that La«(p(r)) is small. If we assume that the expected cost of a tour of
R, arandom subset of S, grows as ©(y/r) for r = |R|, then the expected length of
A*(P(R)) grows at this rate, and so the ratio of expected values ET'(R)/ET(S)
is ¢/ K logn; since La-(p(r)) = T(R)O(logn), we have ET*(S)/ET(S) < 1+¢
as n — oo, for suitable choice of K.

2.1 The polynomial-time algorithm.

This section changes the basic algorithm in two ways, to decrease the size
of subproblems and to reduce the probability that the given bounds fail. For
the former problem, the basic subdivision is refined one step further; for the
latter, each triangulation construction is iterated, and the triangulation whose
maximum subproblem size is smallest is chosen.

Approximation algorithms for TSP and triangulation 5

Specifically, iterate the construction of A*(P(R)) for 2n /7 times, taking an
independent sample R each time, building A*(P(R)) each time, and determining
the maximum size set pN S for p € A*(P(R)). Now choose the triangulation A¢
for which that maximum set size is smallest. Now to reduce subproblem sizes,
take a random subset R, C S, of size r, = €2|S,|/(loglogn)?, and compute
A*(P(Rp)). (Here P(R,) is found by a change to the construction for the
basic algorithm: form a simple polygon by attaching an MST of R, not to a
bounding rectangle for R,, but to p.) Iterate this construction for each p for
2|S,|/r, times, taking the triangulation of P(R,) whose maximum subproblem
size is smallest. The resulting collection of triangulations forms a triangulation
A’ of P(R), and a TSP can be found as in Theorem 1.

Lemma 2 can be applied to the construction of A¢ and Af, to readily show
that there is a quantity k = O(loglogn)?3/e? so that the probability that |SNp| >
k + 2 is not more than e~2% for all p € Af. With such a high probability of
small subproblems, even if we use an algorithm for finding an optimal subtour
that requires 222% time[Bel62, HR62], the resulting expected time is nk?2* for
finding subtours; this dominates the total time.

A trickier question concerns the shortness of the subdivision A’, and so of
the resulting tour. The problem here is that we don’t have a direct bound on
the length of the MST of R, for p € A. However, we can obtain a bound on the
totals of the lengths using an approximating random subset of S, as follows.

Lemma 3 For some C1 and Cs, if R* C S of size r* = C1€*n/(loglogn)? is a
random subset of S then

C,ET(R*) > Y ET(R,).

pEA
Proof. For p € A,
ET(R*Np)
= Y E[T(R*Np)|j=|R"Np||Prob{j = |R* N pl},
j=0

and since E[T(R* N p) | j = |R* N p|] is nondecreasing as a function of j, we
know that

ET(R*np) > E[T(R*Np) |j=r1,] > Prob{j =|R*np|},
J2rp

and so
ET(R*Np) > ET(R,)Prob{|R* Np| > r,}.

With this, it is enough to show that there is some C; so that with the given r*,
we have Prob{|R* N p| < r,} < 1/C, for some constant C5. For any j, we have

Prob{j = |R* N pl}

Approximation algorithms for TSP and triangulation 6

()C-50/C)

’I"* . P r*
(j) 1S, (n — 1S, e,

where a? = (§)b! < ab. Since also n” = n"" (1 + O(1/n)),
, . ™\ “j
prob(j = |7 nl) < (7)1 =" 1+ 001 /),
where p = |S,|/n. That is, Prob{j = |R* N p|} is bounded above, within 1 +
0O(1/n)), by the appropriate probability for a binomial random variable. (Of
course, this is not very surprising.) Invoking the Chernoff bound,

Prob{|R" N | < 1,} < exp(—r,C3/2(Cy — 1)?),

so C; = 2 and Cy = 1/(1 — 1/e*) satisfy the conditions of the lemma. (Of
course, we must assume that r, > 1, but otherwise |.S,| is small enough that we
need not do any subsampling at all.) O

Theorem 4 Let S be a set of n points in the plane in general position, for
which the expected length ET(R) grows as Q(+/r) for a random R C S of size
r. Then a randomized algorithm can find a tour of S in no more than nk?2*
expected time, where k = O(loglogn)®/e?, such that the resulting tour has length
T(S)1+e).

