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FULLY POLYNOMIAL BYZANTINE AGREEMENT
FOR n > 3t PROCESSORS IN ¢+ 1 ROUNDS*

JUAN A. GARAY! AND YORAM MOSES#

Abstract. This paper presents a polynomial-time protocol for reaching Byzantine agreement in
t+ 1 rounds whenever n > 3t, where n is the number of processors and ¢ is an a priori upper bound
on the number of failures. This resolves an open problem presented by Pease, Shostak and Lamport
in 1980. An early-stopping variant of this protocol is also presented, reaching agreement in a number
of rounds that is proportional to the number of processors that actually fail.
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1. Introduction. The Byzantine agreement problem (BA), introduced by Pease,
Shostak and Lamport in [22], is recognized as a fundamental problem in fault-tolerant
distributed computing. Over the last decade or more, the problem has received a great
deal of attention in the literature, and has become a testbed for a variety of models for
distributed computing (see [15] for an early survey on the subject). While Byzantine
agreement has been studied extensively over the years, the original model in which
faulty processors can act in arbitrarily malicious ways has continued to withstand a
complete analysis. In [22], the authors presented a protocol that solves the problem
(then still referred to as the interactive consistency problem) in t+ 1 rounds whenever
n > 3t. Here n is the total number of processors and t is an a priori upper bound
on the number of faulty processors possible. They also proved that no solution for
n < 3t exists, while Fischer and Lynch later showed that ¢ + 1 rounds were neces-
sary in the worst-case run of any BA protocol [16]. The protocol presented in [22],
however, required the processors to send exponentially long messages and perform
exponentially many steps of computation. The design of more efficient protocols is
presented in [22] as an open problem, and has been the subject of many subsequent
papers. This paper presents a BA protocol for n > 3t that halts in ¢ + 1 rounds and
uses only a polynomial amount of communication and computation.

This work is based on a long sequence of papers whose goal was to reduce the
complexity of the protocol while maintaining good performance in terms of the num-
ber of rounds necessary for agreement. Polynomial-time BA protocols for n > 3t that
halt in more than 2t rounds (see, e.g., [11, 24]) have been known as of 1982. In 1985
Coan presented a family of BA protocols for n > 4t that, for every d, halt in t + t/d
rounds, and require messages of size O(n?) [8]. However, Coan’s protocols require ex-
ponential local computation. Bar-Noy, Dolev, Dwork, and Strong later improved on
this result, providing protocols with essentially the same round and communication
behavior, but requiring only polynomial computation [2]. These protocols thus pro-
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| Protocol | n rounds comm. comp. |
PSL] 80| 3t+1 t+1 exp(n) exp(n)
DFFLS,TPS] 82| 3t+1 2t+c poly(n) poly(n)
C1] 85 | 4t+1 t+ % O(n%) exp(n)
DRS,BD,C2] 86 Q(t?) t+1 poly(n) poly(n)
BDDS] 87| 3t+1  t+1 O(n9) O(n9)
MW] 88| 6t+1 t+1 poly(n) poly(n)
BGPI] 89 | 3t+1 t+ 3% 0(c%) o(c%
BG1] 89 | 4t+1 t+1 poly(n) poly(n)
CW] 90 | Q(tlogt) t+1 poly(n) poly(n)
[BG2] 91 | 3+et t+1 poly(n)-O(2) poly(n)-O(2%)
This paper 3t+1 t+1 poly(n) poly(n)
TABLE 1

History of Byzantine agreement (partial list).

vide a tradeoff between the number of rounds required and the size of messages used,
and prove that 2¢ rounds are not necessary for polynomial-time BA protocols. (t+1)-
round polynomial-time BA protocols for n = (#?) were presented in 1986 by Dolev,
Reischuk and Strong [13]. In 1988 Moses and Waarts presented the first polynomial
(t+1)-round protocol with linear resilience: It required only that n > 8¢, and was later
improved to handle n > 6t [21]. In 1989 Berman and Garay presented a polynomial
protocol for n > 4t [3], which they improved in 1991 to handle n > (3 + €)¢ for any
€ > 0 [4]. At the cost of requiring more processors (£2(tlogt)), Coan and Welch de-
veloped a polynomial protocol that uses one-bit messages and asymptotically optimal
total bit transfer [10]. Table 1 presents a summary of these and related results.

Our work starts out using observations and techniques developed in [2, 21, 3].
In particular, we start from the formulation by Bar Noy et al. of the exponential
protocol for n > 3t in terms of a two-stage process: In the first stage, processors
exchange information for ¢ 4+ 1 rounds, and each processor stores the information it
receives in a tree-like data structure. In the second stage, each processor computes
resolved values for each node in a bottom-up fashion, where the resolved value of a
node is a function of the resolved values of its children in the tree. The resolved
value of the root of the tree is the value the processor decides on. In order to obtain
our result, we need to develop new techniques to handle the great powers that faulty
processors have when n > 3t. In particular, we study the class of functions that
can serve in the second stage of the algorithm for computing resolved values for the
nodes. We present a new class of admissible resolve functions, that alternate between
favoring the value 0 at one level of the tree and favoring 1 at the next level. By
extending the methods for fault detection and fault masking used, we are able to
present a particular admissible resolve function, which restricts the freedom of faulty
processors. Given these methods, this function forces the number of processors that
are detected as faulty by all nonfaulty processors to be large in runs in which the
processors’ trees grow exponential. This in turn makes it possible to apply a monitor
voting technique along the lines of the Cloture Votes technique of Berman and Garay
[3] to obtain a polynomial BA protocol.

A few comments are in order regarding the related randomized Byzantine agree-
ment problem. Rabin showed that a shared coin can be used to attain randomized
agreement in a constant number of rounds [23]. Later, Feldman and Micali presented
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an algorithm for constructing such a coin, thereby providing an optimal protocol for
this problem [17]. In the protocol of [17], however, the Decision property was guar-
anteed only with probability 1, and the protocol has runs in which no processor ever
reaches a decision. Moreover, there is no finite bound K such that the processors that
do decide, do so in K rounds. Indeed, there is no obvious way, to transform such a
probabilistic protocol into a polynomial protocol in which nonfaulty processors never
violate the conditions of Byzantine agreement (Agreement and Validity), and yet they
all decide in fewer than ¢ + 1 rounds with probability 1. A very close approximation
of this was obtained by Goldreich and Petrank [19]. They presented a probabilistic
Byzantine agreement protocol with a constant expected number of rounds, that is
guaranteed to always halt in ¢t + O(logt). Their protocol is based on a sequential
combination of a probabilistic protocol with a deterministic (¢ + 1)-round protocol.
Before our paper, their scheme when applied to the case of n > 3t would yield a pro-
tocol with an exponential worst-case complexity in terms of both computation and
communication. Using our protocols in their scheme, it is now possible to obtain such
a probabilistic protocol for n > 3t with polynomial-time worst-case complexity. Using
different techniques, Zamsky has recently improved to ¢ + 1 the worst-case running
time of [19], while maintaining linear, but non-optimal, resiliency [27].

The remainder of the paper is organized as follows. In Section 2 we describe the
model and formally define the problem. In Section 3 we review EIG, the exponential
information gathering protocol of Bar-Noy et al. In Section 4 we review the techniques
that made polynomial-time protocols possible for n > 4t. Section 5 is the first step
towards a polynomial solution for n > 3t. We introduce a general, radically different
class of resolve functions. This class of functions is then used in Section 6 as the
basis of a protocol for a slightly generalized version of Byzantine agreement. In
Section 7 we present the concrete function of our choice, while in Section 8 we present
Sliding-flip, the polynomial-time protocol for n > 3¢t. Finally, in Section 9 we
modify the protocol so as to terminate in min{t + 1, f + 3} rounds, where f < t is the
actual number of failures that occur in the run.

2. Preliminary Definitions. For ease of exposition of our protocols we shall be
concentrating on the following variant of Byzantine agreement, sometimes also called
the Consensus problem, which is defined as follows: Given are n processors, at most ¢
of which might be faulty. Each processor ¢ has an initial value v; € {0,1}. Required
is a protocol with the following properties:

(i) Decision: Every non-faulty processor i eventually irreversibly “decides”
on a value d; € {0,1}.
(ii) Agreement: The non-faulty processors all decide on the same value.
(iii) Validity: If the initial values v; of all nonfaulty processors are identical,
then d; = v; for all nonfaulty processors i.

In the other common variant of Byzantine agreement there is a distinguished
leader with a single initial value v. The Agreement and Decision conditions remain
the same, while the Validity condition requires that if the leader is nonfaulty, all
nonfaulty processors should decide on the leader’s value v. Protocols for both variants
are practically identical, and everything we say here applies to the single leader case
with only minor modifications.

Throughout the paper we use t to denote an upper bound on the number of
faulty processors. We assume the standard model for Byzantine agreement, in which
processors may fail in arbitrarily malicious ways (see, for example, [16]). Each proces-
sor can communicate directly with every other processor via a reliable point-to-point
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channel. Finally, the processors are synchronous, and their communication proceeds
in synchronous rounds: In a round, a processor can send one message to each of the
other processors, and all messages are received in the round in which they are sent.

3. Exponential Information Gathering Protocols. We start by describ-
ing the exponential protocol due to Bar-Noy et al. [2] (Ezponential Information
Gathering—FE1G), which is closely related to the original protocol of Pease, Shostak
and Lamport [22]. Our final protocol will be obtained by a sequence of transforma-
tions to this protocol, based on distinct observations. QOur description of the EiG
protocol below is essentially taken from Bar Noy et al. [2].

In the first round of the EIG protocol for Byzantine agreement, each processor
broadcasts its initial value v; to all other processors. In each of the following ¢ rounds,
every processor broadcasts all of the information it received in the latest round. At the
end of ¢+ 1 rounds each processor computes a decision value based on the information
it has gathered, decides on this value and halts.

We now describe the protocol in greater detail. Each processor incrementally
constructs a tree-based data structure which we will call an E1G tree. We consider the
root of the tree to be a node of depth 0, and inductively define the depth of a node
to be greater by one than the depth of its parent. We will only be interested in EiG
trees of depth at most ¢t + 1. In the EIG tree, a node of depth r has n — r children.
Thus, in particular, the root has n children. The edges of the E1G tree are labelled
with processor names as follows. The outgoing edges of the root are labelled 1,.. ., n,
respectively. A node of depth 7 > 1 has an edge labelled i for every processor name i
that does not appear on the path leading from the root to the node. Notice that with
this definition no label appears twice on a path from the root to a leaf. It follows that
the sequence of labels on the path from the root to a given node uniquely determines
this node. Moreover, there is a 1-1 correspondence between strings ¢ of up to t + 1
distinct processor names and the nodes in an EIG tree of depth ¢t + 1. We will thus
regard such a string as the name of the corresponding node, and refer to nodes by
such names. The root is named by A, which stands for the empty string. Notice that
the length of the string o, which we shall denote by |o|, coincides with the depth of o.

We shall ultimately associate two values with each node ¢ in a processor i’s tree:
a stored value, denoted by tree(s), and a resolved value denoted by res(c). When
we need to specify the particular processor ¢ in whose tree these values appear, we
denote them by tree;(¢) and res;(c) respectively. The stored values are assigned
during the ¢ + 1 rounds of information exchange between the processors, while the
resolved values are computed at the end, in order to determine the decision value.
The manner in which these values are arrived at is described below. A node o7 is said
to correspond to the processor j whose name labels the edge leading to the node from
its parent 0. We call a node of the EIG tree correct if it corresponds to a nonfaulty
processor.

Each processor 4 initially stores its initial value v; in tree;(A\)—at the root of
its EIG tree. In the first round of the EIG protocol a processor will send the value
stored in its root to all n processors (including itself, although of course this message
need not actually be sent). For every processor j, the value that j sends to i in the
first round will be stored in the node (j) of tree; (a default value of 0 will be stored
in tree;({j)) in case processor j does not receive a legitimate message with a value
from 7). In each subsequent round every processor sends to all other processors the
level of its tree most recently filled in. (Note that a faulty processor may of course send
different values than the ones it should send, and also may send conflicting messages
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to different processors in the same round.) The messages received are broken up and
used to form a new level in the processor’s tree as follows: If j’s message reports the
value v for the node o, and j does not appear in o, then the value v will be stored
at the node oj. Again, we store a default value of 0 in oj in case j did not report
a legitimate value for o (that is, if j did not send a message that is in the syntax
appropriate for messages sent in this round). Intuitively, the node ¢j in tree; stores
the value that j claims in its message to ¢ to have stored in tree;(o). Notice that the
single message received by ¢ from j in a given round reports on the values of many
nodes in j’s tree, and will be used to update many different nodes in tree;.

We consider a node to be created in the round in which a value is stored in the
node. In the first stage of the EIG protocol, information is gathered for ¢ + 1 rounds,
until all nodes of depth up to t+1 are created. At that point each processor computes
a value for the tree, by applying the recursive computation of res;(-) to the root A.
The processor then “decides” on the value of res()), and halts. For the purpose of the
current section and the next one, the particular function used for res(-) is recursive
magority voting, defined as follows:

1 if majority of res;(oj) are 1;

tree;(o) if o is a leaf;
res;(o) =
0 otherwise.

Thus, res;(o) computes the value of the recursive majority of the descendants of the
node o in tree;. This completes the description of the E1G protocol. Bar Noy et al.
prove the following:

THEOREM 3.1 (BAR-NOY et al. [2]). Protocol E1G solves the Byzantine agree-
ment problem for n > 3t.

4. Polynomial Protocols for n > 4t. While the E1G protocol is a correct
(t + 1)-round BA protocol for n > 3t, it has a major drawback in requiring mes-
sages and local memory of exponential size. In fact, every run of this protocol is
exponential. Nevertheless, the clean structure provided by the EIG tree will allow
us to apply a sequence of transformations to this protocol, and to finally arrive at
a polynomial protocol. In this section we shall present the basic observations that
lead to a polynomial protocol in the case of n > 4t. In Section 5 we shall highlight
the problems and discuss the modifications required in the case of n > 3t. This will
require a careful analysis and new techniques. In particular, we shall introduce a new
class of resolve functions, which are instrumental in achieving a polynomial protocol
for n > 3t.

4.1. Predicting resolved values. The first step is based on an observation
due to Moses and Waarts in [21]: A processor 4 can often determine early on what
the value of res;(o) in the EIG protocol will be. This is commonly called prediction.
Roughly speaking, once i is able to predict the resolved value of o, it can stop gathering
information about the whole subtree of tree; rooted at o. One basis for prediction
is the following lemma that is used in the proof of Theorem 3.1:

LeEMMA 4.1 (BDDS). Let n > 3t, let i and j be nonfaulty processors, and let o
be a node of depth |o| < t such that j does not appear in o. Then at the end of
round t + 1 we have res;(cj) = tree;(cj) = tree;(o).

As discussed in [21] if, for example, majority +t — 1 children of o store the same
value v in tree;, then i knows that at least majority of children of o are correct
and store v. Hence, by Lemma 4.1 we get that the majority of res;(sj) values will
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be v. The definition of the resolve function now implies that we will end up with
res;(0) = v. Following [21], we will say in this case that the value of o is fized to v
for i once ¢’s children in tree; have been created. Another case in which the resolved
value of a node can be predicted is when a majority of its children become fixed to
the same value. We also define a node o to be closed in tree; at the end of round r
if either o or one of its ancestors is fixed in tree; at that time. The properties of
prediction in the case of n > 4t are described in the following two statements.

LEMMA 4.2 (MW). Assume n > 4t, let o be a correct node with |o| <t, and let i
be a nonfaulty processor. Then o is closed in tree; by the end of round |o| + 1.

COROLLARY 4.3 (MW). Assume n > 4t and let i and j be nonfaulty processors.
In the EIG protocol, if o is fized for i at the end of round r, then o s closed in tree;
at the end of round r + 1 at the latest.

An immediate implication of Corollary 4.3 is that a nonfaulty processor need
report on descendants of a node for at most one round after it can determine that the
node is fixed to some value. No further information it can send about the subtree of
that node will help anyone determine its final resolved value. In particular, once the
root becomes fixed in tree;, processor ¢ knows the decision value and needs to send
information for at most one more round. [21] uses this to devise an early-stopping
BA protocol for n > 4t. This protocol is still exponential, although it is significantly
more efficient than the one that constructs the full EiG tree. Moreover, there are many
cases in which the tree is polynomial in size. In fact, in the common case in which no
failures arise, the protocol ends after two rounds, and the amount of communication
sent by a processor is O(n) in the case of single-source BA and O(n?) in the consensus
case.

