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Abstract

Many tasks in cryptography (e.g., digital signature verification) call for verification of a basic
operation like modular exponentiation in some group: given (g, z,y) check that g = y. This
is typically done by re-computing g* and checking we get y. We would like to do it differently,
and faster.

The approach we use is batching. Focusing first on the basic modular exponentiation oper-
ation, we provide some probabilistic batch verifiers, or tests, that verify a sequence of modular
exponentiations significantly faster than the naive re-computation method. This yields speedups
for several verification tasks that involve modular exponentiations.

Focusing specifically on digital signatures, we then suggest a weaker notion of (batch) veri-
fication which we call “screening.” It seems useful for many usages of signatures, and has the
advantage that it can be done very fast; in particular, we show how to screen a sequence of RSA
signatures at the cost of one RSA verification plus hashing.
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1 Introduction

It is a consequence of the “adversarial” nature of cryptography that many of its computational
tasks are for the purpose of “verifying” some property or computation. For example, signatures
need to be verified; the opening of a bit-commitment needs to be verified; in protocols, various
claims about generated values and their relations need to be verified.

These tasks are computationally important; for example, signature verification is likely to be
done much more often than signature generation, as certificates and signed documents are circu-
lated.

At the heart of many of these verification tasks is the problem of verifying a basic computational
operation like modular exponentiation in some group: given (g, z,y) check that g® = y. The naive
way to verify such a claim is to redo the operation and check we get back the same value: namely,
re-compute g* and check it equals y. We would like to find means of verification, for such basic
operations, that are faster than re-computation, and thereby speed up any verification process using
such operations.

In this paper we investigate the use of batching for the purpose of speeding up such verification.
This is a natural idea since we often have to verify many instances simultaneously. For example,
a certificate chain can contain many signatures to check; a bank can be signing coins and we have
many coins to verify; ZK proofs use many bit commitments, whose decommitments need to be
verified.

We consider batching for verification in several contexts. The first is very general, namely batch
verification for modular exponentiation itself. We provide several batch verifiers for modular expo-
nentiation. These are probabilistic tests that verify the correctness of a batch of exponentiations
much faster than doing each verification individually. We specify several uses for these tests, but
there are probably more. Next we suggest a new notion called “signature screening,” which pro-
vides “weak but fast” verification for signatures, and show how to implement it very efficiently for
RSA signatures.

We also suggest a notion of batch program instance checking, and provide fast batch verification
methods for degrees of polynomials which have applications in verifiable secret sharing and other
robust distributed tasks.

Following a brief discussion of previous work, we will look at all the above in more detail.

PREVIOUS WORK. The modular exponentiation operation itself can be made more efficient via pre-
processing [14, 23] or addition chain heuristics [13, 32, 27]. What we are saying is that performing
modular exponentiation is only one way to perform verification, and if the interest is verification,
one can do better than any of these ways. In particular, our batch verifiers will perform better than
the naive re-computation based verifier, even when the latter uses the best known exponentiation
methods. In fact, better exponentiation methods only make our batch verifiers even faster, because
we use these methods as subroutines.

The idea of batching in cryptography is of course not new: some previous instances are [18, 25,
8, 24]. However, there seems to have been no previous systematic look at the general problem of
batch verification for modular exponentiation, and our first set of results indicates that by putting
oneself above specific applications one can actually find general speed-up tools that apply to them;
in particular, we improve some of the mentioned works.

1.1 Batch verification

Let R be a boolean relation. (Meaning R(inst) € {0,1} for any instance inst of R. For example,
R(z,y) = 1iff g¢* = y in some group of which g is a generator, or R might be a signature verification



Test No. of multiplications

Naive ExpCostg; (k1)

RANDOM SUBSET (RS) nl/2 + ExpCostl, (k)

SMALL EXPONENTS (SE) 1 +nl/2 + ExpCostg(k1)

BUCKET min,,>o # -(n+m+ 2™ 'm + ExpCostc (k1))

Figure 1: Performance of algorithms for batch verification of modular exponentiation. We indicate the
number of multiplications each method uses to get error 27!, See the text for explanations of the parameters.

algorithm with respect to some fixed public key.) The verification problem for R is: given an
instance inst, check whether R(inst) = 1. In the batch verification problem we are given a sequence
insty, ..., inst, of instances and asked to verify that for all i = 1,...,n we have R(inst;) = 1. The
naive way is to compute R(inst;), and check it is 1, for all i = 1,...,n. We want to do it faster.
To do this, we allow probabilism and an error probability. A batch verifier (also called a test) is a
probabilistic algorithm V' which takes insty, ..., inst, and produces a bit as output. We ask that
when R(inst;) = 1 for all 4 = 1,...,n, this output be 1. On the other hand, if there is even a
single ¢ for which R(inst;) = 0 then we want that V (insty, ..., inst,) = 1 with very low probability.
Specifically, we let [ be a security parameter and ask that this probability be at most 2.

We stress that if even a single one of the n instances is “wrong” the verifier should detect
it, except with probability 27!. Yet we want this verifier to run faster than the time to do n
computations of R.

1.2 Batch verifiers for modular exponentiation

Let g be a generator of a (cyclic) group G, and let ¢ denote the order of G. The modular exponen-
tiation function is  + ¢g*, where € Z;. Define the exponentiation relation EXPg 4(z,y) = 1 iff
g* =y, forz e Z;, and y € G.

We design batch verifiers for this relation. As per the above, such a verifier is given a sequence
(1,Y1)- - -+ (Zn, yn) and wants to verify that EXPg 4(z;,y;) = 1 for alli = 1,...,n. The naive test
is to compute g% and test it equals y;, for all 4 = 1,...,n, having cost n exponentiations. We want
to do better.

Three tests, the RANDOM SUBSET TEST, the SMALL EXPONENTS TEST and the BUCKET
TEST are presented, with analysis of correctness, in Section 3. Their performance is summarized
in Table 1, with the naive test listed for comparison. We explain the notation used in the table:
k1 =1g(|G|); ExpCosts(k1) is the number of multiplications required to compute an exponentiation
a® for a € G and b an integer of k; bits; and ExpCostf; (ki) is the cost of computing s different such
exponentiations. (Under the normal square-and-multiply method, ExpCost (k1) ~ 1.5k; multipli-
cations in the group, but it could be less [14, 23, 13]. Obviously ExpCostf (k1) < s- ExpCostg(k1),
but there are ways to make it strictly less [14, 23, 13], which is why it is a separate parameter.
See Section 2.3 for more information.) We treat costs of basic operations like exponentiation as
a parameter to stress that our tests can make use of any method for the task. In particular, this
explains why standard methods of speeding up modular exponentiation such as those mentioned
above are not “competitors” of our schemes; rather our batch verifiers will always do better by
using these methods as subroutines.

Table 3 in Section 3.6 looks at some example parameter values and computes the speed-ups. We
see where are the cross over points in performance: for small values of n the SMALL EXPONENTS



TEST is better, while for larger values, BUCKET TEST wins. Notice that even for quite small values
of n we start getting appreciable speed-ups over the naive method, meaning the benefits of batching
kick in even when the number of instances to batch is quite small.

Asymptotically more efficient tests can be constructed by recursively applying the tests we have
presented, but the gains kick in at values of n that seem too high to be useful, so we don’t discuss
this.

SOME APPLICATIONS. Applications are relatively obvious, namely to any discrete logarithm based
protocol in which discrete exponentiation needs to be verified. In some cases, we need to tweak the
techniques.

DSS signatures [20] are a particularly attractive target for batch verification because signing is
fast and verification is slow. Naccache et al. [25] give some batch verification algorithms for a slight
variant of DSS. We can adapt our tests to apply to this variant, and get faster batch verification
algorithms. See Appendix A.

In many ZK or witness-hiding proofs, discrete exponentiation may be used to implement bit
commitment, and there are lots of such commitments. Our batch verifiers will speed-up verification
of the de-commitments. We can also improve the discrete log based n-party signature protocols of
Brickell et al. [15]. See Appendix A.

EXPONENTIATION WITH COMMON EXPONENT. The version of the exponentiation problem that
underlies RSA is different from the above in that the exponent, not the base, is fixed. The results
discussed above don’t apply to this version. Batch verification of RSA signatures can be done via
screening as we now discuss.

1.3 Screening: Fast but weak verification for signatures

For the particular case of signature verification, we suggest a different notion of batch verification,
called screening, which has weaker guarantees but can be achieved at much lower cost. In certain
usages of signatures, it is adequate and useful.