Proof. The time required by the algorithm is discussed above; it remains
only to show that the tour is short. With high probability, no r, is larger than
log® n/(loglogn)?, so with the algorithm of the following section, and by the
lemma above, the expected length of the triangulation A is within a constant
factor of ET(R*)log(log® n/(loglogn)?), which is no more than /7* loglogn =
€y/n, as desired. O

3 Triangulation of simple polygons

This section gives an algorithm A for triangulating simple polygons. Given a
simple polygon P with n sides, the algorithm gives a collection of triangles A(P)
such that La(py = LpO(logn).

Two simple examples show the main ideas of the algorithm. In Figure 2,
we have a convex polygon triangulated by the algorithm. The idea is the “ring
heuristic” [Sup81, PH87], which is simply to progressively “coarsen” the polygon
by deleting every other vertex and connecting the remaining vertices, and repeat
this until a triangle is obtained. This takes O(logn) stages of coarsening, and
by the triangle inequality, the polygon at a given stage has a perimeter no larger

Approximation algorithms for TSP and triangulation 7

Figure 2: The “ring heuristic” for convex polygons.

Figure 3: A nonconvex polygon and its triangulation.

than the perimeter of the original. This simple construction solves the problem
for convex polygons.

Suppose the polygon is not convex. As an extreme case, consider the polygon
in Figure 3, consisting of a concave chain spanned by two long edges. A concave
chain is chain of edges such that if we walk along the edges keeping the interior of
the polygon to our left, we always turn to the right from edge to edge along the
chain. Here we cannot apply the same strategy, and indeed any triangulation
whose vertices include only the vertices of the polygon can have length Q(n)Lp.

To tackle this case, we coarsen the polygon by removing edges, as in the
right side of Figure 3. At each stage, we delete alternate edges, and extend
the remaining edges to give a new polygon. The number of stages is O(logn);
the length of the chain found at each stage is no more than the length of the
chain at the next stage. If the angle between the edges at the extreme ends
of the chain is small, then the length of the chain at the last stage is within a
constant factor of the length of the concave chain. This gives a triangulation

Approximation algorithms for TSP and triangulation 8

of the desired length. (The vertical segment divides the resulting polygon with
four sides into two triangles.)

These two coarsening operations are the basis of the general algorithm. To
apply these ideas to a general simple polygon, we must generalize them a bit.
Consider the operation of adding one edge to a convex polygon, to “cut off” a
single vertex. This operation is straightforward for a convex polygon, but what
is the analog for a simple polygon? We will use this: given two vertices a and b
of the polygon, use the segments of the shortest path between a and b to split up
the polygon. The result is a collection of subproblems to be solved recursively;
moreover, the total length of the segments used is no larger than the (shortest)
path between a and b along the boundary of the polygon.

Unfortunately, we cannot solve resulting subproblems by simply applying
this approach recursively; consider again even the convex case. We have then one
subproblem to solve after “deleting” a vertex, giving a sequence of n polygons
from start to finish. If we make a bad choice for the sequence of vertices to delete,
then we will build a lengthy triangulation. A remedy for this problem is to assign
weights to edges (or vertices) of the triangulation as we create them; the weight
of each edge of the original polygon is one. The weights will help in making the
choice of which vertex to delete, to create a series of deletions corresponding to
a balanced tree, and giving the desired length for the triangulation.

Before a more precise description of the general algorithm, here is an al-
gorithm for triangulating a concave chain of polygon edges, as above, with the
additional complication of taking weights into account. The algorithm applies to
concave chains with rotation at least —m/2, where the rotation of a chain is the
sum of the angles that we turn as we walk along the chain, keeping the interior
of the polygon to our left. Note that the rotation of a concave chain is negative,
and the rotation of the whole polygon is 27, as can be shown using induction on
the number of triangles in a triangulation of the polygon. (The rotation of the
polygon, possibly divided by 2, is apparently also called the rotation number,
the degree, the winding number, or the tangent winding number: let the reader
beware.)

Suppose a concave chain is given, with a rotation at least —7/2. Suppose
edge e in the chain has weight w,, a positive integer. For a vertex w incident
to edges e and f, assign weight w, = w, +wy. (If u is an endpoint, let w,, be
the weight of the edge incident to u.) The triangulation algorithm repeats the
following general step until done: pick an edge e with endpoints u and v so that
Wy + w, is the smallest such sum over all edges. Extend the edges incident to
e until they meet above e, creating a new vertex x. Assign the weight w, + w,
to x.