Lemma 4.2 provides some insight into the relationship between the size of the E1G
trees (and hence the complexity of computation and communication) in a given run
of the early-stopping BA algorithm and the behavior of the faulty processors during
that run. Let us call a node o corrupted in tree; if o is not closed in tree; by the
end of round |o|+1. Clearly, a non-corrupted node can have at most n children in the
tree. In addition, it is not hard to check that a corrupted node can account for the
need to store its grandchildren, but not for any later descendants. The total size of
an EIG tree thus becomes roughly O(n?C), where C denotes the number of corrupted
nodes in the tree. It follows that if we are able to reduce the number of corrupted
nodes, then the trees will shrink, and hence also the communication. (Indeed, the
protocol of [21] managed, for n > 8t, to ensure that no processor is able to corrupt
more than one node overall, and thus in all trees C < t.) A central tool in reducing
the number of corrupted nodes turns out to be the detection and masking of faulty
processors, which we now turn to discuss.

4.2. Detecting and masking failures. Lemma 4.2 implies that if oj is cor-
rupted in tree;, then processor i can detect that j is faulty immediately after it
receives values for oj’s children. Indeed, we shall see later on some other instances
in which a processor 4 can detect another processor as faulty. Detecting failures is
useful because of the following observation, which was first made by Dolev Reischuk
and Strong [13], and later used in various ways in [8, 2, 21, 3] and others: Since faulty
processors can send arbitrary messages, once we detect a processor as being faulty, we
can act as if it sends us particular messages that may be to our advantage, ignoring
what it actually sends us. This is called fault masking. One particularly simple form
of fault masking is to regard a processor detected as faulty to send us a fixed value
(e.g., 0) for all nodes of interest. As we shall see, this can help reduce the number
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of corrupted nodes. Once all nonfaulty processors mask a given processor z, we say
that z is disabled. Notice, in particular, that once z is disabled, nodes of the form oz
can no longer be corrupted. They become fixed to the value being used for masking
at the end of round |oz| + 1.

Corollary 4.3 implies that unless o is corrupted in all of the correct processors’
trees, it will become closed (in all trees) at the end of round |oj| 4+ 2. It follows that
in order for the subtree of oj to grow to a substantial size in some processor’s tree,
the node ¢j must be corrupted in all nonfaulty processors’ trees. We will call a node
universally corrupted if it is corrupted in all nonfaulty processors’ trees. Another
consequence of Corollary 4.3 is that the final size of an EIG tree is polynomial if and
only if the number of universally corrupted nodes in the tree is polynomial. This
follows from the fact that if the subtree of a universally corrupted node has more
than n® nodes, at least one of the node’s children must also be universally corrupted.
If a node oj is universally corrupted, then everyone detects j as faulty at the end of
round |oj|+1, and j becomes disabled from that point on. It cannot corrupt nodes in
later rounds. It follows that when n > 4t, fault masking allows a faulty processor to
universally corrupt nodes only during a single round. Moreover, Lemma 4.2 implies
that if neither the node oj nor any of its ancestors is fixed in tree; by the end of round
|oj|, then all processor names appearing in the string o denote faulty processors. This
implies that once we employ early stopping and fault masking in the case of n > 4t, at
least 3t of the children of any node of interest are nonfaulty. Moreover, at most ¢t — |o|
children of a node ¢j can be faulty. As a result, if processor 4 finds more than ¢ — |o|
values among the children of oj that differ from tree;(cj), it can detect that j is
faulty.

If no faulty processor universally corrupts a node in a given round r, then all non-
faulty processors decide by the end of round r + 1. If only one processor universally
corrupts nodes in each round (and we employ early stopping and fault masking), then
the total size of the tree is polynomial. Following [3], we shall call ESFM (for “Early
Stopping with Fault Masking”) the protocol resulting from the combined application
of the prediction and fault masking techniques to EiG. The ESFM protocol signifi-
cantly reduces the size of the EIG tree processors construct.! However, as discussed
n [21], the trees may still grow exponential in general because (i) more than one
processor can corrupt nodes in a given round, and (ii) a processor can corrupt many
nodes in a given round. The final observation that will yield a polynomial protocol,
at least in the case of n > 4t, is that when many processors universally corrupt nodes
in a given round, it is possible for the nonfaulty processors to detect that something
“fishy” is going on, and to decide to stop. How to do so is the subject of our next
subsection.

4.3. Monitor voting. An important new idea was introduced by Berman and
Garay in [3]. They proposed to have each processor observe the size of its tree, and
when the size exceeds a certain threshold, to “vote” to stop the whole agreement
procedure. Thus, roughly speaking, they started a new instance of Byzantine agree-
ment in every round, in which a processor’s initial value reflects whether or not the
processor is in favor of stopping the process (and deciding on a default value). In
order for any processor’s tree to become exponential, all processors’ trees must grow
beyond any polynomial threshold. Should this happen, all nonfaulty processors would

1 Using both techniques—prediction and fault masking—simultaneously reduces the tree from
size O(n?) to O(ct)[21]. In [4] a more sophisticated masking technique yields a similar result for
n > 3t.
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vote in favor of stopping and deciding on the default, and this instance of the agree-
ment protocol would stop in two rounds. In the [3] protocol, once such an agreement
is attained, every nonfaulty processor decides on the default and halts, terminating
its participation in all Byzantine agreement instances underway.? We think of the
agreement instances initiated in every round of the [3] protocol as processes that
monitor the run, ensuring that trees do not grow too much. Indeed, Berman and
Garay showed that when performed in a careful way, the monitor voting technique
yields the following:

THEOREM 4.4 (BERMAN AND GARAY [3]). By applying monitor voting to the
ESFM tree, it is possible to obtain a (t+1)-round polynomial-time Byzantine agreement
algorithm for n > 4t.

original ESFM tree

@)

round 1 monitor

round 2 monitor

@ /O\/O\

FiGc. 1. The monitor voting technique.

The technique is illustrated in Figure 1. Monitor voting introduces a number of
new subtleties:

(i) Once there are a number of agreement processes underway, we must be
careful to ensure that processors use the individual agreements’ values in a consistent
way when determining their ultimate decision value. If, for example, one processor
may decide 0 because its original information gathering tree stopped with value 0,
while the other decides 1 because one of the monitors stopped with value 1, we are in
trouble.

(ii) As monitor processes are initiated in different rounds of the execution, we
need to take action to ensure that they all halt by time ¢ + 1. Otherwise, we may
run into consistency problems as described above, when we are forced to decide at

2 This technique was called Cloture Votes by the authors, since it resembles a procedure in the
U.S. Senate in which a vote can be called on whether the discussion on a given topic has been going
on for too long.
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time ¢ + 1.

(iii) It may seem desirable to exclude faulty processors from participating in a
monitor, in order to ensure the monitor halts in time. However, deciding that a given
processor is faulty is as hard as Byzantine agreement itself. Techniques of [12] can be
used to show that we can not exclude processors “on the fly,” as a result of failures
being detected.

The main tool that can be used to limit the damage caused by faulty processors
is to use information about failures that a processor has gained in one agreement
process to mask faulty processors in all agreement processes. It is crucial, however,
to ensure that sufficiently many processors are disabled before a processor can vote in
favor of stopping in a monitor agreement process. In fact, we shall use the following
rule for determining the initial value of processor ¢ in monitor process M", which is the
monitor agreement process initiated in round r:

Monitor-vote: Processor ¢ will vote 1 on M" if it has detected that r — 1 faulty
processors have corrupted nodes and are disabled by the end of round r — 1;
it will vote 0 on M" otherwise.

In the case of n > 4¢, it is possible to show that for the information gathering
trees to grow large, the number of disabled processors must grow sufficiently fast that
it would enable every nonfaulty processor to eventually vote 1 using this rule. This
is the basis of the solution for n > 4t given in [3]. Extending this idea to n > 3t,
however, seems to be problematic, because the faulty processors have greater powers
to corrupt nodes when 4t > n > 3t.

5. Deriving a Polynomial Protocol for n > 3t. Our goal in this paper is to
describe a polynomial BA protocol for n > 3t that is guaranteed to terminate in ¢ +1
rounds. Intuitively, the protocol follows the monitor voting approach presented in the
previous section. In the case of n > 3t, however, most of the properties used when
n > 4t no longer hold. First of all, using the resolve function defined in Section 4, the
analogues of Lemma 4.2 and Corollary 4.3 fail. ILe., it is possible to show that when
n < 4t the majority function does not guarantee quick prediction of the value res(o)
even for correct nodes o. (Indeed, we know of no constant number of generations of
descendants for which res guarantees prediction of correct nodes.) In [25] Waarts
presented prediction rules for a resolve function introduced by Bar-Noy et al. [2], and
showed that they guarantee prediction in two rounds. In the case of n > 4t we had
the property that exponential size of trees requires many faulty processors to expose
themselves (and hence become disabled) early in the run. Intuitively, we say that
some faulty processors must be “wasted” for the adversary to be able to cause trees
to grow exponential. This was crucial for the monitor voting scheme to succeed in
keeping the trees polynomial. As we shall see, the fact that it sometimes takes nodes
two rounds to fix when n > 3t implies that there are often cases in which the tree can
grow without requiring such waste to occur. The function used by Waarts in [25] is
ternary, and it occasionally provides an “undecided” value for an internal node. This
introduces enough “slack” into the information conveyed by the resolve function, that
we were unable to use it successfully in the case of n > 3t. It seems possible for
the adversary to cause the trees to grow exponential when that resolve function is
used, without the number of disabled processors ever becoming large enough to be
“caught” via monitor voting. A major focus of this paper is on deriving a resolve
function and corresponding prediction and fault detection rules that will guarantee
that exponential growth of the agreement trees will require sufficient waste to enable
monitor voting to detect the problem and halt.
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In the rest of this section we introduce a radically different class of resolve func-
tions. This class of functions is then used in Section 6 as the basis of a protocol for
a slightly generalized version of Byzantine agreement. We end up chosing the precise
function from this class in such a way that it guarantees that for the size of the EiG
trees to grow beyond a polynomial bound, faulty processors must be disabled at a rate
that is greater than one per round. This is the key point that enables us to perform
monitor voting for the case of n > 3t in the spirit of the monitor voting we performed
for n > 4t.

5.1. A general class of resolve functions. Let us denote the set {0,...,;}
by [j]. For every function F : [t] — [n], we define a resolve function res’" as follows:

res’(0) =¢ 1 if at least F(|o|) of rest (0j) are 1;

{ tree(o) if o is a leaf;
0 otherwise.

Notice that res® (o) = 0 if and only if #{j : res¥ (cj) =0} > n—|o|+1—F(|o|).
Moreover, notice that the original res function of [2] is simply res™, where M is
the majority function. Let us now turn to a straightforward observation regarding
functions of this type. Let a cut through the EIG tree be a set C' of nodes that
intersects every path from the root to a leaf exactly once. One important property of
resolve functions is that the values of a resolve function on the nodes of a cut uniquely
determine its values on all nodes above it:

LEMMA 5.1. Let C be a cut of the EIG tree, and let F : [t] — [n]. Then the values
of rest” on the nodes of C uniquely determine the values of res® (c), for all nodes o
that are ancestors of nodes in C.

Proof. Notice that because C is a cut, if a node ¢ is an ancestor of a node in C,
then every one of ¢’s children is either in C' or an ancestor of a node in C'. The proof
is by induction on the height of o above C. Assume that ¢ is an ancestor of a node
in C and that the values of res? on the nodes of C' uniquely determine the values
of all of ¢’s children oj. Since res?(c) depends only on the values of res? on o’s
children, and their values are uniquely determined by the values of rest on C, we
are done. 0

This lemma has an immediate corollary that we shall find most useful in the
sequel.

COROLLARY 5.2. Let F : [t] = [n]. If, for all nodes o of some cut C it is the
case that res? (o) has the same value in all correct processors’ trees, then the values
of rest on every node above C are the same in all trees. In particular, this applies
to rest (\), the resolved value for the root.

We are now in a position to identify a large class of functions F' that can serve
as resolve functions for Byzantine agreement protocols. We say that F' is a sound
resolve function for Byzantine agreement if applying res’ to the complete EIG trees of
nonfaulty processors is guaranteed to fulfill the requirements of Byzantine agreement.
(Notice that Decision is trivial in this case, since it is assumed that a processor decides
on res ()); thus, the claim actually concerns the Agreement and Validity properties).

LEMMA 5.3. If F : [t] — [n] satisfies t+1< F(r) <n—t—r, thenrest isa
sound resolve function for Byzantine agreement for n > 3t.

Proof. The proof proceeds along the lines of the proof of res™ (the Majority
resolve function) from [BDDS]. First notice that we are only interested in applying
this rule for depths r satisfying r < t. In this case, if n > 3t then indeed n—t—r > t+1,
so such functions F(r) exist.
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Let hr(c) = t+ 1 — |o| be the height of the node o above the leaves. First, we
show by induction on hr (o) that every correct node o is resolved to tree(s). For a
leaf o (hz = 0) this is immediate from the definition of res”. Assume the claim is
true for all children of o, and that ¢ is a correct node with hr (o) > 1. It follows that
at least n —t —|o| of o’s children j are correct. Moreover, since o is correct, all correct
processors j ¢ o receive and echo an identical value for o, so that tree(oj) = tree(o).
By the inductive hypothesis, we thus have #{j : res? (0j) = tree(o)} > n—t —|o].
The claim is obtained by observing that n — t — |o| > F(|o|), which covers the case
tree(c) =l,andn—t—|o| =n—|o|+1—-(t+1) >n—|o|+1— F(|o]), which
covers the case of tree(s) = 0. This completes the inductive argument.

To complete the proof, notice that a tree of depth ¢ + 1 has at least one correct
node on every path from the root to the leaves. It follows that there is a cut C' through
the tree consisting of correct nodes only. For correct nodes o (and in particular all
nodes o € C) we have just shown that res’ (o) is the same in all correct processors’
trees. It follows by Corollary 5.2 that res? () is the same in all trees, and we are
done. O

Notice that Lemma 5.3 allows a wide range of functions F'(r), including the nat-
ural function M (majority). Our quest to lower the complexity of the algorithm
requires that we do not expand the whole EIG tree. Rather, we wish to use infor-
mation we gather incrementally in order to be able to predict the resolved values of
nodes, and thereby hopefully be able to avoid expanding their subtrees. Once every
processor is able to predict the resolved values of nodes on a cut of the tree, we shall
be done. Indeed, as shown in [21], when n > 4t the function res™ guarantees that the
resolved values of correct nodes can always be predicted once values of their children
are stored. Unfortunately, when n < 4t majority does not guarantee quick prediction
of the value of res™ (o) even for correct nodes o. We shall thus seek other functions
that will allow effective prediction.

We shall be most interested in a particular type of resolve function satisfying the
conditions of Lemma 5.3 which, roughly speaking, will alternate between favoring the
value 0 and favoring the value 1 in consecutive rounds. (Intuitively, a favored value
is one that requires a minimal amount of support in a given round in order to force
a parent to be resolved to this value, while the opposite value requires a substantial
amount of support.) A major consequence of this “flipping” function will be that the
resolved values of correct nodes can be predicted in two rounds at the latest. More
specifically, the alternating behavior will be controlled by the parity of the round. We
let par(r) denote the parity of r. Thus, par(0) = 0, par(1) = 1, par(2) = 0, etc.

Another important property of our function is that it will only be defined for an
appropriate portion of the E1G tree, and not for the complete tree. More specifically,
let us define a node o to be righteous if o is a correct node, and all of its ancestors
are faulty. (In other words, a righteous node is the first correct node on some path
from the root to a leaf.) Clearly, the identity of the faulty processors in a given
run completely determines which nodes of the tree are righteous. An important
property of the EIG tree is that given any choice of up to t faulty processors, the
set, of righteous nodes forms a cut in the EIG tree. Given a set B of up to ¢ faulty
processors, we define the righteous subtree of the EIG tree (with respect to B) to be
the tree whose leaves are the righteous nodes, and whose internal nodes consist of the
ancestors of righteous nodes. Clearly, different choices for B yield different righteous
subtrees. (In the sequel, the set B will be implicit, and will consist of the faulty
processors in the run under discussion.) Our goal will be to devise a mechanism by
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which, roughly speaking, righteous nodes will be resolved to their stored values in all
nonfaulty processors’ trees. Since the righteous nodes are in particular correct nodes,
this means that they will be resolved to the same value in all trees. Once righteous
nodes resolve to the same values, we can use them in the role of leaves in the definition
of a new resolve function. We thus define a resolve function right? on nodes o of
the righteous subtree as follows:

tree;(o) if o is righteous;

par(|o]) if right! (0j) = par(|o|) for at least
F(|o|) nodes oj; and

1 —par(|o|) otherwise.

right! (o) =

Notice that right! (o) is undefined for nodes o outside the righteous subtree. Since,
for a righteous node o, we are guaranteed that tree;(¢) = tree;(o) holds for all
(nonfaulty) i and j, it is the case that right! = rightf . Since the righteous nodes
form a cut in the tree, it follows by Lemma 5.1 that right! is independent of i.
Therefore, we shall henceforth drop the subscript and refer to this function by right?.
We now have:

PROPOSITION 5.4. right! satisfies the Agreement and Validity conditions of
Byzantine agreement for every resolve function F : [t] — [n].