Fix some signature scheme and a public key pk for it. Let Verify,(-,-) be the verification
algorithm of this scheme, meaning a signature z of message M is valid if Verify,(M,z) = 1. A
batch instance for signature verification consists of a sequence (M, z1),. .., (M,,z,) where z; is a
purported signature of M; relative to pk. Batch verification in the sense we have been discussing
so far would mean batch verification for the relation Verify,(-,-): the test would reject with high
probability if there was any ¢ € {1,...,n} for which Verify,, (M;,z;) = 0. In screening, what
we ask is that if the batch instance (M, z1),..., (M,,z,) contains a forgery —meaning there is
some 7 such that M; was never signed by the signer— then our batch verifier will reject, with high
probability. However, if the signer has in the past signed all the messages My, ..., M,, then our
test might accept even if for some ¢ the string z; is in fact not a valid signature of M;.

In other words, screening is the task of determining whether the signer has at some point
authenticated the text M;, rather than the task of checking that the particular string z; provided
is a valid signature of M;. The rationale is that in many applications, all that counts is whether or
not M; is authentic. Take for example a case where the M; are electronic coins. We may only really
care whether the coin is valid, not whether we actually hold a correct signature demonstrating the
validity of this particular coin.

In Section 4 we show how RSA signatures generated under the standard “hash-then-decrypt”
paradigm can be very efficiently screened: the cost of batch verification is that of one exponentiation
with the public RSA exponent plus some hashing.



1.4 Batch program instance checking and other results

The notion of batch verification has on the face of it nothing to do with program checking since
there is no program in the picture that one is trying to check. Nonetheless, we apply this notion
to do program checking in a novel way. Our approach, called batch program instance checking,
permits fast checking, and also permits instance checking, not just program checking, in the sense
that (in contrast to standard program checking [11]), a correct result is not rejected just because the
program might be wrong on some other instance. We can do batch program instance checking for
any function f whose corresponding graph (the relation R(z,y) = 1iff f(x) = y) has efficient batch
verifiers, so that the main technical problem is the construction of batch verifiers. See Section C for
more information including explanations of how this differs from other notions like batch program
checking [28].

In Appendix B we provide batch verification algorithms for degrees of polynomials, which has
applications in verifiable secret sharing.

The idea of batch verification introduced here was applied in [3] in the domain of fault-tolerant
distributed computing. They design a batch verifiable secret sharing protocol and use it to con-
struct “distributed pseudo-random bit generators,” which are efficient ways of generating shared
distributed coins.

An extended abstract of this paper appeared as [4]. An invited talk on batch verification
including the material presented in this paper was given at LATIN ’98 [5].

2 Definitions

Here we provide formal definitions of the main new notions underlying this work, extending the
discussion in Section 1.

2.1 Batch verification

Let R(-) be a boolean relation, meaning R(-) € {0,1}. An instance for the relation is an input inst
on which the relation is evaluated. A batch instance for relation R is a sequence inst, ..., inst, of
instances for R. (We call n the size of the instance, and also call this an n-instance for R.) We say
that the batch instance is correct if R(inst;) =1 for all 4 = 1,...,n, and incorrect if there is some
i €{1,...,n} for which R(inst;) = 0.

Definition 2.1 A batch verifier for relation R is a probabilistic algorithm V' that takes as input
(possibly a description of R), a batch instance X = (inst1, ..., inst,) for R, and a security parameter
[ provided in unary. It satisfies:

(1) If X is correct then V outputs 1.

(2) If X is incorrect then the probability that V outputs 1 is at most 27°.

The probability is over the coin tosses of V' only.

Obvious extensions can be made, such as allowing a slight error in the first case. We stress that if
there is even a single i for which R(inst;) # 1, the verifier must reject, except with probability 2.
The naive batch verifier, or naive test, consists of computing R(inst;) for each i =1,...,n, and
checking that each of these n values is 1.
In practice, setting [ to be about 60, meaning an error of 279, should suffice.

VARIANTS. Several variants are easily derived, but since we won’t use them in this paper we only
discuss them briefly. One is an “average case” version of the notion in which the instances are



drawn from a distribution. Another is computational batch verification in which it is possible, in
principle, to fool the batch verifier, but computationally infeasible to find instances that do so.
These notions might be useful in cryptographic settings.

2.2 Signature screening: weak verification

SIGNATURES. A digital signature scheme, (Gen, Sign, Verify), consists of a key generation algo-
rithm, a signing algorithm, and a verification algorithm. The first is probabilistic; the second may be;
the third is not. A matching pair of public and secret keys can be generated via (pk, sk) & Gen(1*)
where k is the security parameter. A message is signed via z & Signg (M). A candidate message-
signature pair (M, ) is verified by making sure Verify,, (M,z) = 1.

SCREENING. The notion was discussed in Section 1.3. We now provide the formalization. Fix a
signature scheme (Gen, Sign, Verify). Recall that a batch instance for signature verification consists
of a sequence (M1, 1), ..., (M,,z,) where z; is a purported signature of M; relative to some given
public key pk. Let ScreenTest be a (possibly probabilistic) algorithm, where Screen Test pi (M1, z1),
«evy (My, zy,)) outputs a bit. We want to say what it means for this algorithm to be a good screening
algorithm for the signature scheme.

The first requierement is the natural “validity,” meaning correct signatures are accepted. That
is, if Verify,(M;,z;) = 1for alli=1,...,n then ScreenTest i ((My,1),...,(Mp,z,)) outputs 1.

The second requirement is the security. An attacker A is given the public key pk. It tries to
produce a batch instance, and is said to be successful if the batch instance contains an unauthenti-
cated message but still passes the screening test. To make the notion strong, the attacker is allowed
a chosen-message attack.

In more detail, the game is like this. A has oracle access to Signg/(-). After making some
number of signing queries it outputs a batch instance (M1, z1),..., (M, z,). We say that M; is a
not legally signed if it was not previously a query to the Signg,(-) oracle. We say that A is successful
if the batch instance (Mi,z1),. .., (My,z,) contains a message M; that was not legally signed, but
ScreenTest pi (M1, x1), .-, (Mp,z,)) = 1. We let Succ(A) denote the success probability of A.
The probability is over the choice of keys, the coins of the signing algorithm, the coins of A, and
the coins of the screening algorithm. Intuitively, the screening algorithm is good if Succ(A) is small
for any A whose computation time is not extraordinarily high. In the polynomial-time security
framework, we would say that the screen test is secure if Succ(A) is a negligible function of the
security parameter k for every probabilistic, polynomial time adversary A. In the theorems (cf.
Theorem 4.1) we will be more precise, quantifying the success probability as a function of the
running time and allowed number of oracle queries of the adversary.

Whenever we talk about the running time of an algorithm, it is the sum of the actual running
time (on some fixed RAM model of computation) and the size of the code.

2.3 Costs of Multiplication and Exponentiation

Let G be a (multiplicative) group. Many of our algorithms are in cryptographic groups like Z3; or
subgroups thereof (N could be composite or prime). We measure cost in terms of the number of
group operations, here multiplications, and discuss these costs below.

Given a € G and an integer b, the standard square-and-multiply method computes a® € G
at a cost of 1.5/b| multiplications on the average. Using the windowing method based on addi-
tion chains [13, 32], the cost can be reduced to about 1.2|b|; pre-computation methods have been
proposed to reduce the number of multiplications further at the expense of storage for the pre-
computed values [14, 23] (a range of values can be obtained here; we give some numerical examples



in Section 3.6). Accordingly it is best to treat the cost of exponentiation as a parameter. We let
ExpCostg(k;) denote the time to compute a® in group G when k; = |b|, and express the costs of
our algorithms in terms of this.

Suppose we need to compute a’®, ..., a®*, exponentiations in a common base a but with changing
exponents. Say each exponent is ¢ bits long. We can certainly do this with n - ExpCost(t)
multiplications. However, it is possible to do better, via the techniques of [14, 23], because in this
case the pre-computation can be done on-line and still yield an overall savings. Accordingly, we
treat the cost of this operation as a parameter too, denoting it ExpCost(t).

Note squaring can be performed faster than general multiplication.

3 Batch Verification for Modular Exponentiation

Let G be a group, and let ¢ = |G| be the order of G. Let g be a primitive element of G. Hence, for
each y € G there is a unique 7 € Z; such that y = g*. This i is the discrete logarithm of y to the
base g and is denoted log,(y). Define relation EXP¢ 4(7,y) to be true iff g* = y. (Equivalently,
z = log,(y).) We let k1 denote the length (number of bits) of ¢, and k2 the length of g. With G, g
fixed we want to construct fast batch verifiers for the relation EXPg 4.