As stated by the next lemma, this algorithm produces a triangulation for
which a given edge contributes a length that is decreasing as a function of its
weight.

For a polygonal chain P, let edge P denote the collection of its edges.

Approximation algorithms for TSP and triangulation 9

Lemma 5 Let w, = Eeeedgecwe for chain c. Given a chain ¢ of rotation
at least —m /2, the algorithm produces a triangulation of length no more than
K1 ecedgec Le 18(2we/we), for some constant K.

Proof. Call two vertices of the triangulation wvisible to each other if the line
segment between them doesn’t cross the chain ¢. Call an edge of ¢ visible to a
vertex if both of its endpoints are visible to the vertex. When a vertex z and its
incident segments are added to the triangulation, the total length of the incident
segments is no more than the /2 times the total length of the edges of ¢ that
are visible to z. Thus if each such visible edge is charged its length when z is
added, the total charges will be proportional to the length of the triangulation.
The total charge for an edge e is L., multiplied by the number of vertices that
see it. We need to show that the number of such vertices is proportional to
lg(2w./we).

Note that we’ve built a binary tree on the vertices, and the subtree rooted
at a vertex contains the vertices that see it; we’ve seeking to bound the path
length from the root of the tree to a given vertex of c: since the tree is roughly
weight-balanced, this can be done appropriately.

Suppose u, z, ' and z" are consecutive vertices on a path to the root node
of the binary tree. It is enough to show that w, < w,»/2; this implies that
a path from chain vertex v to the root has length no more than 21g(2w./w,),
which then also bounds the number of vertices that see an edge incident to v.

To show the inequality, suppose the “current chain” has consecutive vertices
u”, u', u, v, v', v" when z is added to the triangulation above the edge e
with endpoints u and v. By the choice of e, we know that w, + w, = w, <
Wy + Wyry Wy < Wy + Weyr, and w, < Wy + Wy Since some pair of vertices
{u",u'},{u,v'},{v',v"} contributes to w,, as well as v and v, we know that
W, S wmu/Z. a

In general for simple polygons, we consider a polygon whose edges have
positive integral weights, and whose boundary is split into a collection of concave
chains. The weight of such a chain is the sum of the weights of the edges in it.
In the original polygon, every chain is one edge of weight 1.

First we extend the above claim to simple polygons with boundaries com-
prising few chains.

Lemma 6 Let P be a simple polygon with weighted edges of total weight n,
and whose boundary comprises three or four concave chains. Then P has a
triangulation of length no more than Ky L.log(2n/w,), where Ko is
a constant.

ecedge P

Proof. The polygon can be split into at most 8 chains each of rotation at least
—m/2: suppose at least 9 are needed. Then there are chains of total rotation less
than —27; since the polygon has rotation 27, and a pair of edges gives rotation
at most m, there must be more than (27 + 27)/m = 4 pairs of edges each of
positive rotation, a contradiction.

Approximation algorithms for TSP and triangulation 10

Figure 4: The general step for simple polygons.

We apply the algorithm of Lemma 5 to a chain, and find the intersection
of the resulting triangulation with the interior of the polygon. This collection
of triangles and quadrilaterals can be easily triangulated; moreover, we obtain
either a simple polygon with a concave chain having two edges, or two sim-
ple polygons; repeat until polygons with fewer edges than some constant are
obtained, and triangulate arbitrarily. The given bound easily follows. O

Now consider a simple polygon whose boundary comprises more than three
concave chains. To do the general step, we find a pair of adjacent chains C' and
D, such that we + wp is minimum over all such pairs of chains. Suppose a
and b are the respective distinct endpoints of C' and D, and m is their common
endpoint. We will include some segments of the shortest path in P from a to b
in the triangulation. This will split P up into smaller polygons, using a path of
length no more than the length of the chains C' and D. To find these shortest
paths, we preprocess the original polygon for shortest path queries[GH87], so
that queries require time O(logn) plus the number of segments in the path.