The definition of right seems to have a drawback: Processors are in general
unable to tell a righteous node from a non-righteous one. So how can right¥ be used
by the processors? Intuitively, our plan is to present “fixing” rules that would predict
the right value of a node, provided the node is in the righteous subtree. For nodes
outside the righteous subtree the right value is undefined, and we give no guarantee
on what values our fixing rules may give. This will not cause problems, because our
rules will have the property that for every righteous node o, either ¢ or one of its
ancestors will be fixed by the time values for ¢’s grandchildren are stored in the tree
(i-e., by the end of round min(t + 1, |o| + 2). Thus, our scheme will guarantee that
all nodes of the righteous subtree, including the root, become fixed in all trees by the
end of round ¢ + 1, if not earlier. Moreover, the nodes of the righteous subtree, when
fixed to a value, will be fixed to their right’ value. We shall now turn to formalize
this intuition.

6. A-agreement. The monitor processes we talk about are agreement protocols
that closely resemble ordinary Byzantine agreement, except for the following differ-
ences. (a) A monitor process is initiated in a state in which each nonfaulty processor i
has a set JF; of processors that i has already detected as faulty, and is masking through-
out the monitor. (b) The set of faulty processors used by processor 4 in each of the
monitors is obtained based on fault detection performed by ¢ in all active agreement
processes. (c) Finally, we will associate with a monitor M a parameter A < ¢ which,
roughly speaking, is a lower bound on the number of initially disabled faulty proces-
sors. This gives rise to a slight generalization of Byzantine agreement, that we shall
call A-agreement.

We define A-agreement more formally as follows. As in Byzantine agreement,
in an instance of A-agreement, each nonfaulty processor i starts out with an initial
value v; € {0,1}. In addition, every nonfaulty processor i starts out with a set F;
of faulty processes. If all nonfaulty processors start out with an initial vote of 0,

the parameter A plays no role. If, however, at least one nonfaulty processor votes 1,

then at least A faulty processors are initially disabled. Let D def () Fi denote the set
i
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of initially disabled processors. In A-agreement, we are guaranteed that if at least
one nonfaulty processor votes 1, then #D > A. (Thus, if all nonfaulty processors
vote 0, no guarantee about the size of D is given.) Strictly speaking, an instance of
A-agreement has two additional parameters, n and ¢, where as usual n is the total
number of processors, and ¢ is an upper bound on the total number of faulty proces-
sors (including the ones in D and in the F;’s). Rather than working explicitly with
(n,t,A)-agreement, we shall continue to talk about A-agreement, keeping n and ¢
implicit and assuming that n and ¢ satisfy n > 3t + 1, while A < ¢. The Decision,
Agreement and Validity requirements are as in the case of Byzantine agreement de-
fined in Section 2. Notice that the standard variant of Byzantine agreement that we
have been considering can be viewed as an instance of A-agreement, where A = 0
and F; = () for every nonfaulty processor i.

6.1. Basic structure of the A-E1G protocol. Our purpose in this section will
be to describe a protocol for A-agreement, which we shall call the A-E1G protocol. In
later sections we shall discuss how to combine a number of these protocols via monitor
voting to obtain an efficient solution to Byzantine agreement.

Our A-EIG protocol for a single instance of A-agreement will be based on a
number of components. We now discuss some of them. First of all, the A-Eig
protocol will operate on an EIG tree of depth ¢ + 1 — A (as opposed to depth ¢ + 1 in
the standard E1G protocol). This will be essential, as we want to be able to complete a
run of this protocol within ¢4+1—A rounds. In addition, we shall have every processor 4
maintain a set of processors it has detected as faulty. Let F;(r) denote the set of faulty
processors detected by ¢ in the first r rounds. Thus, in particular, 7;(0) = F;, and
the sets F;(r) grow monotonically over time (i.e., F;(r + 1) D F;(r)). These sets
will be used by the processors both for masking values in their own trees, and for
reporting on masked nodes. Rather than processor 7 sending in round r + 1 separate
reports of masked values for each node 7z corresponding to processors z € F;(r), we
shall have i send a report of the form mask(é, z) in the first round following the one in
which it detects z to be faulty. All processors that receive this report will, from then
on, act as if ¢ actually sends separate masked reports for such nodes. In fact, we shall
abuse the language slightly, and consider a processor 4 that issues a mask(i, z) report
in round r as if it “reports” masked values for all nodes oz with |oz| > r. A processor
will keep track of mask(i, z) reports it receives, and will store masked values in nodes
accordingly on #’s behalf, as specified below. In addition to saving in communication,
this will allow a processor to detect failures based on reports its receives, and will,
later on, make it easier for i to estimate the number of disabled processors.

Formally, processors will send messages according to the following rule:

¢ Sending: In a given round r + 1, a processor ¢ sends all other processors
a message consisting of two components. In the first component, the message contains
reports mask(i, z) on the processors z € F;(r) \ Fi(r — 1) that ¢ has just discovered as
faulty. For completeness, we formally define F;(—1) = @), so that in the first round ¢
reports that it is masking the processors in F;(0) = F;. The second component of
the message consists of pairs {(oj;v), where v = tree;(0}j), for all nodes oj of depth r
such that j ¢ F;(r).

Upon receiving the messages sent to it in round r, processor ¢ will record and

mask values as follows:
¢ Recording and masking:
1. Processor 7 appends every mask(z, j) report it receives in round r to a list
of mask reports that it maintains;
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2. Processor i records values in tree; according to
1. If j ¢ Fi(r—1), then tree;(7j), for anode 7j of depth r, is the value reported
by j for 7 in round r. In particular, if 7 = oz for some z such that ¢ has received a
mask(j, z) report from j in one of the first r rounds, then tree;(7j) = par(|7j|); and
2. If z € F;i(r — 1) and 7z is a node of depth r, then tree;(r2) = par(|7]).
In particular, this means that values of nodes corresponding to initially detected
failures are always masked.
The set F; is updated in the following manner:

e Fault detection: F;(r) is obtained by adding to F;(r — 1) any new
processor failure discovered by applying the fault detection rules FDO-FD3 described
in Section 6.3 below to tree; after the Recording and masking steps have taken place.
Since, as discussed later on, the fault detection rules will be computable in a fairly
efficient manner, this whole step is feasible. We remark that it would be possible
to use the new failures detected in the last step in order to mask additional nodes,
and then perhaps perform the fault detection step again. Indeed, this process could
be repeated until no new failures would be discovered. For the sake of simplicity, we
choose not to do so. The failures discovered in round r will affect processors’ messages
and processing from round r 4+ 1 on.

Faulty processors will be assumed to be discovered according to a set of sound
fault discovery rules. The only thing we require of this set of rules is that it should
include the rules FDO-FD3 described in Section 6.3 below. The soundness of the rules
implies that one invariant of our algorithm will be:

e Soundness: If i and j are nonfaulty, then j ¢ F;(r) holds for all rounds r.

Given the Soundness invariant, the Sending and the Recording and masking rules
guarantee that tree;(0) = tree;j(o) will hold for every correct node o of depth at
most ¢t + 1 — A, and nonfaulty processors i and j. It follows that the values of
the function right? will continue to be independent of the tree in which they are
computed.

Prediction will be handled by a set of fixing rules Fx1-Fx3 described in Section 6.2
below. These rules will determine when a node o is said to be fized to value v in tree;.
Recall that we defined a node o to be closed in tree; at the end of round r if either o
or one of its ancestors is fixed in tree; at that point.

Finally, we shall use a simple rule for deciding on a value and for halting in the
basic A-EIG protocol:

¢ Deciding: When the root A becomes fixed to a value v in tree;, processor i
decides on value v.

e Halting: Processor ¢ continues to record information, perform fault de-
tection, and report on values until the end of round ¢ + 1 — A, at which point it
halts.

We shall show in Lemmas 6.7 and Corollary 6.9 that the root cannot be fixed both
to 0 and to 1, and that the root is guaranteed to be fixed by the end of round t+1—A.
As a result, the decision rule given above is well defined and will guarantee that 7 will
decide on a value.

To complete the description of A-EIG, we need to describe the rules by which
nodes are fixed to values, and the manner in which processors perform fault discovery.
This will be the subject of the next two subsections.

6.2. Fixing nodes to values. We now define when a node o is fized in tree;
to a value v. This will be a major component in our protocol, and the properties
of fixing, which we discuss below, will be instrumental in the development of the
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algorithm. We start with a fairly abstract definition of the fixing rules, relative to a
function F : [t] — [n]. We shall call such a function F' admissible if it satisfies that

(i) F(0)=F(1)=t+1, and

(i) t+r—1>F(@)>t—r+2forr>2.
In the sequel, we shall restrict our attention to admissible functions. A considerable
amount of our analysis will be valid for admissible functions in general. Only in
Section 7 will we choose a particular admissible function to be used in our final
protocol. We remark that admissible functions do not necessarily conform to the
conditions of Lemma 5.3. As we shall see, the fact that we shall be fixing values
of nodes before the full tree is developed will allow us to go beyond the bounds of
Lemma 5.3. The role of Lemma 5.3 is in motivating the development of admissible
functions and our fixing rules. It will not play a role in the correctness of our protocol
in the end.

The bounds used in the definition of admissible functions were chosen so that they
would match the following fixing rules. Formally, a node ¢ becomes fized in tree; to
value v at the end of round r if o was not closed at the end of round r — 1, and one
of the following rules applies:

Fxl: r=|o| =t+1— A and tree;(o) =w.

Fx2: r = |o| + 1, par(|o|) = v and

n — t nodes oj ifo =X\
tree;(0j) = v for at least { n —t—1nodesoj if |o| =1;and
n—t—2nodes oj if |o| > 2.

Fx3: Rules Fx1 and Fx2 do not apply, and either
(a) par(|o|) = v and at least F'(|o|) of the oj’s are fixed to v; or
(b) par(|o|) =1 — v and at least n — |o| — F(|o|) + 1 (i-e., all but at
most F'(|o| — 1) of the oj’s are fixed to v.

We remark that a naive bottom-up computation based on Fx1-Fx3 can be used to
determine all of the fixed nodes and the values they are fixed to in a given EIG tree.
Such a computation requires a number of steps at most linear in the size of the tree.
The properties of the fixing rules Fx1-Fx3 will play a major role in the correctness of
our ultimate protocol. We now consider some of these properties.

One immediate consequence of the definition of the above fixing rules is:

LEMMA 6.1. Let F be admissible and let i be a nonfaulty processor. If all non-
faulty processors vote 0, then the root A is fized to O in tree; by the end of round 1.
Similarly, if oll nonfaulty processors vote 1, then the root X is fized to 1 in tree; by
the end of round 2.

Proof. Recall that par(|A]) = 0. First assume that all nonfaulty processors
vote 0. It follows that at least n — ¢t correct children of A in tree; store 0 at the end
of round 1, and as a result, by rule Fx2, the root is fixed to 0 at that point. Now
assume that all nonfaulty processors vote 1. The root A has at least n — ¢ correct
children. Let o denote a correct child of the root A. Thus, at the end of round 1 we
have that tree;(c) = 1. The root is not fixed yet. At the end of round 2, however,
tree;(0j) = 1 for at least n — ¢t — 1 children of ¢. Since par(|o|) = 1, it follows from
the second clause of Fx2 that o will be fixed to 1 at the end of round 2. We thus
obtain that at least n — ¢ children of A are fixed to 1 by the end of round 2. Recall
that if F' is admissible, then F'(0) = ¢ + 1. Hence, by rule Fx3 we now have that the
root becomes fixed to 1 at the end of round 2, since that F(|A]) = F(0) =t + 1, and
n—|A=F(A)+1=n—-(t+1)+1=n—t. 0
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Lemma 6.1 essentially takes care of the validity problem for A-agreement in the
case in which all nonfaulty processors have initial votes of 0. The lemma states that
in this case the root in all nonfaulty processors’ trees will fix to 0 by the end of
round 1, and by the Decision clause of the A-EIG protocol, all nonfaulty processors
will decide 0 at that point. In the sequel, we shall therefore concern ourselves with
the case in which at least one nonfaulty processor votes 1. Hence, we will be able to
assume that the number of initially disabled processors is at least A.

We now wish to use the fixing rules to show that they guarantee that nodes of the
righteous subtree end up being fixed to the desirable values. In A-agreement, however,
we have processors that are initially disabled, that resemble nonfaulty processors in
the fact that they cannot corrupt nodes or otherwise misbehave. As a result, finding a
node corresponding to an initially disabled processor on a path from the root is quite
analogous to finding a correct node. Following this observation, we shall therefore
replace the definition of the righteous subtree with the analogous tree (which we shall
call the safe subtree), and perform our analysis with respect to the new tree. Formally,
we proceed as follows. Let D denote the set of initially disabled processors. We call
a node o safe if (i) o is either righteous or corresponds to a processor in D, and (ii)
none of ¢’s ancestors are righteous, and none of them correspond to processors in D.
Since #D > A by definition of A-agreement, at most t — A processors labelling edges
on a path from the root can be faulty but not from D. It follows that every path
of t+2 — A nodes leading from the root must contain a safe node. In particular (since
|[A] = 0), if o is safe, then |o| < t+ 1 — A. Since, by definition, there can be at most
one safe node on every path from the root to leaves of the EI1G tree, we obtain that
the safe nodes form a cut in the tree. Let us denote this cut by Cs. We define the
safe subtree of an E1G tree in an execution of A-EIG to consist of Cs and all ancestors
of nodes in Cys. We remark that o] = ¢t +1 — A can hold for a node of the safe
subtree only if o is a safe node, and hence is either righteous or (initially) disabled.
Finally, we shall use hs(o), for a node o of the safe subtree, to denote the length of
the maximal path from the node o to some node in Cs;. More formally, for nodes o
in the safe subtree, we define

h(g)déf{o ifoeCy; and
s 1+ max; hy(oj) otherwise.

One somewhat technical property that will serve us in the sequel is the follow-
ing. (In this and all other statements in this paper, references to E1G trees such
as tree;, tree; and tree, are made only for nonfaulty processors; the assumption
that 4, j or z is nonfaulty will be implicit.)

LEMMA 6.2. Let F be an admissible function, and let o be a node of the safe
subtree such that 0 < |o| <t+1—A, and all nonfaulty processors that do not appear
in o report the value v for o. Then

(a) If v = par(|o|) then o is closed in tree; by the end of round |o| + 1 at the
latest; while

(b) Ifv # par(|o|) then o is closed in tree; by the end of round min(|o|+2,t+
1—A) at the latest.
Moreover, if o is fized in tree;, then it is fized to v.

Proof. We prove the claim separately for different depths of |o].

() t— A >|o| >1: We argue by cases depending on whether v = par(|o|).
(a) Assume v = par(|o|). If o is closed by the end of round |o| then o does not
become fixed in tree; and we are done. Otherwise, ¢ has at least n — ¢ — 1 correct
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children all of which store v by the end of round |o| + 1. By rule Fx2 we thus obtain
that o is fixed to v at the end of round |o| + 1.

(b) Now assume v # par(|o|). The node o cannot be fixed to v # par(|o|) by
rule Fx2, since this rule only allows fixing to par(|o|). If o is closed by the end of
round |o|+1, then o does not become fixed in tree; and we are done. We shall show
that if o is not closed by the end of round |o| + 1 then o becomes fixed to v by the
end of round |o| + 2. Let oj be a correct child of o. In particular, tree;(cj) = v,
and all correct children of oj store v in tree; as well. Notice that par(|oj|) = v and
|oj| > 2. In addition, since o is a node of the safe subtree and |o| <t — A, the node
oj has at least n — t — 2 correct children, and they all store v. It follows that Fx1
does not apply to oj, and oj becomes fixed to v at the end of round |o| + 2 for all
correct nodes oj. Recall that there are at least n — ¢t — 1 such correct nodes oj. Let
r = |o|, and recall that we are assuming that F(r) >t —r + 2.3 Thus, in particular,
n—r—Fr)+1<n—r—t+r—2+1=n—t—1. It now follows by Fx3(b) that o
is fixed to v in tree; by the end of round |o| + 2.