3.1 Random subset test

The first thing that one might think of is to compute z = >°}' ; z; mod ¢ and y = []i~; v; (the
multiplications are in G) and check that ¢g® = y. However it is easy to see this doesn’t work: for
example, the batch instance (z + a, ¢%), (z — a, g*) passes the test for any o € Z,, but is clearly
not a correct instance when « # 0. A natural fix that comes to mind is to do the above test on a
random subset of the instances: pick a random subset S of {1,...,n}, compute z = }",c g z; mod ¢q
and y = [[;cs ¥ and check that g = y. (The idea is that randomizing “splits” any “bad pairs”
such as those of the example above.) We call this the ATomMic RANDOM SUBSET TEST. It works
in the sense of the following lemma.

Lemma 3.1 Given a group G and a generator g of G. Suppose (21,Yy1),---,(Zn,Yn) Is an incorrect
batch instance of the batch verification problem for EXPg 4(-,-). Then the AToMIC RANDOM
SUBSET TEST accepts (z1,Y1),- - -, (Tn, Yn) with probability at most 1/2.

Proof: Let p = |G|. Since g is a generator of G there exist unique values zi, ...,z € Z, such that
g$§ =y; foralli =1,...,n. Let o; = z; — 2}, mod p. By assumption there exists an i such that
a; # 0. For notational simplicity we may assume (wlog) that this is true for ¢ = 1. (Note: This
does not mean we are assuming o; = 0 for j > 1. There may be many j > 1 for which «o; # 0.)
Now, suppose the test accepts on a particular subset S. Then it must be that Y} ;g = > ;cq 7},
both sums being modp. Thus > ;. g ; = 0. Now suppose T' C {2,...,n}. Then note that

Yieri =0 = Yierypy # 0.
So if the test succeeds on S = T then it must fail on S = T'U {1}. This means the test must fail
on at least half the sets S. |

But 1/2 is not a low enough error. (One can show the analysis is tight, so no better is expected.)
To lower the error to the desired 27! we must repeat the atomic test independently I times, yielding
the RANDOM SUBSET TEST of Figure 2. However, the repetition is costly: the total cost is now
nl/2 + ExpCostl (k) multiplications. This is not so good, and, in many practical instances may



even be worse than the naive test, for example if n <. (Since [ should be at least 60 this is not
unlikely.)

The conclusion is that repeating many times some atomic test which itself has constant error
can be costly even if the atomic test is efficient. Thus, in what follows we will look for ways to
directly get low error. First, lets summarize the results we just discussed in a theorem.

Theorem 3.2 Given a group G, a generator g of G. The RANDOM SUBSET TEST is a batch verifier
for the relation EXPg 4(-,-) with cost nl/2 + ExpCostl, (ki) multiplications, where k; = [1g(|G|)].

3.2 Computing a product of powers

Before presenting the next test, we present a general algorithm we will use as a subroutine. Suppose
ai,-..,an € G. Suppose b, ..., b, are integers in the range 0, ..., 2! —1 < |G|. We write them all as
strings of length ¢, so that b; = b;[t]... b;[1]. The problem is to compute the product a = []j-, a?i,
the operations being in G. The naive way to do this is to compute ¢; = ai-” fori =1,...,n and
then compute a = [[j-; ¢;. This takes ExpCostf(t) + n — 1 multiplications, where ko is the size
of the representation of an element of G. (Using square-and-multiply exponentiation, for example,
this works out to 3ntks/2+n — 1 multiplications; with a faster exponentiation it may be a bit less.)

However, drawing on some ideas from [14], we can do better, as follows:

Algorithm FastMult((a1,b1), ..., (an,bn))
a:=1;
for j =1t downto 1 do
for i =1 ton do if b;[j] =1 thena:=a-a;;
a = a?
return a

This algorithm does ¢ multiplications in the outer loop and nt/2 multiplications on the average
for the inner loop. Hence, for computing y we get a total of ¢t + nt/2 multiplications.

3.3 The Small Exponents Test

We can view the AToMIC RANDOM SUBSET TEST in a different way. Namely, pick bits s1,...,s, €
{0,1} at random, let z = "7, s;z; and y = [[j=; y;*, and check that g* = y. (This corresponds to
choosing the set S = {7 : s; =1}.) We know this test has error 1/2. The idea to get lower error
is to choose s1,...,$, from a larger domain, say t bit strings for some £ > 1. There are now two
things to ask: whether this does help lower the error faster, and, if so, at what rate as a function
of ¢; and then as we increase ¢, how performance is impacted. Let’s look at the latter first.

If we can keep ¢ small, then we have only a single exponentiation to a large (ie. k1-bit) exponent,
as compared to [ of them in the random subset test. That’s where we expect the main performance
gain. But now we have added n new exponentiations. However, to a smaller exponent. Thus, the
question is how large ¢ has to be to get the desired error of 2.

We use some group theory to show that the tradeoff between the length ¢ of the s;’s and the
error is about as good as we could hope as long as the order ¢ of the group is prime, namely setting
t = [ yields the desired error 27!. (See Section 3.5 for discussion of what happens when ¢ is not
prime.) The corresponding test is the SMALL EXPONENTS (SE) TEST and is depicted in Figure 2.

Theorem 3.3 Given a group G of prime order q and a generator g of G. Then SMALL EXPONENTS
TEST is a batch verifier for the relation EXPg 4(-,) with cost | + n(1 + 1/2) + ExpCostq(k1)
multiplications, where k1 = |q|.



GIVEN: g a generator of G, and (z1,y1), ..., (Zn,yn) With z; € Z, and y; € G.
Also a security parameter [.

CHECK: That Vi € {1,...,n} : y; = g™.

— Random Subset (RS) Test: Repeat the following atomic test, independently [ times,
and accept iff all sub-tests accept:
AtoMic RANDOM SUBSET TEST:
(1) For eachi=1,...,n pick b; € {0,1} at random
(2) Let S={i:b=1}
(3) Compute z = ;cgx; mod ¢, and y = [[;cq ¥i
(4)

4) If g = y then accept, else reject.

— Small Exponents (SE) Test:
(1) Pick s1,...,8, € {0,1} at random
(2) Compute z = Y7 z;s; mod ¢, and y = [[i y;*
(3) If g° = y then accept, else reject.

— Bucket Test: Takes an additional parameter m > 2. Set M = 2. Repeat the following
atomic test, independently [I/(m — 1)] times, and accept iff all sub-tests accept:

Atomic BUCKET TEST:

(1) Foreachi=1,...,npickt; € {1,...,M} at random

(2) Foreachj=1,...,.MletB;j={i:t;=j}

(3) Foreach j=1,...,M let ¢; = 3 ;cp, @i mod g, and d;j = [[;cp, ¥i

(4) Run the Small Exponent Test on the instance (c1,d1),. .., (car,dyr) with secu-
rity parameter set to m.

Figure 2: Batch verification algorithms for exponentiation with a common base.

Proof: First let us see how to get the claim about the performance. Instead of computing y;*
individually for each value of i and then multiplying these values, we compute the product y =

m1y;* directly and more efficiently as y = FastMult((y1, $1), ..., (Yn,Sn)), the algorithm being
that of Section 2.3. Since s1,...,s, were random [-bit strings the cost is [ + nl/2 multiplications
on the average. Computing = takes n multiplications. Finally, there is a single exponentiation to
the power z, giving the total number of multiplications stated in the theorem.