We can characterize the shortest path from a to b within P as follows: the
path consists of a chain of line segments, having three subchains, two of which
are subchains of C and D, with another subchain E through the interior of
P. Any one of these subchains may be empty. Suppose chain E is not empty.
Let F' denote the portion of C' and D not in the shortest path from a to b.
The segments of E divide P into pieces; associated with each e € edge F is a
polygon P, comprising that portion of P separated from m by e. Also, there is
the polygon Py bounded by E and F. (In Figure 4, E has three edges, and F'
is the concatenation of C and D.)

The general step of the algorithm is as follows: suppose E is empty, so that
the shortest path from a to b is simply the chains C' and D together. (This
occurs when C' and D meet at a concave angle.) Then the general step consists
of simply concatenating the chains C' and D. Suppose E is not empty. Then
recursively triangulate the P,, for e € edge E, giving every e the weight n—w), for
this purpose, where w!, is the sum of the weights of the edges of P, not including
e. (Note that with this assignment, wp = n for every polygon P input to the

Approximation algorithms for TSP and triangulation 11

algorithm.) Use the algorithm of Lemma 6 for triangulating polygons with three
or four concave chains. This leaves the problem of triangulating P,. Here if e is
not an edge of P, assign it weight w!; if e is an edge of P, it retains its weight.
With these assignments, apply the algorithm of Lemma 6 to Fy.

Call the edges of E inward edges, and the edges made by calls to the al-
gorithm of Lemma 6 outward edges. Include the edges of P itself also in the
inward edges. We first bound the total length of all the inward edges.

Lemma 7 The inward edges resulting from the above procedure have total length

no more than
K; E L,lg(2n/w,),
g€edge P

for a constant Ks.

Proof. The theorem implies that each edge g of P can be charged Cy(P) =
K3L,log(n/wy), and the resulting total charges over all edges accounts for the
length of the triangulation. We will show inductively that the length of the
triangulations of the P,, and of Py, can be distributed to the edges of P to
satisfy this condition. For this, it is enough to show that the charges for edges
of E can be appropriately distributed to the edges of F.

Suppose that edge e € edge E is charged z L, for the triangulation of F;, for
some z. The charges to the edges in E must be distributed to the edges of F.
Suppose f € edge F' is charged xL.L¢/Lp for each e € edge E, plus its own
length; then the total charge distributed from each e is zL.. If the edges of P
not in F' are appropriately charged inductively, the total charge is the length of
the inward edges. On the other hand, if every e € edge F is charged no more
than zL., then f is charged 2LyLg/Lr + Ly < (z + 1)Ly.

Say that the edges of E are above those of F. We can apply charging across
several levels of this relation: suppose edges above those of E are charged no
more than z times their lengths; then by charging to edges of E and then F,
the total charge to f € edge F' is no more than (z + 2)L;. In general, if edges
at C' levels above f are charged no more than z times their lengths, then f is
charged (z + C)Ly.

We now proceed analogously to the proof of Lemma 5: if an edge g is above
an edge above an edge,..., above f, for a sufficient (but fixed) number C of
levels, then wy > 2wpr.

Suppose, inductively, that the charge to g is Ly K31g(2n/w,) < L,K3lg(n/wr);
by the above, the transferred charge to f is Ly(K3lg(n/wr) + C). This is no
more than LyK3lg(2n/wy) for K3 > C. O

Theorem 8 The given procedure yields a triangulation with length no more
than

Ki Y Ilosnfuy),
g€edge P

for some constant K.

Approximation algorithms for TSP and triangulation 12

Proof. As in the previous lemma, we show that each edge g of P can be
charged Cy(P) = K4L4log(n/w,), and the resulting total charges over all edges
bound the length of the triangulation. We will show inductively that the cost
of triangulating Py and the P, for e € edge E, can be distributed to the edges
of P to satisfy this condition.

Suppose the theorem holds inductively for the polygons P,, so each edge g
of P, \ {e} is charged by the prescribed Cy(P.) < C,4(P); we will show that the
charges to edges of Py from the triangulation of Py, and the charge to e for the
triangulation of P,, can be charged to the edges of F' in an amount no more
than Cy(P) for f € edgeF.

The charge due to e € edge E for triangulation of Py is K3 L, lg((n—wr) /wl),
by Lemma 6, noting that n — wp = ZeeedgeEwé.