(i) |o| =t—A: If o is closed at the end of round |o| =t — A, then o does not
become fixed in tree; and we are done. Otherwise, if v = par(|o|) then o becomes
fixed by rule Fx2 to v as in the case of t — A > |o| described above. If v # par(|o|)
then all of ¢’s children are fixed in tree; at the end of round |o| + 1. Moreover, at
least n —t — 1 correct children oj of o are fixed to v. As in the case of |o] >t — A
and v # par(|o|) we have that o is fixed to v in tree; by rule Fx3(b).

d

Lemma 6.2 immediately provides us with a number of useful corollaries. Essen-
tially, Lemma 6.2 implies that nodes corresponding to initially disabled processors
and righteous nodes are guaranteed to close quickly given our fixing rules.

COROLLARY 6.3. Let F be admissible, and let 0 = Tz be a node of the safe subtree
such that o] <t+1— A and z is disabled by the end of round |o|. Then o is closed
in tree; by the end of round |o| + 1 at the latest. Moreover, if o becomes fized to a
value v in tree;, then v = par(|o|) = right®(|o]).

Proof. Since |o| < t+ 1 — A, rule Fx1 does not apply to fixing o. If o is closed
in tree; by the end of round |o|, we are done. Otherwise, since we have that z
is disabled by the end of round |¢| and ¢ = 7z, all nonfaulty processors j issue a
mask(j, z) report by round |o| + 1 at the latest. As a result, all nonfaulty processors
are considered to be reporting v = par(|o|) for 0 = 72. Lemma 6.2 now implies that o
is closed in tree; by the end of round |o| + 1, and, if it is fixed in tree;, it is fixed
to v = par(|o|). Since at least n —t > n —t —1 > F(|o|) righteous children of 72
in tree; store the value par(|o|), we obtain that par(|o|) = right!(c) and we are
done. O

In particular, Corollary 6.3 implies that all nodes corresponding to initially dis-
abled processors become closed within one round, and can fix only to their masked
value. A similar situation holds with respect to righteous nodes:

COROLLARY 6.4. Let F' be admissible, and let o be a safe node (and hence a leaf of
the safe subtree). Then o is closed in tree; by the end of round min(|o|+2,t+1—A).
Moreover, if o becomes fived to a value v in tree;, then v = tree;(o) = rightf (o).

Proof. First notice that if |o| = t +1 — A and o is not closed by the end of
round ¢ — A, then o is fixed in tree; by rule Fxl to tree;(c) = right(c) and we
are done. If |o] = t+ 1 — A and o is closed in tree; by the end of round ¢ — A,
then o is not fixed in tree; and we are done. Otherwise, we have that |o| < t+1—A.

3 This is where we use the lower bound specified in the definition of admissible functions.
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Let ¢ = 72, and assume that o is not closed by the end of round |o|. If ¢ is safe
because z € D, then all processors report par(|o|) for o in round |o| + 1 and we are
done by Lemma 6.2. We may thus assume that o is righteous, then every nonfaulty
processor j reports tree;(o) for 0. Since we are assuming that z is nonfaulty, then, by
soundness of the fault detection module and the Recording condition, every nonfaulty
processor j would store the value that z reports for 7 in tree;(oc) = tree;(72).
Moreover, a nonfaulty processor z would report the same value for 7 to all nonfaulty
processors j. Thus, we have that tree;(0) = tree;(o) for every nonfaulty processor j,
and we obtain that all nonfaulty processors report the value tree;(c) = right® (o)
for . The claim now follows by Lemma, 6.2. O

An immediate consequence of Corollaries 6.3 and 6.4 is:

LEMMA 6.5. A node o that is not closed in tree; by the end of round |o| + 1 is
in the safe subtree.

Proof. Corollaries 6.3 and 6.4 imply that every node 7 on the safe cut Cj is closed
by the end of round |7|+2. Since these nodes form a cut in the EIG tree, every node o
that is not in the safe subtree has an ancestor 7 in Cy; moreover, |o| + 1 > |7| + 2.
It follows that a node o that is not in the safe subtree must be closed by the end of
round |o| + 1 at the latest, and the claim follows. 0

The fixing rule Fx3 has the property that once all children of a node are fixed, so
is the node itself. As a result, we obtain:

LEMMA 6.6. For each nonfaulty i, every node o of the safe subtree is closed
in tree; by the end of round t +1 — A.

Proof. We prove the claim by induction on hs(c) for nodes o of the safe subtree.
Recall that we have defined hs(c) to be the height of o in the safe subtree. In
particular, we clearly have that hs(c) < t+1— A for every node o of the safe subtree.
If hy(o) = 0, then o is a safe node, by definition of hs. The claim now follows from
Corollary 6.4. Now assume hs(o) = k > 0, and assume the claim holds for all nodes 7
satisfying hs(7) < k. In particular, every child oj of o is in the safe subtree and
satisfies hs(0j) < hs(o) = k. Thus, the inductive assumption implies that all of ¢’s
children are closed by the end of round ¢t + 1 — A. If this is because ¢ or one of its
ancestors are fixed, we are done. Otherwise, all of ¢’s children are fixed by the end
of round ¢ + 1 — A. Recall that the number of ¢’s children is n — |o|. If rule Fx3(a)
does not apply, then fewer than ¢t + 2 — |o| of the children of ¢ are fixed to the value
par(|o|). It then follows that at least n — |o| — (t+1 — |o]) = n — ¢ — 1 of the children
of o are fixed to 1 — par(|o|), so that o is fixed to 1 —par(|o|) in tree; by rule Fx3(b).
In either case we obtain that ¢ must also be fixed in tree;, and we are done. O

A crucial property of our fixing rules is that a node ¢ can be fixed to at most one
value in tree;, as we now prove:

LEMMA 6.7. If a node o of the safe subtree is fized to value v in tree;, then o is
not fized to 1 — v in tree;.

Proof. We prove the claim by induction on hs(o). The case hs(o) = 0 follows
from Corollary 6.4. Assume that hs(o) > 1 and that the claim holds for all nodes 7
of the safe subtree with hys(7) < hs(co). Hence, in particular, rule Fx1 does not apply
to o, and the claim holds for ¢’s children in tree;. Assume o is fixed by Fx2. The only
value to which o can be fixed by Fx2 is par(|o|). Moreover, by the definition of these
rules, if Fx2 applies to o in tree; then neither Fx1 nor Fx3 do. It follows that if o is
fixed by rule Fx2, then it is fixed to a unique value. Finally, assume o becomes fixed
in tree; by rule Fx3. In particular, Fx1 and Fx2 do not apply in the case of 0. The
node o has exactly n — |o| children oj. By definition, hs(0j) < hs(c). Thus, by the
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inductive hypothesis, each of these children is fixed to at most one value. The total
number of fixed children of o that would be necessary for both Fx3(a) and Fx3(b) to
apply ist+2—|o|+n—t—1=n—|o|+1, which is more than the number of children
of o. It follows that only one of these rules can apply, so that ¢ can be fixed to at
most one value in tree;. O

We are now ready to prove that nodes of the safe subtree can become fixed only
to their right! values.

THEOREM 6.8. If F is admissible and a node o of the safe subtree is fixed to
value v in tree;, then v = rightf (o).

Proof. We prove the claim by induction on hs(c). The case of hs(c) = 0 follows
directly from Corollary 6.4.

Assume that hs(o) > 0 and the claim holds for all children o5 of o. (By definition
of hs we have that hs(c) > hs(oj) > 0.) Notice that the rule Fx1 cannot apply to ¢
since Fx1 deals with nodes 7 satisfying |7| = t + 1 — A, and such a node is in the
safe subtree only if it is a safe node, in which case hs(7) = 0. Thus, hs(c) > 0, and
only rules Fx2 and Fx3 can apply for fixing ¢. Since ¢ is an internal node of the safe
subtree, o and all of its ancestors are incorrect nodes. As a result, at least n —¢ of ¢’s
children are correct, while at most ¢t — |o| of them are faulty. Moreover, every correct
child of ¢ is righteous. We now consider the ways in which ¢ can become fixed due
to Fx2 and Fx3.

(i) Assume that |o| > 2 and o becomes fixed in tree; to value v = par(o)
by rule Fx2. The definition of Fx2 implies that tree;(cj) = v for at least n — ¢t — 2
nodes oj. Since at most t — |o| of these may be incorrect, we obtain that at least
n—t—2—t+|o| =n—2t+|o|—2 > t+|o| —1 of these nodes are correct. For each such
correct child oj we have that right!(oj) = v. Since F is admissible, we have that
F(lo]) < t+]|o|—1, and it follows from the definition of right! that right? (o) = v.%
A similar argument applies for the cases of |o| < 1. In these cases, F(|o|) =t + 1, at
least n — t — |o| of the children are fixed to v, and at most ¢t — |o| of the children are
incorrect. In both casesn —t —|o| —t+ |o| =n —2t >t +1 = F(|o|) and we are
done.

(ii) If o is fixed in tree; to v by rule Fx3(a), then par(Jo|) = v and we have
by the inductive hypothesis for the F(|o|) > ¢t + 2 — |o| nodes of the form oj that
are fixed to v in tree; that right¥(0j) = v. Thus, by the definition of right we
have that right¥(¢) = v as well. An analogous argument works for fixing based on
Fx3(b).

a

COROLLARY 6.9. The root \ of tree; is fized to value right? ()\) by the end of
round t +1 — A.

Proof. Lemma 6.6 implies that A is closed in tree; by the end of round t+1— A.
Since A has no ancestors, it must be fixed at that time. Theorem 6.8 implies that A
is fixed to rightf (). O

THEOREM 6.10. For any sound fault-detection module and admissible function F,
the A-E1G protocol satisfies the Decision, Agreement, and Validity properties.

Proof. Decision follows immediately from Corollary 6.9 and Lemma 6.7. Recall
from our discussion of right!’ that if ¢ is in the righteous subtree, then the value of
right® (o) is independent of the tree in which it is computed. Corollary 6.9 implies
that every nonfaulty processor decides on rightf()), and since A is in the righteous
subtree, we obtain Agreement. We now argue why Validity holds. All correct children

4 This is where we use the upper bound specified in the definition of admissible functions.
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of A are righteous. If all nonfaulty processors j have the same initial value v; = v,
then right? (o) = v for all n — ¢ righteous children o of A\. By definition of right?,
this implies that right®()\) = v, and since right®()) is the value decided on, we
obtain Validity. O

6.3. Fault detection in A-E1G. We now turn to describing the fault discovery
rules we shall use in the instances of A-agreement, for the purposes of our final protocol.
Notice that all of the results regarding fixing that we have seen above depend only
on the Magking and Soundness rules, which state that initially detected failures must
be masked to the favored value, and nonfaulty processors are not masked by other
nonfaulty processors. Thus, we have a considerable amount of freedom in introducing
fault discovery rules without affecting the correctness of the protocol.

We find it convenient to consider the notion of a node o being committed to value v
in tree;. Intuitively, 0 = 7z will be committed to v in tree; only if ¢ has a proof
that at least one nonfaulty processor either has received a report of v for 7 from z, or
is masking z. Formally, we say that a node ¢ # X is committed to v in tree; if one
of the following holds:

Cl: tree;(o) =v;

C2: tree;(oj) = v for at least min(t 4+ 1,¢+ 3 — |o|) nodes o7y;

C3: o is not closed in tree; at the end of round |o|+ 1 and o is not fixed to 1 —v
at the end of round |o| + 2.
As in the case of fixing, a naive linear-time computation based on C1, C2 and C3 is
easily seen to suffice for determining all of the commitments of nodes to values in a
given EIG tree. We remark that these rules will only be applied to nodes of the safe
subtree. For such nodes, the bound of C2 guarantees that one of the children ¢j with
tree;(0j) = v is correct.

The main use we have for the notion of commitment is captured in the following
lemma:

LEMMA 6.11. Let 7 be a node of the safe subtree. If a child Tz of T is committed
to v in tree; by the end of round r, then, for at least one nonfaulty processor j, either
z € Fj(|tz|) or j received a report of v from z for T.

Proof. If 7z is committed to v in tree; by C1, then the claim holds trivially for
j = 1, since tree;(7z) = v only if either i received a report of v for 7 from z, or
v = par(|7|) and 4 is masking z in round |7z|. Assume that 7z is committed to v
in tree; by C2. Since 7 is a node of the safe subtree, all, except possibly for the
last, members of the sequence 7 are faulty processors. It follows that the number of
incorrect children of 7z is at most ¢t — |7| + 1 (=t + 2 — |72|). We thus obtain that if
C2 applies, then at least one of the children 725 of 72 with tree;(72j) = v must be
a correct node. But tree;(7zj) = v for a correct node 7zj only if either z € F;(|7z|)
(in which case j sends a mask(j, z) message no later than in round |7z| + 1), or if j
received a report of v for 7 from z. We are left with the case of commitment to v due
to C3. First notice that if 7z is righteous and committed to v in tree; by C3, then it
is already committed to v in tree; by C2. This is because if 7z is not closed in tree;
at the end of round |7z| + 1, then it is committed in tree; to value w = tree;(7z),
and by Corollary 6.4, it will not not be committed to 1 — w by C3. Thus, we may
assume that 7z is not righteous. In particular, it has at least n — ¢t righteous children.
It suffices to show that at least one nonfaulty processor j reports v for 7z. Assume
not. Then all nonfaulty processors report 1 — v for 7z. It now follows by Lemma 6.2
that 7z must be fixed to 1 — v by the end of round |7z| + 2 if it was not closed by
the end of round |7z|+ 1. This contradicts the assumption that 7z is committed to v
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in tree; by C3. O
LEMMA 6.12. Assume thatt > 3. If a node o # X\ of the safe subtree is ever fixed
to value v in tree;, then o is committed to v in tree; by the end of round |o| + 2.
Proof. Assume o is fixed to v in tree; by the end of round |o| + 2. If ¢ is fixed
by rule Fx1, then by C1 it is also committed to v in tree;. If it is fixed by Fx2, then
it is committed to v by C2, since Fx2 implies that tree;(cj) = v for at least n —t — 2
nodes oj. Given that ¢t > 3 and |o| > 1, we have

n—t—2>2%+1-2=2t—1>t+3-1=t+2>t+3—|o].

Finally, assume that ¢ is fixed to v by Fx3. In particular, ¢ is not closed in tree;
by the end of round |o| + 1, and it becomes fixed to v no earlier than the end of
round |o| + 2. Lemma 6.7 implies that o can be fixed to at most one value in tree;,
so that o is not fixed to 1 — v at the end of round |o| + 2, and by C3 it is committed
to v in tree; at that point. 0

Notice that for every node o # A of the safe subtree, there must be at least one
value v € {0, 1} such that at least ¢t + 1 (and hence> t + 2 — |o|) nonfaulty processors
report v for 0. We say that o is then publicly committed to such a value v. If ¢
is publicly committed to v, then ¢ becomes committed by C2 to v in tree; for all
trees tree; in which values of children of o are stored. A variant of Lemma, 6.12 that
applies to public commitment and will be useful in the sequel is the following;:

LEMMA 6.13. Let o be a node of the safe subtree of depth 2 < |o| < t — A,
let v = par(|o|), and let o be fized in tree; to 1 —v (the “disfavored” value). Then o
is publicly committed to 1 — v.

Proof. By Theorem 6.8, a node o of the safe subtree can be fixed only to rightf{o).
Given our definition of publicly committed, we have that a node must be publicly
committed to at least one value among 0,1. However, if ¢ were publicly commit-
ted to v = par(|o|), then by definition of right? we would have that right(c) =
par(|o|) # 1 —v. It follows that ¢ must be publicly committed to 1 — v. o

We are now ready to present our fault detection rules. Intuitively, a nonfaulty
processor % discovers that a processor is faulty when there is “enough” evidence that
the processor has sent conflicting values to other correct processors. This evidence
may be gathered when the messages of the children of a node corresponding to the
faulty processor are received. Formally, processor ¢ will detect z at the end of round
as being faulty if one of the following holds:

FDO: z sends ¢ an ill-formatted message in round r.

FD1: By the end of round r, processor i has received mask(j, z) reports from at

least ¢ + 1 distinct processors j.

FD2: By the end of round r, some node 7z that was not closed in tree; by the
end of round |7z| is committed both to 0 and to 1 in tree;.

FD3: By the end of round r, for some node raz and value v such that (a) r =
|Taz| + 1, and (b) Taz is not closed in tree; by the end of round r; we have
that

(i) Taz is committed to v in treey;
(i) at least 2(t+1—|7a|) + 1 of the nodes Taj are committed to 1 — v
in tree; by the end of round r; and
(iii) z does not mask a in round |raz| + 1. (Namely, z did not send
a mask(z, a) report to ¢ in the first r rounds.)

