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Abstract. Yao’s classical millionaires’ problem is about securely deter-
mining whether x > y, given two input values x, y, which are held as
private inputs by two parties, respectively. The output x > y becomes
known to both parties.

In this paper, we consider a variant of Yao’s problem in which the in-
puts x, y as well as the output bit x > y are encrypted. Referring to the
framework of secure n-party computation based on threshold homomor-
phic cryptosystems as put forth by Cramer, Damg̊ard, and Nielsen at
Eurocrypt 2001, we develop solutions for integer comparison, which take
as input two lists of encrypted bits representing x and y, respectively,
and produce an encrypted bit indicating whether x > y as output. Se-
cure integer comparison is an important building block for applications
such as secure auctioning.

In this paper, our focus is on the two-party case, although most of our
results extend to the multi-party case. We propose new logarithmic- and
constant-round protocols for this setting, which achieve simultaneously
very low communication and computational complexities. We analyze
the protocols in detail and show that our solutions compare favorably to
other known solutions.

Key words: Millionaires’ problem; secure multi-party computation; homomor-
phic encryption.

1 Introduction

The millionaires’ problem, introduced by Yao [Yao82], involves two parties who
want to compare their riches: they wish to know who is richer but do not want to
disclose any other information about their riches to each other. More formally,
the problem is to find a two-party protocol for the secure evaluation of the
function f(x, y) = [x > y] where the bracket notation [B], for a condition B,
is defined by [B] = 1 if B holds and [B] = 0 otherwise (this is called Iverson’s
convention; see [Knu97]).



Rather than requiring that the inputs x and y are actually known as pri-
vate inputs to the parties, we will work in the more general setting where the
inputs are not necessarily known to the parties running the protocol. Instead,
the inputs to the protocol may be given as encrypted values only, and the out-
put will also be made available in encrypted form. Note that the inputs to our
protocols will actually be encryptions of the individual bits, representing the
integers to be compared. For these encryptions we will use a threshold homo-
morphic cryptosystem, as in the framework of secure n-party computation based
on threshold homomorphic cryptosystems put forth by Cramer, Damg̊ard, and
Nielsen [CDN01]. In line with this, we consider the case of an active, static
adversary3, i.e., we consider the malicious case.

Requiring (i) that the inputs are given in encrypted form (without anyone
knowing these inputs) and (ii) that the output bit [x > y] also be encrypted
(without anyone learning its value) sets our problem setting apart from the
setting of Yao’s paper [Yao82] and much of the follow-up literature. Indeed,
consider computing [x = y] in the case of encrypted inputs but public output,
where the following well-known solution works. Let [[M ]] denote a (probabilistic)
encryption of a message M in a threshold homomorphic cryptosystem. Given
encryptions [[x]] and [[y]], the encryption [[x − y]] is publicly computed. Further-
more, the parties jointly compute an encryption [[r]] for a (jointly) random r.
Using one invocation of a secure multiplication protocol, the parties then pro-
duce encryption [[(x − y)r]], which is jointly decrypted. If the result is 0, then
x = y; otherwise, x 6= y, and the result is a random number. In contrast, when
the output is required in encrypted form, such simple solutions are not known
and typically protocols (including ours) work over the encrypted values of the
binary representation of the inputs x and y.

Furthermore, unlike many publications on the millionaires’ problem, we con-
sider the malicious case rather than the semi-honest (or honest-but-curious)
case.

1.1 Our contributions

The contributions of this paper are as follows:

– A logarithmic-round protocol for secure integer comparison, which is based
on an elegant Boolean circuit for integer comparison of depth log2 m for m-bit
integers. In addition, the size of the circuit is only 3m (counting the number
of secure multiplication gates). The circuit can be readily used as a drop-in
replacement for the O(1)-depth circuit for integer comparison in [DFK+06],
which is only of theoretical interest as it uses 19 rounds and 22m secure
multiplications. Note that the depth of our log-depth circuit exceeds their
constant-depth circuit for integer comparison only if the inputs consist of
integers of bit length m = 220 or longer.)

3 In principle, the case of adaptive adversaries could be handled at the expense of
additional tools (e.g., [DN00,DN03,GMY03]); in this paper we focus on the static
(and stand-alone) case.



– A constant-round protocol for secure integer comparison for which the num-
ber of rounds is a small constant and the number of secure multiplications is
a small multiple of m. Our constant-round solution is restricted to the case of
two parties (or, rather, any constant number of parties). Our protocol builds
on a protocol by Blake and Kolesnikov [BK04] for integer comparison for a
different setting. In particular, we provide an efficient technique for securely
returning the output bit in an encrypted form.