Suppose for e € edge F, the polygon P, comprises no more than four concave
chains, so the algorithm of Lemma 6 is applied. By that lemma, the length of
the resulting triangulation is at most }_ coqqe p, K2Lg 18(2n/wy). Adding to this
the charge K2L,log(2(n — wr)/w.) due to e € edge E for triangulation of Py,
and total 5 5

K2Le lg w + Z K2Lg lg _na
g€edge Pe\{e} v
which is bounded by

2
Z K4Lg lg w_na
g€edge Pe\{e} g

for K4 > 2K, noting that obviously w], > w, for g € P, \ {e}, and L. < Lp,.
Thus the additional charges can be made to the edges of P,.

If P, comprises more than four concave edges,— is this defined? — the
charge to e for triangulation of P, is K4 L. 1g(2n/(n—w.)), by induction. Adding
to this the charge to e for triangulation of P, we have

Le (Kﬂg”;“’F + Ky lg—")

! !
[n we

to distribute to the edges of F'. It is enough to show that these edges are charged
at most K4 lg(2n/wr) times their length. Since Ly < Lp, it would suffice if
the above charge for e were less than L.K41g(2n/wp). This holds when the
quantity

is nonnegative. Since P, contains at least five concave chains, w, > wp by
choice of C' and D. Therefore (1) is nonnegative for w, < n/3 and K3 > K.

Approximation algorithms for TSP and triangulation 13

If w!, > n/3, quantity (1) is at least —K>1g6. That is, each edge f € edge F
is charged Ly K> lg 6 more than can be accounted for inductively. However, such
additional charges the previous lemma, and the theorem follows by appropriately
adjusting the constant. O

4 Concluding remarks

Two natural questions raised by these results: can something be done for point
sets for which T'(R) = T'(S) for small random subsets R? Can an approximation
algorithm be found for non-Steiner triangulations that requires n logo(l) n time?

References

[Bel62] R. E. Bellman. Dynamic programming treatment of the traveling
salesman problem. Journal of the ACM, 9:61-63, 1962.

[Chr76] N. Christofides. Worst-case analysis of a new heuristic for the trav-
eling salesman problem. Technical Report 388, Graduate School of
Industrial Administration, Carnegie-Mellon University, 1976.

[Cla87] K. L. Clarkson. New applications of random sampling in computa-
tional geometry. Discrete and Computational Geometry, 2:195-222,
1987.

[DH90] D. Z. Du and F. K. Hwang. An approach to proving lower bounds:
solution of Gilbert-Pollack’s conjecture on Steiner ration. In Proceed-
ings of the 31th Annual IEEE Symposium on Foundations of Com-
puter Science, pages 76-85, 1990.

[GH87] L. J. Guibas and J. Hershberger. Optimal shortest path queries in a
simple polygon. In Proceedings of the Third Symposium on Compu-
tational Geometry, pages 5063, 1987.

[HR62] M. Held and M. Karp R. A dynamic programming approach to se-
quencing problems. SIAM J., 10:196-210, 1962.

[Kar77] R. M. Karp. Probabilistic analysis of partitioning algorithms for
the traveling-salesman problem in the plane. Math. of Operations
Research, 2:209-224, 1977.

[LLKS85] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys.
The traveling salesman problem. Wiley, New York, 1985.

[Pap77] C. H. Papadamitriou. The Euclidean traveling salesman problem is
NP-complete. Theoretical Computer Science, 4:237-244, 1977.

Approximation algorithms for TSP and triangulation 14

[PH87] D. A. Plaisted and J. Hong. A heuristic triangulation algorithm.
Journal of Algorithms, 8:405-437, 1987.

[Smi89] W. D. Smith. Implementing the Plaisted-Hong min-length plane tri-
angulation heuristic. unpublished, 1989.

[Ste81a] J. M. Steele. Complete convergence of short paths and Karp’s algo-
rithm for the TSP. Math. of Operations Research, 6:374-378, 1981.

[Ste81b] J. M. Steele. Subadditive euclidean functionals and nonlinear growth
in geometric probability. Annals of Prob., 9:365-376, 1981.

[Sup81] K. J. Supowit. Topics in computational geometry. Technical Report
UIUCDCS-R-81-1062, University of Illinois, 1981.