The motivation for the first three rules FDO-FD2 is fairly intuitive and straightfor-

ward. Similar rules have appeared in earlier work in the literature. The fourth rule,
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FD3, is of a new type. It is tailor-made for handling a specific type of corruption,
called cross corruption, that we will consider in detail in Section 7. Intuitively, FD3
can be thought of as detecting a crime of ommission. It applies when the detecting
processor ¢ has a proof that, had z been nonfaulty, then z would have detected an-
other processor a as being faulty due to FD2 in round r — 1. As a result, z should have
issued a mask(z, a) report no later than in round r. By rule FD3, ¢ discovers z as being
faulty once z fails to issue a mask(z,a) in time. Figure 2 illustrates this scenario.

i'stree

par= v

T1az

par= 1-v O
v

H/_/

2(t+1-]tal)+1 nodes
committedto 1-v

mask( z,a) expected
from z

F1G. 2. Discovering a fault using FD3.

LEMMA 6.14. The rules FDO-FD& are sound. That is, if the fault detection mod-
ule is sound for all nonfaulty processors through the end of round r — 1, then every
processor that is added to F;(r) according to one of these rules is faulty.

Proof. The soundness of FDO is trivial, since a processor that sends an ill-formatted
message is deviating from the protocol, and hence is faulty. If rule FD1 applies, then
at least one of the ¢ 4+ 1 processors that report to ¢ that they are masking z must
be nonfaulty. The soundness of the rule now follows from our assumption about
the soundness of the fault detection module in the first r — 1 rounds. We now turn
to FD2. Notice that this rule cannot apply with respect to a node 7z before the end
of round |7z| + 1, since only one commitment value can be obtained in tree; before
values for the children of 7z are stored. By Lemma 6.5, if 72 is not closed at the
end of round |7z|, then 7 is a node of the safe subtree. Since 7z is committed both
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to 0 and to 1, Lemma 6.11 implies that either at least one nonfaulty processor is
masking z in round |7z|, or z sent conflicting reports of both 0 and 1 for 7 to two
different nonfaulty processors. Having assumed that the fault detection module was
sound in the first 7 — 1 rounds we obtain that, in either case, z must be faulty, and
hence FD2 is sound.

Finally, let us consider FD3. Roughly speaking, the soundness of FD3 is based
on FD2 and the fact that if (i) and (ii) hold, then i can determine that z must have
had enough information for detecting a as faulty using FD2 in round |raz|. If z did not
react accordingly, then it must be faulty. We now formalize this intuition. Assume
that z is nonfaulty, and conditions (i) and (ii) apply. Moreover, assume that z does
not issue a mask(z, a) report by the end of round |raz|. Since Taz is not closed by the
end of round |raz| + 1, then by Lemma 6.5 the node 7az is in the safe subtree, and
hence all of the processors in the sequence 7a are faulty. It follows that at most t—|ra|
of the nodes 7Taj that are committed to 1 — v in tree; by the end of round |raz| + 1
can be incorrect. t—|Ta| can be incorrect. Since their total number is, by assumption,
at least 2(t + 1 — |7a|) + 1, it follows that at least

2t+1—|ra))+1—(t—|ra|) =t+ 3 —|7q|

of these nodes are correct, and in particular must appear in tree,. It thus follows
by rule C2 that 7a must be committed to 1 — v in tree, by the end of round |raz|.
However, since 7az is committed to v in tree;, (and z is nonfaulty) it must be the
case that 7a is committed to v in tree, as well by the end of round |raz|. Thus, by
rule FD2 we obtain that z must detect a as faulty in round |raz|. Moreover, by the
Masking behavior rule, in round |Taz|+1, processor z must report that it is masking a,
if it has not done so in an earlier round. If z fails to do so, then z must be faulty as
determined by FD3. O

Given these fault discovery rules, we can now turn to study the conditions under
which nodes can be corrupted in instances of A-EIG. In addition, we shall be inter-
ested in the relationship between the corrupted nodes and the size of the EIG tree
constructed.

6.4. Corrupting nodes in A-E1G. Formally, in an execution of the A-EIG
protocol we define a node o to be corrupted in tree; if o is not closed in tree; by the
end of round |o| + 2.

A node o is said to be universally corrupted if it is corrupted in tree; for all
nonfaulty processors i. The following three lemmas show that, in order to cause
lasting trouble, a node must be universally corrupted.

LEMMA 6.15. Let i and j be nonfaulty processors, and let o be a node of the safe
subtree. If o is fized in tree; by rule Fx2, then o is closed in tree; by the end of
round |o| + 3.

Proof. The claim follows immediately for righteous nodes o by Corollary 6.4. We
shall henceforth consider the case in which o is not righteous, so that at most ¢ — |o|
of its children are faulty. We prove the claim for |o| > 2; the modifications for the
cases |o| = 0 and |o] = 1 are simple and left for the reader. Assume that o is
fixed in tree; by rule Fx2, and that o is not closed in tree; by the end of round
|o| + 2. Since o is fixed to v in tree; by Fx2 in round |o| + 1, we have that at least
n—t—2—(t—|o|) =n—2t+|0|—2 > t+|o| —1 of ¢’s children in tree; are righteous
children that store v. If o is not closed in tree; beforehand, then Corollary 6.4
implies that these nodes will all be fixed to v in tree; by the end of round |o| + 3.
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Since F(|o|) < t+ |o| — 1 we have that o becomes fixed to v in tree; by Fx3(a) at
the end of round |o| + 3. 0

As a consequence of Lemma, 6.15, a straightforward induction yields:

COROLLARY 6.16. Let i and j be nonfaulty processors, and let o be a node of the
safe subtree. If o is closed in tree; by the end of round r, then it is closed in tree;
by the end of round r + 2.

COROLLARY 6.17. Let i be a nonfaulty processor, and let 7 be a node that is not
universally corrupted. Then T is closed in tree; by the end of round |7| + 4.

Proof. By definition of corruption, a node 7 that is not universally corrupted must
be closed in tree; for some nonfaulty j by the end of round |7|+2. By Corollary 6.16
we have that 7 is closed in tree; by the end of round |7| + 4. O

As in the case of n > 4¢, there is a close relationship between corrupted nodes and
failure detection. Indeed, an immediate consequence of the fault discovery rule FD2
and the commitment rule C3 is the fact that a processor that corrupts a node in tree;
is discovered by i as being faulty. Formally, we have:

LEMMA 6.18. If a node 7z is corrupted in tree;, then z € F;(|tz] + 2).

Given Lemmas 6.2 and 6.18, we obtain the following relationship between univer-
sal corruption and disabled processors:

COROLLARY 6.19. If a node 1z is universally corrupted, then processor z is
disabled from the end of round |7z| + 2 on.

Since corruption is determined within at most two rounds, Corollary 6.19 implies
that a faulty processor can universally corrupt nodes in at most two different rounds.
Thus, our situation resembles that of the n > 4t case with majority, except that now
the faulty processors are able to corrupt nodes in two consecutive rounds in some
cases. This will force us to consider the possibility of cross-corruption in Section 7.

6.4.1. Waste. One consequence of Corollary 6.17 is that if no node o of depth r
is universally corrupted, then all such nodes are closed by the end of round r + 4.
Moreover, it is easy to see that if all nodes of depth r are closed, then so are all of
their ancestors, including the root. We thus have

LEMMA 6.20. If no node o of depth |o| = r is universally corrupted, then the
root A is closed in all processors’ trees by the end of round r + 4.

We say that a processor z universally corrupts a node 7z at depth r if the node 72
is universally corrupted, and |7z| = r. Notice that whether z universally corrupts 7z
might depend on events that take place after round r = |7z|, such as what values other
faulty processors report for 7z, and who is masking z in round r+1. Intuitively, we can
figure out whether 2z universally corrupted 7z only in round r+2. Corollary 6.19 states
that at most two rounds after a processor universally corrupts a node, this processor
is disabled. Corollary 6.3 implies that a disabled processor cannot universally corrupt
nodes. It follows that a processor can universally corrupt nodes in at most two
(consecutive) rounds. However, it is not hard to see that a processor z cannot be the
only processor universally corrupting nodes in a pair of consecutive rounds r and r+1:

LEMMA 6.21. Assume that z universally corrupts nodes at depth r. If there are
universally corrupted nodes at depth r + 1, then there must be at least one processor
2 # z corrupting nodes either at depth r or at depth r + 1.

Proof. Assume that Tzy is a node of depth |rzy| = r + 1 that is universally
corrupted. If no processor other than z universally corrupts nodes at depth r + 1, we
must have that y = z. By definition of the EIG tree, a node is a sequence of processor
names without repetitions, and hence x # z. Since 7y is universally corrupted, it is
not closed in any processor’s tree by the end of round |7|+4. It follows that 7z is also
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not closed in any processor’s tree at that point. We conclude that 72 was not closed
in any tree at the end of round |7|+3 = |7z|+2, and hence was universally corrupted.
Thus, 2 # z universally corrupted nodes at depth r, and the claim follows. O
Lemma 6.20 implies that in order to keep the trees from closing, at least one pro-
cessor must universally corrupt nodes at every depth. Moreover, Lemma 6.21 implies
that at least two different processors must universally corrupt nodes in consecutive
rounds. Finally, by Corollary 6.19, we know that two rounds after a processor uni-
versally corrupts nodes, this processor is disabled. It follows that, roughly speaking,
in order to keep the root from closing, at least one processor per round must become
disabled. We now make a few definitions that will allow us to make this intuition into
a precise statement, and will later help us in the analysis of monitor voting.
Let us denote by D(r) the set of processors that are disabled at the end of round r.

We define the deficit at r, denoted deficit(r), to be the number of processors that
universally corrupt nodes at depth r — 1, but are not disabled by the end of round r.
Recall that every processor that universally corrupts a node at depth r —1 is detected
by all nonfaulty processors as faulty (and hence disabled) by the end of round r + 1.
We thus have #D(r + 1) > #D(r) + deficit(r). We are almost ready to define the
waste at r. Roughly speaking, the term waste comes from the idea that the nonfaulty
processors are playing against an adversary.® This adversary is trying to enlarge the
size of processors’ trees without spending more than one disabled processor per round.
The waste measures the extent by which the adversary has exceeded this allowance.
Intuitively, the waste should be a measure, stated in terms of the number of disabled
processors and the deficit, that will have the following properties:

1. As long as at least one node is universally corrupted in every round, the
waste should be nondecreasing;

2. an appropriate form of monitor voting will guarantee that if the waste exceeds
a certain constant threshold, then the agreement process will be halted; and

3. as long as the waste does not exceed the threshold of (2), then the number
of universally corrupted nodes in the tree is polynomial.
To obtain this, we define the waste at the end of round r, denoted by Waste(r), as
follows:

Waste(r) = #D(r) —r + deficit(r) — correction(r).

The last term, correction(r), is technically needed in order to compensate for cases
in which the processors that form the deficit are able to corrupt nodes at depth r in
addition to round r — 1. In this case, we want to account one of these processors to
the following round. Formally, we define correction(r) as follows:

0 if deficit(r) =0;
correction(r) = 0 if deficit(r) =1 and only one processor universally
corrupts nodes at depth r —1; and

1 otherwise.

In other words, the correction is 1 if either deficit(r) > 2, or if deficit(r) =1,
provided there is at least one processor universally corrupting nodes at depth r — 1
in addition to the processor forming the deficit at r. In either case, we deduct a cost
of 1 for the fact that some processor in the deficit had the option of causing harm at
depth r as well as at depth r — 1. The following lemma makes this claim precise.

5 The notion of waste used here is close in spirit to, though technically quite different from, a
similar notion introduced in the work of Dwork and Moses [12].
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LEMMA 6.22. If correction(r) = 0 then no processor universally corrupts nodes
both at depth r — 1 and at depth r.

Proof. We consider the two cases in which correction(r) = 0. For the first case,
if deficit(r) = 0, then all processors that universally corrupt nodes in round 7 — 1
are disabled by the end of round r, and hence cannot corrupt nodes at depth r. For
the other case, assume that deficit(r) = 1 and let z be the processor forming the
deficit at r. By definition, if correction(r) = 0 then z is the only processor that
universally corrupts nodes at depth r — 1. By Lemma 6.21, z cannot also universally
corrupt nodes at depth r. a

We can now prove:

THEOREM 6.23. Let r > 2. If Waste(r + 1) < Waste(r) then no node of depth r
is universally corrupted.

Proof. We prove the contrapositive statement: Assume that there is at least one
universally corrupted node at depth r, and we shall show that Waste(r+1) > Waste(r).
Recall from the discussion above that #D(r + 1) > #D(r) + deficit(r). In addi-
tion, notice that, by definition of correction, we are guaranteed that deficit(r’) —
correction(r’) > 0 for all 7, and in particular we will have that deficit(r + 1) —
correction(r + 1) > 0. We consider three cases:

(i) At least one processor universally corrupting nodes at depth r — 1 also
universally corrupts nodes at depth r. In this case, we have by Lemma 6.22 that
correction(r) = 1. We thus have:

Waste(r +1) = #D(r +1) — (r + 1) + deficit(r + 1) — correction(r + 1) >
#D(r+1)— (r+1) > #D(r) + deficit(r) —r—1=
#D(r) —r + deficit(r) — correction(r) = Waste(r).

(ii) The assumption of case (i) does not hold, and at least one processor z that
universally corrupts nodes at depth r is disabled by the end of round r + 1. Clearly,
z ¢ D(r), and by assumption we have that z is not one of the processors forming a
deficit at 7. Since z is disabled by the end of round r + 1, we have that #D(r + 1) >
#D(r) + deficit(r) + 1, and hence we are guaranteed that Waste(r + 1) > Waste(r)
by:

Waste(r + 1) > #D(r +1) — (r + 1) > #D(r) + deficit(r) + 1 —(r+ 1) =
#D(r) + deficit(r) —r > #D(r) — r + deficit(r) — correction(r) = Waste(r).

(iii) The assumptions of cases (i) and (ii) do not hold. Thus, no processor uni-
versally corrupts nodes both at depth » — 1 and at depth r, and no processor that
universally corrupts nodes at depth r is disabled by the end of round r + 1. It follows
that only processors forming the deficit at r 4+ 1 universally corrupt nodes at depth r.
In this case, if deficit(r+1) > 2, then deficit(r+ 1) — correction(r+1) > 1, and
we have that that Waste(r + 1) > #D(r) + deficit(r) + 1 — (r + 1) and hence
Waste(r + 1) > Waste(r) as in the previous case. Finally, if deficit(r + 1) =
1 then the assumptions imply that the processor forming the deficit at r + 1 is
the only processor universally corrupting nodes at depth r. By the definition of
correction we thus have that correction(r + 1) = 0, and we again obtain that
deficit(r + 1) — correction(r + 1) > 1, so that Waste(r + 1) > Waste(r) and we
are done.

d

Theorem 6.23 will be instrumental in the correctness of our ultimate algorithm.

We shall design the monitor voting scheme in such a way that once the waste becomes
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large enough (which in our case will mean at least two), an appropriate monitor
decision process will “fire”, thereby causing the processors all to decide on a default
value and halt.

In Section 7.3 we shall demonstrate how it is possible to stop interacting about a
subtree of the EIG tree after it becomes closed. As a result, a fundamental parameter
determining the size of the processors’ trees will be the number of universally cor-
rupted nodes in the tree. Theorem 6.23 allows us to formalize the idea that there is
a close relationship between the waste of an execution and the number of universally
corrupted nodes in the tree. Recall, for example, that if there is only one processor
universally corrupting nodes at any given depth, then the total number of universally
corrupted nodes is no greater than ¢. In order for this number to grow, it is necessary
for there to be levels of the tree at which two or more processors universally corrupt
nodes. Notice, however, that if three or more processors universally corrupt nodes at
depth 7, then Corollary 6.19 implies they all will be disabled by the end of round r +2,
and as a result we would have that Waste(r +2) > Waste(r). As we are going to start
with a waste at r = 2 of at least —1, it will follow that after a constant number of
such rounds, the monitors will detect a problem and stop the growth of the EIG tree.

The only situation in which the number of universally corrupted nodes can grow
more than in a linear fashion, and the waste need not increase, is in the case of
cross corruption. This is a situation in which two processors, say a and b, universally
corrupt nodes at depth r, and they continue to be the only processors to universally
corrupt nodes at depth r + 1. Specifically, if a corrupted a node 7a at depth r and b
corrupted 7b, then at depth r + 1 we will find b universally corrupting 7ab, while a
corrupts 7ba. See Figure 3 for an illustration of this situation. In this fashion, it is
possible to double the number of universally corrupted nodes of depth r+ 1 compared
to the number of corrupted nodes of depth r — 1, without increasing the waste.®

The next section is devoted to cross corruption. In particular, we shall devise
an admissible resolve function that will restrict the number of times at which cross
corruption need not increase the waste.