That the test always accepts when the input is correct is clear. Now we prove the soundness. Let
the input (z1,91),..., (Zn,yn) be incorrect. Let x; = log,(y;) for i = 1,...,n. Fori=1,...,n let
o; = z; — z;. Since the input is incorrect there is an ¢ such that «; # 0. For notational simplicity
we may assume (wlog) that this is true for 4 = 1. (NOTE: This does not mean we are assuming
a; =0 for j > 1. There may be many j > 1 for which o # 0.) Now suppose the test accepts on a
particular choice of s1,...,$,. Then

gsliﬂl+"'+5nwn — yil . y:Ln . (1)
But the right hand side is also equal to g51%17 5% Hence, we get gs1%1+ +sndn — gsioyttsnty
or gst@1tFsnan — 1. Since g is a primitive element of the group, it must be that sjay+---+s,a, =
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0 mod ¢g. But a1 # 0. Since ¢ is prime, a; has an inverse (3 satisfying a1, = 1 mod ¢. Thus, we
can write

s1=—f1 - (s2a2 + - + spay) mod g . (2)
This means that for any fixed so,...,s,, there is exactly one (and hence at most one) choice of
51 € {0,1} (namely that of Equation 2) for which Equation 1 is true. So for fixed ss,..., sy, if we
draw s; at random the probability that Equation 1 is true is at most 2. Hence the same is true

if we draw all of s1,...,s, independently at random. So the probability that the test accepts is at
most 271, 1

3.4 The Bucket Test

We saw that the SMALL EXPONENTS TEST was quite efficient, especially for an n that was not too
large. We now present another test that does even better for large n. Our BUCKET TEST, shown
in Figure 2, repeats m times an ATOMIC BUCKET TEST for some parameter m to be determined.
In its first stage, which is steps (1)—(3) of the description, the atomic test forms M “buckets”
By,...,By. For each i it picks at random one of the M buckets, and “puts” the pair (x;,y;) in
this bucket. (The value ¢; in the test description chooses the bucket for i.) The z; values of pairs
falling in a particular bucket are added while the corresponding y; values are multiplied; this yields
the values c;,d; for j = 1,..., M specified in the description. The first part of the analysis below
shows that if there had been some 7 for which g% # y; then except with quite small probability
(27™) there is a “bad bucket,” namely one for which g% # d;.

Thus we are reduced to another instance of the same batch verification problem with a smaller
instance size M. Namely, given (ci,d1),...,(camr,dr) we need to check that g% = d; for all
j=1,...,M. The desired error is 27™.

We can use the SMALL EXPONENTS TEST to solve the smaller problem. (Alternatively, we
could recursively apply the bucket test, bottoming out the recursion with a use of the SE test after
a while. This seems to help, yet for n so large that it doesn’t really matter in practice. Thus, we
shall continue our analysis under the assumption that the smaller sized problem is solved using the
SMALL EXPONENTS TEST.) This yields a test depending on a parameter m. Finally, we would
optimize to choose the best value of m. Note that until these choices are made we don’t have a
concrete test but rather a framework which can yield many possible tests. To enable us to make the
best choices we now provide the analysis of the AToMiCc BUCKET TEST and BUCKET TEST with
a given value of the parameter m, and evaluate the performance as a function of the performance
of the inner test, which is SE. Later we can optimize. Since we use SMALL EXPONENTS TEST, we
require the order of the group to be prime.

Lemma 3.4 Suppose G is a group of prime order q, and g is a generator of G. Suppose (z1,y1), ...,
(®n,yn) Is an incorrect batch instance of the batch verification problem for EXPg(-,-). Then the

Atomic BUCKET TEST with parameter m accepts (x1,y1),- .-, (Zn,yn) With probability at most
2~ (m=1),

Proof: As in the proof of Theorem 3.3, let z} = log,(y;) and o; = z; — x{ for i = 1,...,n. We may
assume aq # 0. Say that a bucket B; is good (1 < j < M) if g% = d;. Let r be the probability,
over the choice of ¢1,...,ty, that all buckets By,..., Ba are good. We claim that r < 1/M = 27™,

To see this, first note that if a bucket B; is good then Eiij «; = 0 mod gq. Now assume tg,...,t,
have been chosen, so that (z2,92), ..., (Zn,y,) have been allotted their buckets. Let B;- ={i>1:

!

t; = j }— these are the current buckets. Say B;- is good if > ;cpr @y =0 mod g. Ifall of By,..., B,
J
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are good, then after x, is assigned, there is at least one bad bucket, because a1 # 0. This means
that there exists a j such that B;- is bad. (This doesn’t mean it’s the only one, but if there are
more bad buckets the test will fail. Thus we can assume that there is a single j.) The probability
that By,..., B are good after z; is thrown in is at most the probability that z; falls in bucket 7,
which is 1/M. Sor <1/M.

By assumption the test in Step (4) has error at most 27" so the total error of the atomic bucket
test is 2- 27" =2~ (m=1)_ |

Regarding performance, it takes n multiplications to generate the buckets and the smaller instance.
To evaluate the smaller instance using SE with parameters 2™, m, |q|, k2 takes m + 2™m/2 4+ 2™ +
ExpCosts(|q|) multiplications by Theorem 3.3. This process is repeated [{/(m — 1)] times. When
we run the test, we choose the optimal value of m, meaning that which minimizes the cost. Thus
we have the following.

Theorem 3.5 Given a group G of prime order q, and a generator g of G. Then the BUCKET TEST
(with m set to the optimal value) is a batch verifier for the relation EXPq 4(:,-) with cost
: ! m—1
gég{[m-‘ (n+m+2"""(m+2) —I—ExpCostG(kl))}
multiplications, where k1 = |q|.

To minimize analytically we would set m = log(n + k1) — log log(n + k1), but in practice it is better
to work with the above formula and find the best value of m by search. This is what is done to
compute the numbers in Table 3.

3.5 Prime versus non-prime order

The analysis of the SMALL EXPONENTS TEST as given by Theorem 3.3 (and hence of the BUCKET
TEST as given by Theorem 3.5) is for groups of prime order. We are not working in Z; (which
has order g — 1, not a prime) but in a group G which has order g a prime. In practice this is not
really a restriction. As is standard in many schemes, we can work in an appropriate subgroup of
Z, where p is a prime such that g divides p— 1. In fact, prime order groups seem superior to plain
integers modulo a prime in many ways. The discrete logarithm problem seems harder there, and
they also have nice algebraic properties which many schemes exploit to their advantage.

When the order is not prime, the SMALL EXPONENTS TEST (and hence the BUCKET TEST)
do not work; it is easy to find counter-examples. For example, let p be a prime, and consider
G = Z;, which has non-prime order p — 1. Let g € G be a generator of G and consider the batch
instance (z, —y mod p — 1), (z,y) where y = ¢g* mod p. The SMALL EXPONENTS TEST will accept
this instance whenever s; is even, which happens half the time, so its error will not be 2%, but
only 1/2. (Obvious fixes like using only odd values of s; don’t work.)

3.6 Performance

Table 3 looks at the concrete performance of the tests as we vary the size n of the batch instance.
We have set k1 = 1024, and [ = 60. (Meaning the exponentiation is for 1024 bit moduli, and
the error probability will be 27%9.) We count the number of multiplications. We compare with
the naive batch test, but this test is not naively implemented, in the sense that to be fair we use
fast exponentiation as per [14, 23] to get the numbers in the first column. (Our tests use the
same fast exponentiation methods as subroutines.) We assume a single exponentiation requires 200
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n No. of multiplications used by different tests
Naive | RANDOM SUBSET | SMALL EXPONENTS | BUCKET
5 1K 12K 04K 43K
10 2K 125K 06K 44K
50 10K 13.5K 18K 5K
100 20K 15K 3.2K 5.7TK
200 40K 18K 6.2K 71K
500 100K 27K 15.2K 10.7K
1,000 || 200K 42K 30.2K 165K
5,000 || 1000K 162K 150K 56K

Figure 3: Example: For increasing values of n, we list the number of 1024-bit multiplications (in thousands,
rounded up), for each method to verify n exponentiations with error probability 2750, The lowest number
for each n is underlined.

multiplications [23]. (Using other storage to time tradeoffs as per [23] doesn’t change the results,
namely that our tests consistently perform better.)

Observe that which test is better depends on the value of n. As we expected, the RS test is
actually worse than naive for small n. Until n about 200, the SMALL EXPONENTS TEST test is the
best. From then on, the BUCKET TEST performs better. But at least one of our tests always beats
the naive one. Furthermore, observe that benefits come in even for small values of n: at n =5 the
SE test is a factor of 2 better than naive. The factor of improvement increases with n: at n = 200
we can do about 6 times better than naive (using SE); at n = 5000, about 17 times better (using
BUCKET).

4 Fast screening for RSA

Batch verification for digital signature verification is a particular case of the general batch ver-
ification problem in which the relation is the signature verification relation. In particular, the
above results help to get faster batch verification for discrete logarithm-based signatures like DSS
(cf. Section A). However, we can do even better if we focus specifically on signatures, via the notion
of screening presented in Section 2.2.

This is particularly interesting for RSA signatures. Here the verification relation is modular
exponentiation, but with a common exponent, namely the relation Ry ¢(z,y) = 1 iff 2° = y mod N,
and thus the above batch verifiers, which are for modular exponentiation in a common base, don’t
address this problem. (The tests are easily adapted to the common exponent case, but since the
group is not of prime order, they don’t work.) However, we present screening algorithms for the
standard “hash-the-sign” type RSA signatures that are much faster than any of the above batch
verifiers.