7. Cross corruption. As discussed in the last section, in order for the number
of universally corrupted nodes to grow significantly without the waste growing at
the same time, pairs of faulty processors need to cross-corrupt nodes in consecutive
rounds. In this section, we perform a careful analysis of the conditions that must
be met for cross-corruption to succeed. We then use this analysis to fine-tune the
function F' we use for fixing nodes, to limit the number of times that a cross corruption
can take place without the waste increasing. This analysis will yield essentially all of
the necessary ingredients for our final protocol.

The first property of cross corruption we shall use is the fact that in cross cor-
ruption, each universally corrupted node 7a in the first of the two rounds has at most
one universally corrupted child 7ab. As a result, if the node 7a is not closed in a
small number of rounds, then all of its children other than 7ab must be fixed in all
trees. Moreover, since Ta is not closed after these nodes become fixed, the number of
its children fixed to par(|ra|) and the number fixed to its complement are uniquely
determined. More specifically, we have:

LEMMA 7.1. In a A-EIG protocol with admissible function F, let v = par(|Tal)
and let Ta be a universally corrupted node whose only universally corrupted child

6 Indeed, Berman and Garay [5] have shown that for the resolve function of [2] for n > 3t, it is
possible to construct an exponential tree this way, despite fault masking, early stopping, and monitor
voting.
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2 failures: a,b

0O failures

2 failures: c,d

Fic. 3. Cross corruption.

is Tab. For every nonfaulty processor i, if Ta is not closed in tree; by the end of
round |T| + 6, then all of its children other than Tab are fized in tree; at that point.
Moreover, let A denote the set of processors x for which the node Tax is fized to v
in tree;, and let B denote the set of processors y such that Tay is fixed to 1—v. Then
#A=F(ra]) =1 and #B =n — |ra| — F(|ra|).

Proof. The scenario described in the statement of the lemma, is depicted in Fig-
ure 4 near Lemma, 7.7. Corollary 6.17 implies that a node Taz that is not universally
corrupted must be closed in all trees by the end of round |raz|+4 = || +6. Since we
are assuming that 7a is not closed in tree; at that point, it follows that every such
node 7az will necessarily be fixed in tree; by the end of round |r| + 6. Since Tab
is the only universally corrupted child of 7a, we obtain that all other children of Ta
must be fixed in tree; by the end of round |7]| 4+ 6. Let A be set of processors z such
that the node Taz is fixed to v in tree; (by the end of round |7|+6), and let B the set
of processors y such that the node 7Tay is fixed to 1 — v. This is depicted in Figure 4.
Since 7a is not closed in tree; by the end of round |7| + 6 we are guaranteed that
#A < F(|ra]) and #B < n — |ra| + 1 — F(|ra|). However, the fact that only one of
Ta’s children is universally corrupted implies that #A4 +#B = n — |ra| — 1. It follows
that #A = F(|ra|) — 1 and #B = n — |ra| — F(|7al). 0

Another observation regarding cross corruption is the following. Recall that every
node of the safe subtree must be publicly committed either to 0 or to 1. If a node Tac
is publicly committed to v and then becomes fixed to 1—wv, then by rule FD2 everybody
will discover that ¢ is faulty by the end of round |rac|+ 2 = || + 4, and ¢ will become
disabled by then. As a result, we obtain:

LEMMA 7.2. Under the conditions and notation of Lemma 7.1, let C C B consist
of the processors ¢ such that Tac is publicly committed to v. Then C C (D(|7|+5)\
D(jr| +2).

Proof. By definition of C, for every nonfaulty processor j we have that each
node Tac with ¢ € C is committed to v in tree;. In addition, since C C B, we
have that Tac is fixed to right(rac) = 1 — v in tree; by the end of round |7| + 6.
As a result, we have by Theorem 6.8 and Lemma 6.7 that Tac cannot become fixed
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to v in tree;. Moreover, since, by assumption, 7a is not closed in tree; by the end
of round |7| + 6, we have by Corollary 6.16 that 7a is not closed in tree; by the
end of round |7| + 4 = |rac| + 2. Hence, Tac can be closed in tree; at the end of
round |7ac| + 2 only if it is fixed (to 1 —v) in tree; at that point. If it is indeed fixed
to 1 — v in tree; at the end of round |7| + 4, then 7ac is committed at that point
to 1 — v in tree; by Lemma 6.12. If not, then it is committed to 1 — v at that point
by C3. Since 7a is not closed in tree; by the end of round |7| + 4|, we have that Tac
is not closed in tree; by the end of round |rac|. Thus, in either case, rule FD2 implies
that j detects ¢ as faulty by the end of round |7| + 4. Since this argument applies for
every nonfaulty processor j, we have that ¢ is disabled at the end of round |7| + 4.
Notice, however, that ¢ could not have been disabled at the end of round |7| + 2,
for if it had been disabled at that point, then, by Lemma 6.2, 7ac would not be
publicly committed to v: all nonfaulty processors would be reporting 1 — v for Tac by
masking c. By definition of B, this contradicts the assumption that ¢ € C C B. We
conclude that C C (D(|7| +4) \ D(|7| +2)). Since D(|7| + 5) D D(|7| + 4), we obtain
that C C (D(|7] +5) \ D(|7| + 2)) and we are done. 0

Lemma 7.2 implies that, in order to avoid having the waste grow in an instance of
cross corruption, the size of the set C' must remain small. Specifically, as we shall see
later on, it is necessary that #C < 2. When this is the case, then the vast majority
of nodes Tay with y € B must be publicly committed to 1 — v. As a result, if B is
large enough, we can use the fault-detection rule FD3 to force the processors in A to
mask a in round |7| + 3. More specifically, we have:

LEMMA 7.3. Under the conditions and notation of Lemma 7.1, let B C B
consist of the processors y' € B such that the node Tay' is publicly committed to 1 —wv.
Assume #B' > 2(t+1—|ra|)+ 1. If the node Tba is not closed in tree; at the end of
round |T|+ 7, then every processor x € A for which Thax is not fivred to 1 —v in tree;
by the end of round |7| + 7 is disabled by the end of round |7| + 5.

Proof. Consider two cases:

(i) 7baz is not closed in tree; by the end of round |7| + 7: In this case, by
Corollary 6.17 we have that Tbax is universally corrupted, and by Corollary 6.19 we
obtain that z is disabled by the end of round |rbaz|+ 2 = |7| + 5.

(ii) 7baz is closed in tree; by the end of round |7| + 7: Since, by assumption,

7ba is not closed in tree; by the end of round ||+ 7, if Tbaz is closed in tree; at that
point, then it must be fixed in tree;. Moreover, since we have assumed that 7bazx is
not fixed to 1 — v, it must be fixed to v in tree; by the end of round |7| + 7. As a
result, for every nonfaulty processor j, the node 7bazx does not become fixed to 1 —v
in tree;. We now show that every nonfaulty processor j must have detected z as
faulty no later than in round |7| + 5.
Let j be an arbitrary nonfaulty processor. Recall that every node raxr with z € A
is fixed in tree; to v # par(|raz|) by the end of round |7| + 6. By Lemma 6.13 we
thus have that every node Tax with x € A is publicly committed to v. If  does not
send j a mask(z,a) message by the end of round |7| + 3 then the conditions of the
fault detection rule FD3 hold for j with respect to z:

(i) Taz is committed to v in tree;; and

(ii) since all nodes Tay with y € B’ are publicly committed to 1 — v, at least
#B' > 2(t+1—|7a|) + 1 such nodes Tay are committed to 1 — v in tree; by the end
of round |raz| + 1. It follows that j will detect 2 as faulty in round |7| + 3.

If z € F;(|7| + 3) then we are done. Otherwise, = sent j a mask(z, a) message by the
end of round |7|+3, and hence by the Masking rule we have that tree;(rbaz) = 1—w,
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so that Tbazx is committed to 1 — v in tree; by Cl. In addition, since

(i) 7bax is not closed in tree; by the end of round |rbaz| + 1; and

(ii) 7baz is not fixed to 1 — v by the end of round |rbaz| + 2 = |7| + 5,
we have that 7bax is committed in tree; to v by C3 by the end of round |7|+5. Given
that 7ba is not closed in tree; by the end of round |r| + 7, Corollary 6.16 implies
that 7ba is not closed in tree; by the end of round |7|+ 5. It follows that Tbaz is not
closed in tree; by the end of round |tbaz| + 2 = |7| + 5. Hence, by fault discovery
rule FD2, we obtain that « € F;(|7| + 5) and we are done.
d

Roughly speaking, Lemma, 7.3 implies that in a successful cross corruption, most

members of A must mask a when reporting on 7ba. The ones that do not will become
disabled by the end of round |7| + 5. As a result, if F(|7|) > F(|r| + 1) + 3, then
for 7ba not to close by the end of round |r| + 7, at least three members of A must
become disabled by the end of round |7| + 5. As we shall see, this will be sufficient
to guarantee that a cross corruption in these rounds must increase the waste by at
least 1.

7.1. A concrete admissible function. Lemmas 7.2 and 7.3 motivate us to

seek an admissible function F' with the following two properties:

1. F(r) <t+r—4forall 2<r <t, and

2. F(r)>F(r+1)+3forall 2<7r <t.
In the notation of the above lemmas, the first property guarantees, for nodes 7 satisfy-
ing |7| > 2, that if #B' < 2(t+ 1 —|ra|) then #C > 3. As we shall see, a combination
of both properties implies that a cross corruption must necessarily cause an increase
in the waste. Unfortunately, an admissible function with both properties does not
exist. We now turn to define a function that will have the first property, and will
approximate the second property: This property will hold for all but a small number
of rounds r.

Recall that, for F' to be admissible, it must satisfy t +r —1 > F(r) >t —r + 2
for 2 < r < t. Intuitively, we divide the execution into “phases” consisting of many
rounds each. In each phase we start with F'(r) being close to ¢+ r, and we reduce the
threshold by steps of 3 from one round to the next until we come close to t —r. A
new phase then begins. Rather than at ¢ +r — 1, a phase will start with the threshold
no greater that ¢ + r — 4, to guarantee the first property described above. Thus,
both desired properties are maintained during a phase, but they are violated in the
transition between phases. Luckily, the number of such transitions will be shown to
be logarithmic in n.

We define rem(k) to be the difference between k and the largest power of 2 that
is smaller than k. More precisely stated,

rem(k) def

k — 2[1082 k] X
Notice that rem(k) = 0 for k > 1 precisely if k is a power of 2. Moreover, one property
of rem that we shall use in the sequel is that, for all natural numbers & > 1 we have
0 < rem(k) < £ — 1, 50 that, in particular, we have 0 < 4rem(k) < 2k — 2.

Our threshold function F™* is defined as follows:

FH(r) = t+1 for 0 <r < 4; and
"= t+r—4—drem(r—3) forr > 5.
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A few essential properties of the function F™* that we shall find useful in the sequel
are:
LEMMA 7.4. If r > 5 then

t+r—4>F*(r) >t—r+4.

Proof. Since 0 < 4rem(k) < 2k—2for k > 2, we have that 0 < 4rem(r—3) < 2r—8
for r > 5. It follows that t+r—4 > F*(r) > t+r—4—(2r—8) = t+r—4-2r+8 = t—r+4
for t+1 > r > 5 and we are done. d

LEMMA 7.5. The function F* is an admissible resolve function.

Proof. Recall that a function F is admissible if it satisfies F(0) = F(1) =t +1
andt+r—1>F(r) >t—r+2forr>2. Forr=0,1wehave F*(r) =t+1 as
desired. For 2 <r <4 we have F*(r) =t+land t+r—-1>t+1>t—1r+2.
For r > 5, Lemma 7.4 states that ¢t + r —4 > F*(r) > ¢t —r + 4. We thus have
t+r—1>t+r—-4>F*r)>t—r+4>t—r+2 and we are done. O

LEMMA 7.6. Let r > 5 and assume that r — 2 is not a power of 2. Then
F*(r)— F*(r+1) =3.

Proof. Since r > 5, we have that F*(r) =t +r — 4 — 4rem(r — 3), while F*(r +
1) =t+r —3—4rem(r — 2). The fact that r — 2 is not a power of 2 implies that
rem(r —2) = rem(r — 3) + 1. It follows that F*(r) =t+r—3+1—4(rem(r—2)—1) =
F*(r+1)—14+4=F*(r+1)+ 3 and we are done. 0

Obviously, the number of rounds r < t for which r — 2 is a power of 2 is roughly
log, t.

7.2. The main lemma. We are now in a position to prove that, given our fixing
and fault detection rules, the price of cross corruption is high. In other words, that
for cross corruption to take place, many faulty processors must become disabled. As
a result, cross corruption will no longer be a problem for monitor voting. We now
have:

LEMMA 7.7. Let Ta and T7b be universally corrupted nodes, such that

(i) |7| >4 and || — 1 is not a power of 2;
(ii) the only universally corrupted child of Ta is Tab and the only universally
corrupted child of Tb is Tba; and

(111) for some i, both of the nodes Ta and Tb are not closed in tree; by the end
of round ||+ 7.

Then

#(D(I7] +5)\ D7 +2)) = 5.

Proof. The situation considered in this lemma is partly illustrated by Figure 4.
We first prove the following about a and b.

CrLAam 7.8. a,b € (D(|r| + 5) \ D(|7] + 2)).

Proof. The fact that Ta and 7b are not closed in tree; by the end of round |7|+7
implies, by Corollary 6.17, that these nodes are universally corrupted. By Corol-
lary 6.19 we thus obtain that both a and b must be disabled no later than at the end
of round |ra| + 2 = |7| + 3. However, if either of them were disabled by the end of
round |7| + 2, then all nonfaulty processors would be masking them in round |7| + 3,
and by Lemma 6.2 we would have that 7ba and Tab would not be corrupted in any
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nonfaulty processor’s tree, contradicting our assumption about a and b. It follows
that

a,b € (D(|7| +3)\ D(|7 +2)) € (D(I7| +5) \ D(|7| + 2)).

a

Given Claim 7.8, we need to show that, under the conditions of the lemma, at
least 3 additional faulty processors must become disabled between rounds |7| + 3
and |7| + 5.

We shall perform our analysis based on the subtree rooted at 7a. Assume the con-
ditions of the lemma hold, and without loss of generality let par(|ra|) = v. Since Tab
is the only universally corrupted child of ra, it follows by Corollary 6.17 that all other
children of 7a must be fixed in tree; by the end of round |7| + 6. Let A denote the
set of processors  such that the node Taz is fixed to v in tree; (by the end of round
|7|+6), and let B the set of processors y such that the node ray is fixed to 1 —v. This
is depicted in Figure 4. The conditions of Lemma 7.1 are satisfied, and as a result we
have that #A = F*(|ra|]) — 1 and #B = n — |ra| — F*(|7al).

i 'stree

Ta
par =v
B
par =1-v
fixedto 1-v fixedto v

Fi1G. 4. Two universally corrupted nodes.

As in Lemma 7.2, let C denote the subset of B consisting of processors ¢ such
that 7ac is publicly committed to v.

Let us denote B' %' B \ C. By definition, every node Tay’ with y' € B’ is publicly
committed to 1 — v, and is hence committed to 1 — v in every nonfaulty processor’s
tree. We now show that, if B’ is “small” (namely, #B’ < 2(¢t + 1 — |ral])), then C
is large enough (i.e., #C > 3) to yield the lemma. If B’ is not small, however, we
shall use Lemma 7.3 to show that sufficiently many processors, this time members
of A, must be disabled. Thus, either way we obtain that at least three processors in
addition to a and b become disabled in rounds || + 3 through || + 5.

As described above, we consider two cases:
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(i) #B' < 2(t+ 1 —|ra|): In this case, we claim that #C > 3. This follows
from the fact that #B = n — |ra| — F*(|ra|) and #C = #B — #B’. The calculation
is as follows.

#C >n—|ral — F*(Jra]) = 2(t + 1 — |ra]) =
n—2t+|ra] — 2 — F*(|ral|) >
n—2t+|ra|l—2— (t+ |ra| —4) =
n—(3t+1)+3>3
Lemma 7.2 implies that C' C (D(|7| + 5) \ D(|7| +2)). In the claim above we showed

that a,b € (D(|7| +5) \ D(]7| +2)). Since a ¢ C and b ¢ C, we obtain that #(D(|7| +
5)\ D(|7| +2) > 5.

par=v

par = 1-v

fixedto1 - v

Fic. 5. A set G of newly disabled processors.

(ii) #B' > 2(t + 1 — |ra|) + 1: Since we are assuming that |7| > 4 we have
|Ta| > 5. By Lemma 7.6 we thus have that F*(|ra|) — F*(|7ba|) = 3. Let A’ consist of
the processors ' such that 7baz’ is fixed to 1 —v in tree; by the end of round |7| +7.
Since 7b is not closed in tree; by the end of round |7|+7 and 7ba is the only universally

corrupted child of 7b, we have that 7ba is also not closed in tree; at that point. It

follows that #A' < F*(|rbal) —1 = F*(|ra|) —4 = #A — 3. Define G def (A\ A" (see
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Figure 5). In particular, we obtain that #G > 3. Moreover, if a processor z € A is
disabled by the end of round |7| + 3, then Lemma 6.2 and the Masking rules imply
that Tbaz is fixed in tree; to par(|Tba|) = 1 —v by the end of round |7|+ 4. It follows
that no processor z € G is disabled by the end of round |r| + 3. The conditions of
Lemma 7.3 are satisfied with respect to every z € G, and hence by Lemma 7.3 we
have that G C (D(|r| + 5) \ D(|7| + 2)). Notice that a,b ¢ G. Thus, we again obtain
that #(D(|7| + 5) \ D(|7| +2)) > 5, and we are done.
a

As a consequence of Lemma 7.7 and the definition of Waste we obtain:

COROLLARY 7.9. If the conditions of Lemma 7.7 hold with respect to T, then
Waste(|7| + 5) > Waste(|7| + 1).

Proof. We have defined Waste(r) by:

Waste(r) = #D(r) —r + deficit(r) — correction(r).

By definition, we have that correction(r) > 0, and deficit(r) —correction(r) > 0.
It thus follows that

(1) #D(r) + deficit(r) > Waste(r) + r > #D(r).

In particular, we have that Waste(|7| + 5) + |7| + 5 > #D(|7| + 5). Recall that the
deficit at |7| + 1 corresponds to processors that have universally corrupted nodes at
depth |7| but are not yet disabled at time |7|+1. All of these processors are discovered
as faulty by all nonfaulty processors, and are hence disabled, by time |7| + 2. Thus,
we have that #D(|7| + 2) > #D(|7| + 1) + deficit(|7| + 1). By equation (1) above
we thus obtain that #D(|7| + 2) > Waste(|7| + 1) + |7| + 1.

By Lemma 7.7 we have that #(D(|7| + 5) \ D(|7| + 2)) > 5. Since the set D
grows monotonically, D(|7| + 5) D D(|7| + 2), and we can therefore conclude that
#D(|7| +5) > #D(|7| +2) + 5. In summary, we have

Waste(|7|+5) + |7|+5 > #D(|7|+5) > #D(|7|+2)+5 > Waste(|7|+ 1)+ 7| +1+5.

Deducting |7| + 5 from both sides, we obtain that Waste(|7| +5) > Waste(|7| +1) + 1,
so that Waste(|7| + 5) > Waste(|7| + 1) and we are done. 0

Lemma 7.7 implies that from round 5 on, the only rounds in which cross corruption
can take place without increasing the waste of the run are pairs of rounds r,r + 1 such
that » — 1 is a power of 2. In particular, since r < ¢, this can happen no more than
log, t + O(1) times. These rounds can increase the number of universally corrupted
nodes at any given depth in the tree by a factor of at most O(%).

7.3. Early stopping in A-agreement. A crucial property of the A-E1G pro-
tocol is captured by Corollary 6.16. It states that two rounds after a node o is closed
in one nonfaulty processor’s tree, it will be closed in all processors’ trees. Obviously,
once o is closed in tree;, processor i has no use for the descendants of o. Nevertheless,
it might still need to record values and perform fault detection, in order to continue
reporting on nodes in order to allow o to close in the trees of other processors. What
Corollary 6.16 implies, then, is that ¢ needs to relay values in the subtree rooted at o
for at most 2 rounds after o is closed in tree;. This suggests that we can modify the
A-EIG protocol to obtain an early-stopping protocol as follows.

— Rather than reporting on all internal nodes in the A-EIG tree, processor i
will report on a node o in round |o| + 1 only if o was not closed in tree; by the end
of round |o| — 2. (Recall that a node can be closed before any value is stored in it;
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all that is needed for it to be closed is that one of its ancestors should be fixed to a
value.) To implement this rule, all that is needed is for ¢ to handle and report only
on the children and grandchildren of nodes that fix by rule Fx2.

— We modify the Halting condition for a processor 4 to:

e Halting’: Processor i continues to record information, perform fault de-
tection, and report on values for two rounds after the root A is closed in tree;. At
the end of these two rounds (and no later than at the end of round t+1— A), it halts.

— There are a couple of details we need to take care of once we modify the

protocol as described above. They result from the fact that it is now possible not
to receive a message from a nonfaulty processor. This can only happen, however, in
cases in which these values are of no use to the receiver. This leads to modifications
of the Recording and masking rule, and to a modification of the definition of an ill-
formatted message, which in turn affects the process of fault detection. We start
by describing the latter. We shall extend the notion of an ill-formatted message as
follows: If node o is not closed in tree; by the end of round |o|, and processor j’s
message in round |o| + 1 does not report values for all children of o, then the message
is considered ill-formatted and 7 will detect j as faulty by rule FDO. One consequence
of this definition is that if j sends no message to ¢ in round r + 1 and the root A is
not closed in tree; by the end of round r, then i detects j as being faulty.
Finally, the Recording and masking rule is modified for the case in which the root A
is fixed in tree; at the end of round r and i receives no message in round r + 1 from
some processor j ¢ F;(r). Since i needs to continue to report on values in round r + 2
by the Halting' rule, it acts as follows. For nodes that correspond to processors z for
which j has issued mask(j, z) reports in the first r rounds, there is no problem. For
all other nodes, we choose to have i consider j as reporting the same values that
has reported, for all depth r nodes that 4 reports on in round r + 1. This is related to
the reconstruction method advanced by Zamsky [26, 28], and by Berman, Garay and
Perry [7]. One feature of this choice is that it keeps the fault detection rule FD2 from
ever causing i to mistakenly “detect” j as faulty. (While such a mistaken detection
would not change i’s decision in the agreement process being executed, it becomes
problematic when we run a number of agreement processes in parallel, and use a
common fault-detection module as will be described in Section 8.1 below.)

We call the resulting protocol the A-Es protocol (the Es stands for early stopping).
Despite possibly reporting on much fewer nodes in a run of A-ESs than in similar runs
of A-EIG, the processors’ behavior in A-ES maintains an important invariant: If a
node o is not closed in tree; at the end of round || and none of o’s ancestors is
closed in tree; by the end of round |o| + 1, then all nonfaulty processors report a
value for ¢ in round |o|+1, as well as performing fault detection for all of o’s children
in round |o| + 1, and reporting on them in round |o| + 2. This ensures the following:

(i) For every nonfaulty ¢ and j, the first node to close in tree; along any path
from the root, is guaranteed to close in tree; at most two rounds after it does in tree;.
Hence, the information that processor ¢ would receive in A-E1G but does not receive
in A-Es does not affect i’s decision.

(ii) The commitment rules operate in A-Es as they do in A-EIG, since they
depend only on the values stored in a node (C1), its children (C2) and grandchildren
(C3). The fault detection rule FD2 remains sound, since it depends solely on these
commitment rules.

(iii) The soundness of fault detection rule FD3 is maintained: If the node Taz is
not closed in tree; by the end of round |raz| + 1, then all processors are guaranteed
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to store the children of 7a in the previous round, perform failure detection at the end
of round |raz|, and report on nodes in round |raz| + 1. Hence, a processor that does
not mask the culprit processor a of FD3 in the designated round, must be faulty.

As a result, all of the properties proven for A-E1G in the previous sections hold
once we move to the A-Es protocol:

PROPOSITION 7.10. All of the statements from Lemma 6.7 through Lemma 7.7
hold for the A-Es protocol.

The main aim of the protocol A-Es is to allow us to refrain from having to
construct exponential-size EIG trees and hence from having to send an exponential
amount of communication. At this point, we are able to prove a polynomial relation
between the number of universally corrupted nodes and the size of trees. This will
reduce our problem to keeping the number of universally corrupted nodes polynomial,
which will be done in the later sections. We thus have:

COROLLARY 7.11. Assume that the last nonfaulty processor halts by the end of
round r, and let the number of universally corrupted nodes o of depth |o| <r—6 be T.
Then, for every nonfaulty processor i, the total number of nodes in tree; is bounded
by O(n®T).

Proof. Let o be a universally corrupted node. The node o has O(n) children o
that are not universally corrupted. Corollary 6.17 implies that each such child is closed
in tree; by the end of round |oj| +4. It follows that oj has at most O(n?) descendants
in tree; by the time it is closed. By definition of the A-ES protocol, processor i will
need to store one level of nodes, beyond these O(n*) nodes, in the subtree rooted
in oj. Tt follows that o can have at most O(n®) descendants in tree; that are not
themselves descendants of a universally corrupted child of ¢. By accounting each
node of tree; to its closest ancestor that is universally corrupted, the claim follows.
a

8. The Sliding-flip protocol. We now have all of the ingredients necessary
to define the final combined protocol. Intuitively, the protocol will be an variant
of monitor agreement in which the monitors will be instances of A-agreement. We
remark that in such a setting, there is a distinction between the global round number,
which is counted from the start of the original agreement process, and the local round
number of a specific instance of A-Es, which is counted from the start of this instance.
The global depth and local depth of a node arefined analogously. The definition of A-Es
and our analysis of A-Es use local round numbers. In our protocol, one instance of A-
agreement is spawned in every round, for rounds 1 < r < ¢. In round r, the agreement
process that is generated will be a A-Es for A = r—1. Since, by the Halting' property,
such an instance will complete in ¢t + 1 — A = ¢ + 2 — r rounds, we obtain that every
such process will complete by the end of (global) round r —1+t+2—r =t+1. We
call such a process (t + 1)-bounded. Before we provide the details of the voting rules
and properties of these instances of A-agreement, we now describe a general method
by which such agreement processes can be combined. This will be used when we come
to combine the agreement processes in the final description of the combined protocol.

8.1. Preempt-on-One. In our combined protocol, we initiate one A-agreement
process M" in every round r, where the parameter A = r — 1 is used in M". In
this section we describe the method by which we combine the different agreement
processes. This method is stated in slightly more general terms than we need, as
it applies elsewhere as well. We call a set of agreement processes being executed
concurrently with respect to a single fault detection module (FDM) an ensemble, and
denote ensembles by £. Different agreement processes are said to use a single FpMm if
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for all nonfaulty processor ¢ and (global) round r, the set F;(r) used by one agreement
process is the same as that used by the others.

We now define an operation that takes an ensemble and turns it into a single pro-
tocol. In executing Preempt-on-0One(£), a nonfaulty protocol concurrently executes
all of the processes in £. It decides and halts according to the following rule:

Dec0. Processor i decides 0 on Preempt-on-0One(£) and halts once i has halted

with a decision of 0 on all processes in &.

Decl. Processor ¢ decides 1 on Preempt-on-One(£) and halts (preempting all
agreement processes underway) once ¢ has halted with a decision of 1 on
some process in &.

The following property of Preempt-on-0One(-) is fairly immediate, and will turn

out useful:

LEMMA 8.1. Let £ be an ensemble of agreement processes. If all processes in £
are (t + 1)-bounded and satisfy the Agreement property, then Preempt-on-0One(£) is
(t + 1)-bounded and satisfies the Agreement property.

Proof. We start by showing that Preempt-on-0One(€) is an agreement protocol.
Assume that some processor i decides 0 on Preempt-on-0One(£) in a given run. It fol-
lows from Dec0 that ¢ decides 0 on all processes in &€ in this run. Since the instances all
satisfy the Agreement property, no other nonfaulty processor j will decide 1 on any of
the processes in £. In addition, since the processes in £ are all (¢ + 1)-bounded, it fol-
lows that j will actually decide 0 on every process in £ no later than in round t+1. We
conclude that every nonfaulty processor will halt in Preempt-on-0One(£) with a deci-
sion of 0 by the end of round ¢+1. Assume now that ¢ decides 1 on Preempt-on-0One(&)
in a given run. Let M € £ be the process that triggers i’s decision. In particular, it fol-
lows that processor ¢ decides 1 and then halts on M at the end of some round r; < t+1.
Let j # i be any other nonfaulty processor. There are two possibilities: (i) Processor j
decides and halts on Preempt-on-0ne(£) before it has a chance to decide and halt
on the process M. By rule Dec0 in the definition of Preempt-on-0One(£), a decision
of 0 can only be taken after j has decided and halted on all processes in £. It follows
that j could only have decided 1, so its decision is in agreement with processor i’s
decision. Moreover, since M was (t + 1)-bounded, and j decided before it had a chance
to decide on M, we obtain that j decides before round ¢ + 1. (ii) The other possibility
is that j does manage to decide and halt on M. Here again because M satisfies the
Agreement property, j will decide 1 on Preempt-on-0ne(£). In addition, since M was
(t+1)-bounded, j decides no later than in round ¢+ 1. In summary we have that in all
cases, Preempt-on-0One(£) satisfies the Agreement property and is (¢ + 1)-bounded,
and we are done. [

8.2. Putting it all together. As described above, the ensemble generated in
the combined protocol consists of instances of A-ES protocols, initiated one per round,
in rounds 1 < R < t. We use R in this section to refer to global round numbers.
In round R, a monitor process initiated in global round K will have its own local
round number r = R+ 1 — K. All the instances of A-ES protocols invoked use the
function F™* defined in Section 7.1. Notice that the function F™* is applied, for every
instance of A-Es, relative to the local round count. Thus, in the same global round,
each agreement process has its own local round number. The combined protocol will
be Preempt-on-One(£), for the ensemble thus generated. We now describe how to
determine a processor’s initial vote in any given monitor process.

Clearly, in round R = 1, the value a processor i uses as its initial value is its
original initial value v;. In later rounds R > 1, the initial value of processor i in
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monitor process M%, is essentially the same as the one we mentioned in Section 4.3
for n > 4t. For the purpose of this voting rule, we say that processor ¢ has detected
another processor z as being disabled by the end of round K if 4 has received mask(j, z)
reports from at least 2t 4+ 1 processors j by that point. The following lemma justifies
this terminology.

LEMMA 8.2. If i has detected z as being disabled by the end of round K, then z
is disabled at the end of round K.

Proof. By definition, ¢ can detect z as being disabled only once ¢ has received at
least 2t+ 1 mask(J, z) reports. At least t+1 of these reports are from nonfaulty proces-
sors j. The sending rule implies that a nonfaulty processor sends identical messages
to all processors in every round. It thus follows that every nonfaulty processor i’ must
have received at least t + 1 mask(j, z) reports by the end of round K. As a result,
the fault detection rule FD1 implies that each such processor i’ must detect z as being
faulty by the end of round K. It follows that z is disabled at that point, and we are
done. 0

The voting rule on a monitor M*® with R > 1 is:

Monitor-vote: Processor ¢ will vote 1 on M% if

(i) at least one node at (global) depth R — 1 in one of i’s trees is not
closed; and

(ii) 4 has detected at least R — 1 faulty processors as being disabled by
the end of round R — 1.
It will vote 0 on M® otherwise.

We define the Sliding-flip protocol to be the protocol that results from per-
forming Preempt-on-One on the ensemble consisting of the original agreement tree
together with the monitor agreement processes M%, for 2 < R < t, where the votes of
the nonfaulty processes are obtained according to the Monitor-vote rule above. These
agreements processes are all instances of A-Es, based on the threshold function F™*
defined in Section 7.1. For ease of exposition, we shall consider the original agreement
process to be M!.

The role of part (i) in the Monitor-vote rule is to guarantee that if all initial
values are 0, then a decision of 0 will be reached. The role of part (ii) is to guarantee
that the monitors satisfy the initial conditions of A-agreement: A nonfaulty process
votes 1 on a monitor agreement process only if a sufficient number of processors are
disabled. In fact, an immediate consequence of Lemma 8.2 is:

COROLLARY 8.3. If at least one nonfaulty processor votes 1 in a monitor MR+!,
then #D(R) > R.

Corollary 8.3 formally shows that the monitors that are initiated in the combined
protocol are “legal” instances of A-agreement. We can now prove:

PROPOSITION 8.4. The Sliding-flip protocol is a correct (t + 1)-round Byzan-
tine agreement protocol.