Note that RSA signature verification may be relatively fast anyway if one chooses a small public
exponent, like three. Yet, there are various reasons one might want to use a bigger verification
exponent (for example, to play with the signing exponent and speed up the signing). Actually
our screening tests improve over the standard verification method even for small exponents, but
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GIVEN: N, e and (M, z1),...,(M,,z,) with z; € Z},, and oracle access to hash function H

FDH-RSA Signature Screening Test
(1) PRUNING: (Remove duplicates) This step returns a sublist (M1,%1),...,(Ma,Zz) of the
original input list (Mi,z1),...,(My,,z,) with two properties:
— No Duplicates: M,..., M are distinct
— Representative: For every i € {1,...,n} there isa j € {1,...,7n} such that M; = M;.
See the text for ways to implement this step.
(2) MAIN TEST:

If ([T, ;)¢ =11~ H(M;) mod N then return 1 else return 0

Figure 4: FDH-RSA signature screening test.

obviously the gains are larger for large exponents.

HASH-THEN-DECRYPT RSA SCHEMES. The user has public key N, e and secret key N,d where
N is an RSA modulus, e € Z;( N) an encryption exponent, and d the corresponding decryption

exponent. Define functions f, f~1: Z% — Z% by f(z) = 2° mod N and f~!(y) = y? mod N. The
standard paradigm for signing with RSA in practice is to let Sign v 4(M) = H(M)* mod N for some
hash function H. A pair (M, z) is verified by checking that ¢ = H(M) mod N. This was named
the “hash-then-decrypt” paradigm and studied recently in [7] who point out that collision-freeness
of H is not a strong enough requierement to guarantee security of this scheme based on the one-
wayness of RSA. To get a better security guarantee without sacrificing performance, [7] appeals to
the random oracle paradigm [6] and considers a couple of schemes in this setting. The simplest is
the Full Domain Hash (FDH-RSA) scheme, which assumes H is a random oracle mapping {0, 1}*
to Zj;, and they show that FDH-RSA scheme is secure assuming RSA is a one-way function.

SCREENING FOR FDH-RSA. Our screening algorithm, called FDH-RSA SIGNATURE SCREENING
TEST, is presented in Figure 4. The main test is very simple: it simply multiplies all signatures,
then raises the product to the encrpytion exponent, and checks whether or not this equals the
product of the hashes of the messages. This main test needs to be preceded by a pruning stage,
whose only purpose is to make sure that the messages going into the main test are all distinct."

Note there is no security parameter [ in our test: the failure probability of the test is related
only to the difficulty of inverting RSA as Theorem 4.1 indicates.

This test is very efficient. In the main test there are n hashings (cheap), 2n multiplications,
and then a single exponentiation, so that the total number of multiplication is 2n + ExpCost z (|e|)
multiplications. This compares very favorably with our batch verifiers.

The pruning problem is essentially that of eliminating duplicates in a given list: for any message
M e {M,...,M,} we want to keep exactly one pair of the form (M, z), discarding any other pairs
of the form (M, z') (regardless of whether or not z = z’). This can be done in a variety of ways via
standard data structures and algorithms. Our suggestion is to work with the hashes so that one
does not need to process a message (which may be long) more than once. The simplest thing to
do is compute the hashes of all the messages, and then sort these values. If there are duplicates in

! In the preliminary version of this paper [4] we had omitted the pruning step, implicitly assuming (both in the
test and in the analysis) that all messages M, ..., M, going into the main test were distinct. A fully specified test
should not make such an assumption, so we have now added the explicit pre-processing step that guarantees the
message distinctness. At Eurocrypt 98, David Naccache has given an example that shows that the main test can fail
when the messages are not distinct, indicating that the pruning step is necessary.
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this hash list, then keep one representative pair and discard any other pairs of which the message is
the same. (The collision intractability of the hash function means that collisions in the hash values
correspond to equal messages.) Using such an approach it should be possible to do the pruning
with only a logarithmic overhead in time. Note once computed the hashes can be used in the main
test; they do not need to be re-computed.

Note that the test is valid, meaning correct signatures are accepted. That is, if z; = H(M;)? mod
N for alli = 1,...,n then our test accepts with probability one. Our concern is the security, namely
what happens when some signatures are invalid.

Also note this test does not provide a batch verifier in the sense of Definition 2.1. For example,
let = be a valid signature of message M and « some value in Z} — {1}. Then the batch instance
(M,za), (M, z/a) is incorrect, but passes the above test. This is not a problem from the screening
perspective, because the property we want here is only that one cannot create such incorrect batch
instances without knowing the signatures of the messages in the instance. Indeed, above, we had
to know z to create the incorrect instance, meaning M is valid, even if the given signature is not.
Thus, this example is not a counter-example to the screening property.

However it may not be a priori clear that our test really has the screening property: maybe
there is a clever attack. Below, we show there is not, unless inverting RSA is easy.

CORRECTNESS OF THE SCREEN TEST. Since this is based on the hardness of RSA we first recall
the latter, following the concrete treatment of [7]. Fix some prime number e. The RSA generator,
RSA(e), on input 1%, picks a pair of random distinct (k/2)-bit primes p, ¢ such that neither p—1 nor
q — 1 are multiplies of e, lets N = pg, and computes d so that ed = 1 mod ¢(N). It returns N, e, d.
The success probability of an inverting algorithm I is the probability that it outputs y¢ mod N on
input N, e,y when N, e, d are obtained by running RSA ;) (1¥) and y = 2° mod N for an x chosen at
random from Zj. We say that I (t,¢)-breaks RSA (), where t: N — N and e: N — [0, 1], if, in the
above experiment, I runs for at most ¢(k) steps and has success probability at least e(k). We say
that RSA ) is (¢, €)-secure collection of one-way functions if there is no inverter which (¢, €)-breaks
RSA ().

The following theorem says that if RSA is one-way then an adversary can’t produce a batch
instance for FDH-RSA SIGNATURE SCREENING TEST that contains a message that was never
signed by the signer but still passes the test. Furthermore we indicate the “concrete security” of
the reduction. Refer to Section 2.2 for definitions. Note that in our case the treatment there is
“lifted” to the random oracle model and we need to consider an additional parameter, namely the
number of hash queries by the adversary.

Theorem 4.1 Suppose RSA() is a (', €')-secure collection of one-way functions. Let A be an
adversary who after a chosen message attack on the FDH-RSA signature scheme outputs a batch
instance, for the FDH-RSA signature verification relation, in which at least one message was never
legally signed. Suppose this batch instance is of size n; suppose that in the chosen message attack A
makes gsi; FDH signature queries and gnash hash queries; and suppose the total running time of A is
at most t(k) = t'(k) — Q(nklog(nk)) — Q(k®)- (n+gsig +qnasn ). Then the probability that FDH-RSA
SIGNATURE SCREENING TEST accepts the batch instance is at most (k) = €' (k) - (n + gsig + Ghash)-

Proof: Given A we construct an inverter I for the RSA ) family and then relate the parameters.
I gets input N, e,y and is trying to find z = y% mod N. It creates the public key pk = (N, e) and
runs A(pk). The latter will make signature queries and hash queries, which I will answer itself, in
a manner we will indicate below. Finally A will output some batch instance, from which I will find
the desired . The full description of I follows.

Let ¢ = n + gsig + ghash- I begins by picking at random I € {1,...,¢}. It initializes a counter
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¢ < 0. In the process of answering oracle queries, it builds a table, storing for each message M that
is queried a pair (zar,yar) of points in Z3%;, with one special entry: if this is the /-th hash query
then zs is undefined and y5; = y. Specifically, a hash oracle query of M is answered by running
subroutine H(M) and a sign oracle query is answered by running subroutine Sign(M), where—

Subroutine H (M) Subroutine Sign(M)
c+—c+1 If M was not previously a hash query
Ifc=1 then y(M) < H(M)
then y(M) < y; M*«+ M Ifc=1
else (M) & Z% ; y(M) + z(M)® mod N then abort
return y,s else return z(M)

After all queries have been made and replies obtained, A outputs a batch instance

(Ml,zl), ey (Mn,zn) .
I runs the pruning step of the test on this instance to get the pruned sublist (M1, z1),. .., (Mu, Zz)-
We know that the messages M1, ..., My in this list are all distinct but also representative in the
sense that any message of the original list is also a message in the new list. This means that if the
original list contained a message that was never legally signed, so does the new one, and in addition
this message appears only once in the new list. This will be used below.

For any i for which M; was not previously a hash query, I goes ahead and makes a hash query
H(M;), so that we may assume hash queries corresponding to M7, ..., M, have been made. By
assumption there is some m € {1,...,7a} such that M,, was not legally signed, meaning not a sign
query, and we fix one such m for the analysis. If M* # M (meaning I did not correctly guess a
message that would be in the output batch instance but not legally signed) then I aborts. (We can
assume wlog that all hash queries are distinct, so this is not ambiguous. This assumption is made

also below.) Else, meaning if M* = M, it sets
no~.
x = — szlm; — mod N . (3)
[ i=1 ﬂc(Mz)] ' [ i:m—l—lx(Mi)]

It then outputs z and halts.
Claim. z¢ = y mod N with probability at least Succ(A4)/q.

Proof. If the batch instance output by A passes the FDH-RSA signature batch verification test
then we know that

(IT-12:)¢ = TI=H(M;) mod N .
We know that H(M;) = y(M;) for all i = 1,...,7. Plug this in and then solve for y(M,,) to get
TS
m—1, (71 n AT
M1 y(,)] - [Ty (M)
Let’s assume M* = M,,, meaning the guess [ made by I was correct. Then we know that z(M;)¢ =

y(M;) for all i # m. (Notice we use here the fact that M, is not equal to M; for all i # m, which
is guaranteed by the pruning.) From the above we have

y(Hm) = mod N .

n  =e
=1L

mod N .

ot o(My)e] - [T o(M)e]

Now look at Equation 3. With the above it implies y(M,,) = z¢ mod N. But if M* = M,, we
have y = y(M,,) so this means z¢ = y mod N as desired.

y(Mm) = [
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It remains to check that the probability of this event is as claimed. With probability at least 1/q
the choice of [ gives us M* = M,,, in which case I does not abort (while answering sign queries or
later) and outputs z. Conditional on this event, the view of A while interacting with I is exactly the
one it has in the real experiment defining its success, in which it interacts with the real oracles, and
we know that its success probability in that experiment is Succ(A). So I succeeds with probability
at least Succ(A)/q as claimed. O

To conclude the proof, we notice that the running time of I is at most ¢(k)+Q(nk log(nk))+Q(k3)-q
where t(k) is the running time of A. (The factor of nklog(nk) comes from the cost of the pruning,
which is akin to sorting the hashed values of the messages.) The choice of ¢ makes this at most
t'(k). The assumption that RSA () is (¢, ¢')-secure then implies that I is successful with probability
at most €(k). So by the Claim we have Succ(A4)/q < €'(k), meaning Succ(A) < ¢€'(k). This is
exactly what the theorem claims. |

5 Open problems

There are a number of good issues for further investigation:

e Devise fast batch verification algorithms for modular exponentiation in groups of non-prime
order, and also devise such algorithms for the case of modular exponentiation with a fixed
exponent rather than a fixed base. Perhaps begin by looking at important special cases like Z;
where p is prime or Z3, where N is an RSA modulus.

e Find fast screening algorithms for other signature schemes like DSS.

e Extend our screen test for FDH-RSA to other RSA based signature schemes like PSS [7] which
have tighter security, and try to get tighter reductions of the security of the screen test to that
of RSA as a one-way function.
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A Some Applications

Since verification of modular exponentiations is such a prevalent operation, there are many places
where our tests help. In the domain of protocols, for zero-knowledge, bit commitment, verifiable
secret sharing, and fancy kinds of digital signatures. In the latter, quite large value of n arise.

We can imagine many settings (e.g., Internet applications, electronic commerce, etc.) in which
one has to simultaneously check a number of signatures. For example, one may receive many
certificates, containing public keys signed by a certification authority, and one can check all the
signatures simultaneously. Or a bank may be signing coins and we have to check a lot of them. So
batching is a natural idea in signature verification.

Two things we want to discuss in more depth are batch verification for DSS signatures [20] and
improvements to multi-party identification protocols [16] via batching.

A.1 Batch verification for DSS signatures

DSS signatures [20] are a particularly attractive target for batch verification because here signing is
fast and verification is slow (it involves two modular exponentiations). Batch verification for DSS
itself appears difficult. But Naccache et al. [25] introduced a slight variant of DSS for which they
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were able to give some batch verification algorithms. (This variant has slightly longer signatures
than DSS.) We can adapt our tests to apply to this variant, and get faster batch verification
algorithms than [25]. (Batch verification of modular exponentiation does not apply directly, because
in the verification equation, certain numbers appear both in the base and the exponent, and are
intertwined in strange ways, so we have to adapt.)

THE DSS sCHEME. Recall that in DSS, the following are fixed and public, common to all users: a
prime p (say 512 bits); a prime g (160 bits) such that ¢ divides p —1; and a generator h of Z;. We
let g = h{?=1)/2 mod p. This g generates a subgroup of Z, that we call G. Note G' = {¢" i€ Z,}
has prime order g. So the exponents are in a field, namely Z,.

A particular user has secret key x € Z; and public key y = g* € G. Let m € Z; be the message
to be signed. (This is actually the hash of the real message.) The signer picks k € Z; at random,
sets A = g¥ € G, and sets 7 = XA mod ¢. It then lets s = k~!(m + zr), these computations being in
the field Z,. The signature is (r,s), which is 320 bits long. To verify this signature, the verifier,
who has m,r,s, computes w = s~ € Z4 and then checks that » = ¢™“y"™ mod ¢q. This last is
called the verification equation.

Let’s look at verification more closely. The computation in the exponents is in Z;, and then
we do the two exponentiations. These are performed in Zj, the big underlying group in which the
arithmetic takes place, so they are 512 bit exponentiations, and hence expensive.

DSS*. Naccache et al. [25] consider DSS modified as follows. The signature is (A, s), not (r, s).
That is, they forbear from “hashing” A down to 160 bits. The verification equation now drops the
mod g: we check A = g""y"", operations in Z;. The signature is now 512 + 160 = 672 bits long.
But the “essence” of DSS is preserved. Lets call this DSS*.

For DSS*, Naccache et al. [25] give some very nice batch verification algorithms. We can improve

them by applying ideas of the BUCKET TEST.

BATCH VERIFICATION FOR DSS*. Given a batch instance (A1, s1,m1), ..., (An, Sn, my), we would
like to verify that for all 7 the pair (A;,s;) is a valid DSS* signature for m;. We shall slightly
reorganize the batch instance in order to simplify the exposition of the test. The batch instance
will be (A1,a1,b1),...,(An,an,by) where a; = sz-_lmi and b; = si_lAi. Now, the verification of the
signature consists of checking that A\; = g%y%. This in fact is not just a notational difference as
there is computation involved in changing the batch instance, but these multiplications will be
dominated by the computation carried out in the verification and hence do not change the analysis
of efficiency for the batch.

We describe in Figure 5 the small exponents test and the bucket test for DSS*. The first is
extremely similar to the test of [25], the difference only in the domains from which the exponents
are chosen, and the analysis: unlike them, we do not need to assume DSS is unforgeable to prove
the test works. The main reason to describe it is only that we need it in the better bucket test that
follows. (We drop RS because the test of [25] was better than this anyway.)

PERFORMANCE. Given that the size of p is 512 bits and ¢ is 160 bits, we have that the SMALL
EXPONENTS TEST carried out 480 + 60n multiplications modp. The BUCKET TEST carries out
W multiplication modp. The analysis of when it is advantageous to use the BUCKET
TEST as opposed to the SMALL EXPONENTS TEST is fairly similar to analysis in the general
discrete log based batching as the bulk of the computation in both instances is the same, and the
fact that in DSS* there is a need for two small exponentiations just gives a factor of two on the
small factor of the computation. Thus, we refer to Table 3 for the advantages of the BUCKET TEST

over the SMALL EXPONENTS TEST.
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GIVEN: DSS public parameters p, g, g, a public key vy, and (A1,a1,b1),...,(An,an,by)
Also a security parameter [ < 159.

CHECK: That Vi € {1,...,n} : \; = g%yb.

— Small Exponents (SE) Test:
(1) Pick Iy,...,I, € {0,1} at random
(2) Compute A =37, ail; modgq, B= 37 bl; modqgand R=1][", )\éi
(3) If R = gy” then accept, else reject.