Proof. Theorem 6.10 and Corollary 8.3 imply that all of the agreement processes
initiated in Sliding-flip are (¢ + 1)-bounded instances of Byzantine agreement. We
therefore obtain by Lemma 8.1 that the S1iding-f1ip protocol satisfies the Decision
and Agreement conditions. We need to show that it also satisfies Validity. If all initial
values are 1, then the root of the initial tree will fix to 1 at the end of round 2 for
all of the nonfaulty processors, so by the definition of Preempt-on-0One they will all
decide 1. Assume that all initial values are 0. In particular, the initial values of all
nonfaulty processors are 0. It follows that, for every nonfaulty processor 4, at least
2t+1 of the root’s children in the initial tree will store 0 at the end of round 1. Since 0



FULLY POLYNOMIAL BYZANTINE AGREEMENT 39

is the preferred value in this round, the root will fix to 0. As a result, all nodes at
global depth 1 will be closed for every nonfaulty processor, and by the Monitor-vote
rule, every such processor i will vote 0 on M2. A straightforward induction on R now
shows that all nonfaulty processors vote 0 on all monitors M?, so that all monitors
decide 0, and by definition of Preempt-on-0One every nonfaulty processor ¢ will end
up deciding 0 at time ¢ + 1. O

It remains to show that the protocol is efficient. As a partial converse of Lemma, 8.2
we have

LEMMA 8.5. If z is disabled at the end of round R and no nonfaulty processor
has halted by the end of round R, then every nonfaulty processor i will have detected z
as being disabled by the end of round R+ 1.

Proof. If no nonfaulty processor has halted by the end of round R, then they
all send messages in round R + 1. If z is disabled at the end of round R, then every
nonfaulty processor j must send a mask(j, z) message to i no later than in round R+1.
It follows that i is guaranteed to receive at least 2t + 1 such messages by the end of
round R + 1, and we are done. O

Recall that the Waste was defined with respect to a given instance of A-EsS. The
parameter 7 of Waste(r) in a given instance of A-Es is a local round number. When we
run many instances of A-Es concurrently, as in the S1iding-f1ip protocol, we wish
to reason about an overall notion of waste. Let us define the global waste at time K,
denoted by G_Waste(K), to be the maximum value of Waste(K — R) in monitor M¥,
over all R < K. Thus, GWaste(K) is the maximal value that the waste obtains at
global time K. As a consequence of Lemma 8.5 and the monitor voting rule, we now
have:

LEMMA 8.6. If G Waste(R) > 2 and some node is universally corrupted, then all
nonfaulty processors are guaranteed to halt by the end of round R + 6.

Proof. If R+ 6 > t + 1 the claim is immediate from the definition of the com-
bined protocol, which is guaranteed to halt for every processor by the end of (global)
round ¢t + 1. Assume R+ 6 < t + 1. It follows that processors can halt by the end
of round < R + 6 only due to their deciding 1 on some monitor. First assume that
some nonfaulty processor ¢ halts by the end of round R + 4, based on deciding 1
on a monitor M® for some R' < R+ 3 by the end of round R + 2. It follows from
Corollary 6.16 and Proposition 7.10 that all processors will have decided 1 on MR’ by
the end of round R + 4 and will halt by the end of round R + 6. Assume now that
no nonfaulty processor has halted by the end of round R + 4 due to a monitor MF
with R’ < R + 3. The fact that G_Waste(R) > 2 implies that #D(R + 1) > R + 2.
Lemma 8.5 states that every nonfaulty processor i detects all members of D(R + 1)
as being disabled by the end of round R + 2. As a result, ¢ will have detected at
least R+ 2 disabled processors by the end of round R+ 2. Finally, the fact that some
node is universally corrupted implies that, for every nonfaulty processor i, one of i’s
trees has survived the first round. The monitor voting rule now states that ¢ will
vote 1 on MR*3_ Since all of the processors vote 1 on M?*+3 and are active until the end
of round R + 4, it follows that they all decide 1 on M®t3 at the end of round R + 4
and will thus halt by the end of round R + 6. O

Given Lemma 8.6 and Theorem 6.23, we can now prove:

LEMMA 8.7. Choose L such that the last nonfaulty processor halts by the end
of round L + 6. Then, for every nonfaulty i and every monitor M® with R < L, the
number of universally corrupted nodes in tree; for M® is O(t?).

Proof. If, for some nonfaulty processor i, none of i’s trees survives the first round,
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then no node is universally corrupted, and we are done. We shall therefore assume
from now on that at least one node is universally corrupted. By Lemma 8.6, the
waste cannot reach 2 before round L, or all processors would halt before round L + 6.
We thus reason about the rounds preceding L, assuming the waste never reaches 2
in those rounds. We claim that if any node of (global) depth K > 2 is universally
corrupted, then G Waste(K) > —2. Since, for every monitor it is guaranteed by
definition that deficit(r) — correction(r) > 0 for every r, it suffices to show that
#D(K) — K > —1. Assume that o is a node of depth K in a monitor M* (and hence
|o| = K —(R—1)). Since there is a universally corrupted node in M?, we know that at
least one nonfaulty processor voted 1 on this monitor, and hence by the Monitor-vote
rule and by Lemma 8.2 we have that #D(R—1) — (R—1) > 0. If |o| < 2 we are
clearly done. If, however, |o| > 3, then the path from the root to o consists of nodes
all of which are universally corrupted. Clearly, by the end of round K, all processors
universally corrupting nodes at depths smaller than K —1 are disabled. It follows that
|o| — 2 of o’s ancestors contribute fresh disabled processors that were not in D(R—1).
We thus obtain that D(K) > R—1+|c|-2=R-1+K—-(R—1)—2=K -2, and
hence D(K) — K > —2 and the claim is proven. We conclude that G_Waste can vary
within a small constant range without causing a monitor to halt the protocol.

It is straightforward to check that if k& > 3 processors universally corrupt nodes at
(global) depth R, then G_Waste(R + 1) — G_Waste(R—1) > k — 2. It follows that this
can happen only a constant number of times. A round with no universal corruption
whatsoever will cause all of the active monitors to close in two rounds. As argued in
Section 7.2 following Corollary 7.9, the only case in which two processors can corrupt
nodes at a given depth in the same tree without increasing the waste is when cross
corruption takes place in a pair of rounds r,7 + 1 such that » — 1 is a power of 2.
The number of such rounds r < ¢t + 1 is logt + O(1). It follows that the number of
universally corrupted nodes at any particular level of tree; for a monitor M? is O(t).
Hence, the total number of universally corrupted nodes created by the end of round L
in tree; for M® is bounded by O(t?). O

As a consequence of Lemma 8.7 and Lemma 7.11 we obtain

LEMMA 8.8. For every nonfaulty processor i, the total size of each of the t E1G
trees that i ever constructs is polynomial.

Finally, as a result of Lemma 8.8 and Corollary 7.11 we have:

THEOREM 8.9. The Sliding-flip protocol is a correct Byzantine agreement
protocol that halts in t + 1 rounds in the worst case, and is polynomial in both com-
munication and computation.

9. Early stopping. The Sliding-flip protocol consists of an ensemble of
agreement processes running concurrently. They are initiated one per round, and
are combined using the Preempt-on-0ne scheme: a local decision of 1 in any instance
causes a global decision of 1 coupled with preemption of all decision processes. A
decision of 0 can be reached only at time ¢ + 1, in case all agreement processes turn
out to have decided 0. (Recall that the agreement processes in the ensemble are all
guaranteed to reach a local decision by the end of round ¢+ 1.) In particular, even in
runs with no failures, a decision of 0 cannot take place before round ¢+ 1. Thus, while
Sliding-flip is a polynomial protocol that is guaranteed to halt in ¢ 4+ 1 rounds, it
is not guaranteed to stop early in runs in which few processors actually fail. In this
section we discuss how to modify the S1iding-f1ip protocol to obtain a protocol that
does stop early when few failures actually occur. The concept of early stopping is due

0 [13], who showed that no protocol for Byzantine agreement can be guaranteed to
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halt in fewer than min{¢ + 1, f + 2} rounds in the worst case, where f is the number
of failures that occur in the run in question. Our goal will be to obtain a protocol
that is guaranteed to halt in min{t + 1, f 4+ ¢} rounds for a small constant c.

The Preempt-on-0One scheme already takes care of stopping quickly when the
decision is 1. Early decision on 1 was of crucial importance to the Sliding-flip
protocol, because that was the way the protocol keeps trees from growing beyond a
polynomial bound. What remains, therefore, is to allow early stopping on a decision
of 0 without hindering the correctness of the early decision on 1. Our basic strategy
will be to maintain the basic Preempt-on-0ne rules for deciding on 1. Early stopping
on 0 will then depend on our ability to predict at an early stage that all agreement
processes that have been initiated, as well as all those that are due to be initiated in
the future, are bound to decide 0. It is safe to decide 0 when this happens, rather
than wait until the end of round ¢+ 1 to do so. The following lemma describes a fairly
general condition that guarantees that all future monitors will decide 0:

LEMMA 9.1. In the protocol S1iding-f1lip, if all monitors M* with R < K are
closed on O for all nonfaulty processors at the end of round K, then every monitor M®
with R > K that is initiated in the protocol closes on 0 at the end of its first round R.

Proof. Assume that all monitors M* with R < K are closed on 0 for all nonfaulty
processors at the end of round K. Part (i) of the Monitor-vote rule implies that all
nonfaulty processors will vote 0 on the monitor M® for the first R > K. This monitor
will close on 0 in its first round for all nonfaulty processors, and the same argument
can now be applied inductively to show that all later monitors will do the same. O

The problem in trying to apply the condition of Lemma 9.1 is that this condition
is not one that can be detected by an individual processor. We now discuss a way
of making a similar condition detectable. In order to do so, we consider a variant
Sliding-f1lip' of the Sliding-flip protocol that differs from the original only in
that, instead of initiating a new monitor agreement process M® in every round, such a
process is initiated once in 5 rounds. Specifically, M® monitors are initiated for every
integer R of the form R =5k + 1, for 1 < k < |21]. (The agreement tree based on
the processors’ original initial values is, of course, initiated in round 1.) First notice
that Sliding-f1ip' has all of the desired qualities of Sliding-flip: It halts in at
most ¢ + 1 rounds, and is guaranteed to be polynomial. The proof of correctness of
Sliding-f1lip' is the same as that for Sliding-flip. The only changes required
in order to prove the complexity bounds for S1iding-f1lip’ are in Corollary 7.11,
Lemma 8.6 and Lemma 8.7. In Lemma 8.6 we are now guaranteed only that if
G_Waste(R) > 6 then a monitor issued no later than round R + 7 closes with value 1.
Without any fine tuning, this will cause an increase of O(n*) in the complexity of
the protocol. The analogue of Corollary 7.11 will replace r — 6 by r — 10 and n®T
by n'T. The proof of the analogue of Lemma 8.7 goes through essentially without
change, when we assume G_Waste(R) < 6 instead of assuming that G_Waste(R) < 2.

Define ®;(K) to hold if (i) K = 1 mod 5, (ii) no node of (global) depth K is
corrupted in any of i’s trees, and (iii) no agreement process initiated in a round
R < K either has or will close with the root fixed to value 1. Intuitively, we will use
®;(K) to determine a condition for early stopping on 0. We can show:

LEMMA 9.2. If ®;,(K) holds for some K, then all monitors M® for R > K that
will ever be initiated in Sliding-flip’ will close with value 0 in round R, for all
nonfaulty processors.

Proof. Let K = 1mod 5, and assume that no node of (global) depth K is cor-
rupted in any of i’s trees. Notice that because K = 1 mod 5, no monitors are initiated
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in the rounds K + 1,..., K + 4. By definition of corruption, the fact that no node
of (global) depth K is corrupted for ¢ implies that all depth K nodes in all of i’s
trees are closed by the end of round K + 2. Corollary 6.16 implies that all depth K
nodes in the trees of all nonfaulty processors are closed by the end of round K +4. It
follows that all trees corresponding to existing agreement processes close for all non-
faulty processors by that time. As a result, by part (i) of the Monitor-vote rule, all
nonfaulty processors will vote 0 on M* for R = K + 5, and a straightforward inductive
argument shows that they will all vote 0 on every monitor initiated thereafter. O

The condition ®;(K) used in Lemma 9.2 is easily detectable by process i. More-
over, Lemma 9.2 implies that if ®; holds, then ®; will hold soon thereafter:

COROLLARY 9.3. Let i and j be nonfaulty processors. If ®;(K) holds in a run of
Sliding-flip/, then ®,;(K + 5) holds at the end of round K + 5.

Proof. Assume that ®;(K) holds. The argument given in the proof of Lemma 9.2
shows that the trees corresponding to all monitors initiated in rounds R < K will be
closed for all nonfaulty processors by the end of round K + 4. By the Monitor-vote
rule, all nonfaulty processors vote 0 on the monitor initiated in round K + 5. As a
result, this monitor is closed at the end of round K + 5, for all nonfaulty processors.
It follows that ®;(K + 5) holds, for all nonfaulty processors j. O

Notice that if ®;(K) holds, then i will detect that ®;(K) holds no later than by
the end of round K + 2. Moreover, the proof of Corollary 9.3 shows that ®;(K + 5)
will be detectable by j no later than by the end of round K + 5. It follows that
once 7 detects that ®;(K) holds, it can essentially decide 0. The only thing it needs
to do in order to guarantee that ®; will hold for all j is to continue to participate in
the existing agreement processes (all of which, by Corollary 6.17, are guaranteed to
terminate by the end of round K + 4), and send its vote in the monitor initiated in
round K + 5. This provides an early-stopping method for deciding 0.

We define the ES-S1iding-flip protocol to consist of Sliding-flip' with the
following modifications: (i) we add the rule that once a processor i first detects that
®,;(K) holds, it decides 0 and it halts once all of its monitors initiated in rounds
R < K halt according to A-Es; and (ii) we add the default that sending no value as
a vote on a monitor amounts to sending a vote of 0 (and is not regarded an ill-formed
message). The purpose of point (ii) is to enable a processor that detects that &;(K)
holds to halt before round K + 5. Its silence in round K + 5 will be interpreted as
a vote of 0, which will suffice to ensure that the necessary conditions of ®;(K + 5)
will hold. We can now summarize the properties of the protocol ES-S1iding-flip as
follows:

THEOREM 9.4. The ES-Sliding-flip protocol is a correct Byzantine agree-
ment protocol that is polynomial in both communication and computation. It halts in
min{t + 1, f + 5} rounds in the worst case, where f is the number of failures that
actually take place.

Proof. Correctness of the protocol ES-Sliding-flip is inherited from that of
Sliding-flip’ and Corollary 9.3, which guarantees that if one of the nonfaulty pro-
cessors decides 0, then all of them will. The polynomial complexity and (¢ + 1)-
boundedness of ES-S1iding-flip are also inherited from Sliding-f1ip'. It remains
to show that the protocol halts in no more than f + 5 rounds. First notice that for
a node of global depth K to be corrupted, at least K distinct processors must fail.
This is obvious in the initial agreement process, and is true for arbitrary monitors M®
based on Lemma 6.1 and part (ii) of the Monitor-vote rule. Assume that exactly f
processors fail in a given run. It follows that no more than f processors can ever be
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disabled, and no node of depth greater than f can be corrupted. It follows that by the
end of round f + 3 all monitors ever initiated are closed in all nonfaulty processors’
trees. Since exactly f processors fail, if a node of depth f is corrupted, no non-
faulty processor can detect f processors as being disabled before round f + 2, because
an additional round in which mask messages are sent is necessary for the detection.
This implies that the last monitor on which some nonfaulty processor votes 1 can
be initiated in a round K < f. Let FF = min{K : K = 1mod 5& K > f}. Notice
that F < f + 5. Let 7 be an arbitrary nonfaulty processor. If ®;(K) holds for some
K < F, then we have seen that i detects @;(K) no later than time K + 2, and halts
no later than time K + 4, and K +4 < F < f + 5. Assume that ®;(X) did not hold
for K < F. It follows that ®;(F) will hold at the end of round f + 3. Processor ¢ will
be able to decide 0 at the end of round f + 3, and halt at the end of round f + 5. It
follows that all processors decide and halt by the end of round f + 5 and we are done.
a

A few remarks are in order:

(i) It is possible to use the reconstruction method of [26, 28, 7] in order to
avoid the need for the additional two rounds in which nonfaulty processors “echo”
values to ensure that the others reach the same decision in an instance of A-Es. A
variant of ES-S1iding-flip based on such a modified version of A-Es will halt in
min{t + 1, f + 3} rounds.

(ii) To obtain an early-stopping protocol halting within f + 2 rounds, what is
needed is to extend the fixing rule Fx2 in order to allow fixing in round |o| + 1 to
the non-favored value 1 — par(|o|) if an overwhelming majority of o’s children store
this value. The current version allows fixing only to par(|o|). The current choice was
made in order to simplify the statements of the various lemmas in this paper, and to
shorten their proofs. We believe that with this extension and using reconstruction,
it should be possible to obtain an early stopping protocol that halts in the optimal
bounds of min{¢ + 1, f + 2} rounds.

(iii) In runs with no failures, our protocol decides in at most three rounds and
halts in five. Only a single agreement tree is ever constructed, and the protocol acts
just like a simple straightforward protocol. With reconstruction the protocol would
halt in three rounds, and with an extended Fx2 rule both decision and termination
would be obtained in two rounds.
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