— Bucket Test: Takes an additional parameter m > 2. Set M = 2™. Repeat the following
atomic test, independently [{/(m — 1)] times, and accept iff all sub-tests accept:

AToMIC BUCKET TEST:

(1) Foreachi=1,...,npickt; € {1,..., M} at random

(2) Foreachj=1,....Mlet Bj={i:t;=j}

(3) For each j = 1,...,M let ¢; = Hiij i, dj = Eiij a; mod ¢, and e; =
Ziij b; mod ¢

(4) Run the Small Exponent Test on the instance (ci1,d1,e1),. .., (car, dur, enr) with
security parameter set to m.

Figure 5: Batch verification algorithms for DSS*

CORRECTNESS. For the soundness of these tests, it is important to observe that the group G is
of order g which is a prime, and all the computations are being done in G. (Even though the
arithmetic must be performed in the bigger group, the operands always stay in the subgroup!) So
we can use the same techniques as before to prove that the tests are sound. Details omitted due to
page limits.

A.2 Discrete-log n-party signature protocols

Multi-party identification protocols based on the discrete log problem were first considered by
Chaum and van de Graaf [16]. One of the applications of these protocols is teleconferencing, where
all the participants are connected to a central facility called a bridge. The bridge receives signals
from the participants, operates on these signal in an appropriate way, and then broadcasts the result
back to the participants.? In [15], Brickell, Lee and Yacobi present an efficient n-party signature
protocol based on discrete log. The protocol, however, requires that each of the participants
have k secrets (private keys) in order to achieve an error probability of 27%. We can apply the
batch verification ideas of Section 3 to achieve the same error probability and computation and
communication costs, while requiring the participants to have only one secret. (We note that n-
party identification and signature protocols based on modifications of the Fiat-Shamir identification
scheme [19] also require one secret integer [26]. However, as pointed out in [15], shift register
technology makes discrete log-based schemes almost an order of magnitude faster in computation

%In the application we consider, the bridge or conference unit does not need to know any security information
from the participants. When confidentiality of the teleconference is required, solutions have been proposed [33, 22]
that avoid sharing the participants’ secrets with the bridge. These solutions are also amenable to batching.
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GIVEN: g a generator of G, n users, each with secret z;; g~% is public.

h a collision-resistant hash function. m the message to be signed.
T" the list of the n users. Also a security parameter [.

CHECK: That all n parties sign message m (participate in the session),
with probability at least 1 — 27,

n-Party Signature Protocol:

(1) Party i, 1 <i <mn, picks r; €g Zp, computes a; = ¢g"¢, and sends it to the bridge.

(2) The bridge computes A = [[7 a;, and broadcasts it.

(3) Each party i computes si,...,s, € {0,1}} by computing h(m, A,T,j), j =1,2,...
1 then computes y; = r; + s;z; mod p, and sends it to the bridge.

(4) The bridge computes Y = Y"1 y;, and broadcasts it.

(5) Each party i computes W = [[ w’, and then Z = g* - W.

(6) If Z= A, then OK.

Figure 6: The n-party signature protocol with small exponents.

time than systems based on the difficulty of extracting L-th roots.)

For simplicity, we sketch the protocol based on the small exponents test. The protocol, shown in
Figure 6, has the same general structure as those of [19, 15]. The proof is omitted from this extended
abstract. In the proof, we think of h as a random oracle; in practice, it could be instantiated by,
say, SHA-1. Depending on the actual values of n and I, h is applied in step (3) as many times as
needed in order to obtain the n small exponents. (Alternatively, the exponents could be computed
by the bridge and broadcast to everybody.)

B Batch Verification of Degree of Polynomials

Roughly, the problem of checking the degree of a polynomial is as follows: Given a set of points,
determine whether there exists a polynomial of a certain degree, which passes through all these

points. More formally, let S def (a1, .., ) denote a set of points. We define the relation
DEGf; (3,,..8.)(S) = 1 iff there exists a polynomial f(x) such that the degree of f(z) is at
most ¢, and Vi € {1,..,m}, f(B;) = «;, assuming that all the computations are carried out in the
finite field F.

Let the batch instance of this problem be Si,...,S,, where S; = (i1,,..., % m). The batch
instance is correct if DEG £ 4, ... 6,,)(Si) = 1 for all i = 1,...,n; incorrect otherwise.

The relation DEG can be evaluated by taking ¢ + 1 values from the set and interpolating a
polynomial f(x) through them. This defines a polynomial of degree at most ¢. Then verify that all
the remaining points are on the graph of this polynomial. Thus, a single verification of the degree
requires a polynomial interpolation. Hence, the naive verifier for the batch instance would be highly
expensive. The batch verifier which we present here carries out a single interpolation in a field of
size | F|, and achieves a probability of error less than % The general idea is that a random linear
combination of the shares will be computed. This in return will generate a new single instance of
DEG. The correlation will be such that, with high probability, if the single instance is correct then
so is the batch instance. Hence, we can solve the batch instance computing a single polynomial
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GIVEN: Si,..., S, where S; = (01, %m); By -, Bn;
security parameter /; value .

CHECK: That Vi € {1,...,n} : 3fi(z) such that deg(f;) <t and fi(51) = ci,1,...fi(Bm) = @ipm -
Random Linear Combination Test:
1. Pick r eg F

2. Compute ; def ™®in + ...+ raj1. (This can be efficiently computed as (--- ((rai, +
Qi (n—1))T + Qi (n_2)) =+ )T + 1))

3. U DEG#g,,....3,) (71, s Ym) = 1, then output “correct,” else output “incorrect.”

Figure 7: Batch verification algorithm for checking the degree of polynomials.

interpolation, contrasting O(m?n) multiplications with O(mn) multiplications.

We will be working over a finite field F whose size will be denoted by p (not necessarily a
prime). 2 We will be measuring the computational effort of the players executing a protocol by the
number of multiplications that they are required to perform. Note that the size of the field is of
relevance, as the naive multiplication in a field of size 2¥ takes O(k?) steps. We note that the fields
in which the computations are carried out can be specially constructed in order to multiply faster.
The test (protocol), which we call RANDOM LINEAR COMBINATION TEST, appears in Figure 7.

Theorem B.1 Assume 3j such that for all polynomials f;(xz) which satisfy that Vi € {1,...,m},
[i(Bi) = au, it holds that the degree of f;(x) is greater than t. Then RANDOM LINEAR COMBINA-
TION TEST is a batch verifier for the relation DEGx (5, .. 5,.)(-) which runs in time O(mn) and
has an error probability of at most %.

NOTATION: Given a polynomial f;(z) = a;,z™ + ... + a1z + ag, where a,, # 0, denote by

f
fila)|"! E amz™ + ... + a1zt

If m < t, then f;(z)|*t! = 0.

Proof: In order for RANDOM LINEAR COMBINATION TEST to output “correct,” it must be the case
that DEGx g, ,....3,) (715, s Ym) = 1. Namely, there exists a polynomial F(z) of degree at most ¢
which satisfies all the values in S. Let f;(x) be the polynomial interpolated by the set S;; it might
be that deg(f;) > t. By definition, the polynomial F(z) = 3", r’f;(z). As deg(F) < t, it holds
that 31 7 fi(x)|"*! must be equal to 0. This is an equation of degree n and hence has at most
n roots. In order for RANDOM LINEAR COMBINATION TEST to fail, namely, to output “correct”
when in fact the instance is incorrect, » must be one of the roots of the equation. However, this
can happen with probability at most %.

Each linear combination of the shares requires O(mn) multiplications, and the final interpolation
requires O(m?) multiplications. |

3At this point we shall assume that the instances are computed in the same field F as the new instance that we
generate. Later we shall show how to dispense with this assumption.
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Batch verification of partial definition of polynomials. A variant of the DEG#; 5, .. 5,.)
problem is the following: Given the set S as above and a value ¢, there is an additional value s, and
the requirement is that there exists a polynomial f(z) of degree at most ¢ such that for all but s
of the values f(f;) = ;. As this is in essence an error correcting scheme, some limitations exist on
the value of . The best known practical solution to this variation is given by Berlekamp and Welch
[9]. It requires solving a linear equation system of size m. Hence, again, using a naive batch verifier
to check a batch instance would be highly inefficient. RANDOM LINEAR COMBINATION TEST can
be modified to solve this variant efficiently as well.

Different fields. It might be the case that the original instances were all computed in a field F of
size p. Yet, % is not deemed a small-enough probability of error. Therefore, we create an extension
field F' of the original field, containing F as a subfield. For example, view F as the base field and
let 7' = Flz]/ < r(z) > for some irreducible polynomial of the right degree (namely, of a degree
big enough to make F' of the size we want). Thus, if F = GF(2¥) we will get F' = GF(2¥), for
some k' > k, and the former is a subfield of the latter. It must be noted that if the extension field
is considerably larger than the original field, then the computations in the extension field are more
expensive. Thus, in this case there is a trade-off between using the sophisticated batch verifier and
using the naive verifier.

C Batch program instance checking

We introduce the notion of batch instance checking and show how to achieve it using batch verifi-
cation. We begin with some background and motivation, present the approach, and conclude with
the formal definition of the notion.

C.1 Program checking: Background and issues

Let f be a function and P a program that supposedly computes it. A program checker, as introduced
by Blum and Kannan [11], is a machine C' which takes input z and has oracle access to P. It calls
the program not just on z but also on other points. If P is correct, meaning it correctly computes f
at all points, then C' must accept z, but if P(z) # f(z) then C must reject z with high probability.

Program checking has been extensively investigated, and checkers are now known for many
problems [11, 1, 10, 21, 12, 29, 30, 17]. Checking has also proven very useful in the design of
probabilistic proofs [31, 2].

Batch program checking was introduced by Rubinfeld [28]. Here the checker gets many instances
Z1,...,Zn. Again if P is entirely correct the checker must accept. And if P(x;) # f(x;) for some 4
the checker must reject with high probability. Rubinfeld provides batch verifiers for linear functions.
(Specifically, the mod function.) A similar notion is used by Blum et al. [10] to check programs
that handle data structures.

THE LITTLE-OH CONSTRAINT. To make checking meaningful, it is required that the checker be
“different” from the program. Blum captured this by asking that the checker run faster than any
algorithm to compute f, formally in time little-oh of the time of any algorithm for f.

We will see that with our approach, we will use a slow program as a tool to check a fast one.
Nonetheless, the checker will run faster than any program for f, so that Blum’s constraint will be
met.

PROBLEMS WITH CHECKING. Program checking is a very attractive notion, and some very elegant
and useful checkers have been designed. Still the notion, or some current implementations, have
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some drawbacks that we would like to address:

e Good results can be rejected: Suppose P is correct on some instances and wrong on others. In
such a case, even if P(x) is correct, the checker is allowed to (and might) reject on input z. This
is not a desirable property. It appears quite plausible, even likely, that we have some heuristic
program that is correct on some but not all of the instances. We would like that whenever P(x)
is correct the checker accepts, else it doesn’t. (As usual it is to be understood that in such
statements we mean with high probability in both cases.) This is to some extent addressed by
self-correction [12], but that only works for problems which have a nice algebraic structure, and
needs assumptions about the fraction of correct instances for a program.

e Checking is slow: Even the best known checkers are relatively costly. For example, just calling
the program twice to check one instance is costly in any real application, yet checkers typically
call it a constant number of times to just get a constant error probability, meaning that to get
error probability 27! the program might be invoked €(I) times. Batch checking improves on
this to some extent, but, even here, to get error 27!, the mod function checker of [28] calls the
program (nl) times for n instances, so that the amortized cost per instance is Q(l) calls to the
program, plus overhead.

WHAT TO CHECK? We remain interested in designing checkers for the kinds of functions for which
checkers have been designed in the past. For example, linear functions. The approach discussed
below applies to any function, but to be concrete we think of f as the modular exponentiation
function. This is a particularly interesting function because of the wide usage in cryptography, so
that fast checkers would be particularly welcome.

C.2 Checking fast programs with slow ones

OUR APPROACH. To introduce our approach let us go back to the basic question. Let f be the
function we want to check, say modular exponentiation. Why do we want to check a program P
for f?7 Why can’t we just put the burden on the programmer to get it right? After all modular
exponentiation is not that complicated to code if you use the usual (simple, cubic time) algorithm.
It should not be too hard to get it right.

The issue is that we probably do NOT want to use the usual algorithm. We want to design a
program P that is faster. To achieve this speed it will try to optimize and cut corners in many
ways. For example, it would try heuristics. These might be complex. Alternatively, it might be
implemented in hardware. Now, we are well justified in being doubtful that the program is right,
and asking about checking.

Thus, we conclude that it is reasonable to assume that it is not hard to design a reliable but
slow program Py, that correctly computes f on all instances. Our problem is that we have a fast
but possibly unreliable program P that claims to compute f, and we want to check it.

Thus, a natural thought is to use Pyoy to check P. That is, if P(z) returns y, check that
Pyow(x) also returns y. Of course this makes no sense. If we were willing to invest the time to run
Pyow on each instance, we don’t need P anyway. Formally, we have violated the little-oh property:
our checker is not faster than all programs for f, since it is not faster than Pyoy-

However, what we want is to essentially do the above in a meaningful way. The answer is
batching. However we will not do batch program checking in the sense of [28]. Instead we will be
batch-verifying the outputs of P, using Fsow, and without invoking P at all.

More precisely, define the relation R, for any inst = (z,y), by R(z,y) = 1 iff f(z) = y. Let’s
assume we could design a batch verifier V' for R, in the sense of Section 1.1. (Typically, as in our
later designs, V' will make some number of calls to Pyow- But MUCH fewer than n calls, since its
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running time is less than n times the time to compute R.) Our program checker is for a batch
instance x1,...,Z,. Say we have the outputs y; = P(z1),...,yn = P(x,) of the program, and
want to know if they are correct. We simply run V' on the batch instance (z1,41),. .., (Zn,yn) and
accept if V' returns one. The properties of a batch verifier as defined in Section 1.1 tells us the
following. If P is correct on all the instances z1,...,z,, then we accept. If P is wrong on any
one of these instances then we reject. Thus, we have a guarantee similar to that of batch program
checking (but a little stronger as we will explain) and at lower cost.
Since V makes some use of Py we view this as using a slow program to check a fast one.

FEATURES OF OUR APPROACH. We highlight the following benefits of our batch program checking
approach:

e Instance correctness: In our approach, as long as P is correct on the specific instances z1, ..., Z,
on which we want results, we accept, even if P is wrong on other instances. (Recall from the
above that usual checkers can reject even when the program is correct on the instance in
question, because it is wrong somewhere else, and this is a drawback.) In this sense we have
more a notion of “program instance checking.”

e Speed: In our approach, the program is called only on the original instances, so the number of
program calls, amortized, is just one! Thus, we only need to worry about the overhead. However,
with good batch verifiers (such as we will later design), this can be significantly smaller than
the total running time of the program on the n calls. Thus the amortized additional cost of
our checker is like o(1) program calls, and this is to achieve low error, not just constant error.
This is very fast.

e Off-line checking: Our checking can be done off-line as in [10]. Thus, for example, we can use
(slow) software to check (fast) hardware.

Of course batching carries with it some issues too. When an error is detected in a batch instance
(z1,91),--- (Tn,yn) we know that some (z;,y;) is incorrect but we don’t know which. There are
several ways to compensate for this. First, we expect to be in settings where errors are rare. (As
bugs are discovered they are fixed, so we expect the quality of P to keep improving.) In some
cases it is reasonable to discard the entire batch instance. (In cryptographic settings, we are often
just trying to exponentiate random numbers, and can throw away one batch and try another.)
Alternatively, figure out the bad instance off line; if you don’t have to do it too often, it can be
OK.

C.3 Definition

We conclude by summarizing the formal definition of our notion of batch program instance checking.
Similarly to relations, a batch instance for a (not necessarily boolean) function f is simply a
sequence X = z1,...,%, of points in its domain. A program P is correct on X if P(x;) = f(z;)
for all = 1,...,n, and incorrect if there is some i € {1,...,n} such that P(z;) # f(z;). If f is
a function we let Ry be its graph, namely the relation Rf(z,y) = 1 if f(z) = y, and 0 otherwise.
Notice that P is correct on X iff (21, P(x1)),...,(zn, P(x,)) is a correct instance of the batch
verification problem for Ry.

Definition C.1 A batch program instance checker for f is a probabilistic oracle algorithm C* that
takes as input (possibly a description of f), a batch instance X = (z1,...,z,) for f, and a security
parameter [ provided in unary. It satisfies:

(1) If P is correct on X then C* outputs 1.

(2) If P is incorrect on X then the probability that C* outputs 1 is at most 2.
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We wish to design such batch program instance checkers which have a very low complexity and
make only marginally more than n oracle calls to the program. As indicated above, this is easily
done for a function f if we have available batch verifiers for Ry, so we have such checkers for
modular exponentiation as considered in Section 3.
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