We like to stress that application of our log-depth circuit is not restricted to
the framework of [CDN01]: the circuit can be used in any framework for secure
n-party computation that assumes that the function to be computed is given as
a circuit. In particular, the log-depth circuit can be used for secure computation
based on verifiable secret sharing, thus yielding solutions which are uncondition-
ally secure—rather than computationally secure, as described in this paper.

Furthermore, the proof of security of our constant-round protocol is inter-
esting in its own right. Theorem 1, as explained below, essentially captures the
security of the protocol in a modular way. Here, we have adopted the approach
suggested recently in [ST06], and we show how the required simulator can be
built even though our protocol is of a much different nature than the ones in
[ST06].

1.2 Related work

There appear to be only a few publications in the literature which consider
encrypted inputs and outputs for integer comparison. Above we have already
mentioned the work of Damg̊ard et al. [DFK+06]. The main difference is that
they work in an unconditional setting, reflected by the use of sharings for an un-
derlying linear secret sharing scheme, while we work in the cryptographic model
where we use encryptions for an underlying threshold homomorphic cryptosys-
tem.

Together with a secure multiplication protocol for a homomorphic thresh-
old ElGamal scheme, Schoenmakers and Tuyls [ST04] also present a solution
for secure integer comparison for encrypted inputs and outputs. Their solution,
however, requires a linear (O(m)) number of rounds and secure multiplication
gates. With more relaxed requirements than ours, Brandt [Bra06] presents a
solution where the inputs are encrypted but the output is in the clear for both
participants, and furthermore, it is not 0 or 1 but instead 0 or ‘random,’ which
limits its applicability.

A different approach to solve the integer comparison problem is when one of
the parties acts as a server. In this setting, say, Alice knows the private keys to
open encryptions and Bob works over his input bits and Alice’s encrypted input
bits to produce some information that allows Alice to know the output of the
function being evaluated. Examples of these approaches to integer comparison
are presented in [DiC00,Fis01,BK04,LT05]. In contrast to our solutions, these
solutions do not provide encrypted output and the actual encrypted inputs are
known to the parties running the protocols.



1.3 Organization of the paper

The rest of the paper is organized as follows. In Section 2 we introduce the main
building blocks used by our protocols and we give some background on threshold
homomorphic cryptosystems. In Section 3 we present our two new protocols for
integer comparison, together with their proof of security (specifically, of the sec-
ond protocol, as the proof of the first protocol follows directly from the security
guarantees provided by the [CDN01] setting). We conclude in Section 4 with a
brief performance analysis and comparison to existing results.

2 Preliminaries

Our results apply to any threshold homomorphic cryptosystem, such as those
based on ElGamal or Paillier. It is assumed that a secure multiplication proto-
col is available, as in [CDN01,ST04]. Since we only need secure multiplication
of binary values, we use the conditional gate of [ST04], which allows for an
efficient implementation based on threshold homomorphic ElGamal—which in
turn allows for the use of elliptic curves, hence yielding compact and efficient
implementations.

We write [[x]] for a (probabilistic) encryption of the value x, using the public
key of the underlying threshold homomorphic ElGamal cryptosystem. Further,
let Zq denote the message space, for a large prime q (of, say, size 160 bits). The
cyclic group G used for ElGamal is also of order q, and we assume that elements
of G are represented using |q| bits only (which is the case for elliptic curves).
Thus, an ElGamal encryption consisting of two group elements is of size 2|q|.

In order to withstand active attacks, we use Σ-protocols [CDS94], a standard
type of zero-knowledge proofs/arguments. Assuming the random oracle model,
all proofs can be converted into non-interactive ones and can be simulated easily.

As mentioned above, we make use of secure multiplication gates which on
input [[x]] and [[y]] allows two or more parties (who share the private key of the
underlying threshold homomorphic cryptosystem) to jointly compute an encryp-
tion [[xy]]. Secure multiplication gates can be implemented in a constant number
of rounds [CDN01], using the Paillier cryptosystem. Using a number of rounds
linear in the number of parties (which is constant in case of two-party com-
putation), the conditional gate [ST04] can be used instead, in case one of the
multiplicands is from a two-valued domain (e.g., if x ∈ {0, 1}).

Furthermore, in case one of inputs, say, x is private to one of the parties, a
simplified multiplication protocol can be used with no interaction between the
parties. The protocol consists in letting the party knowing the private value x
broadcast a re-encryption of [[xy]] = [[y]]x using the homomorphic properties of
the scheme, and generate a Σ-proof showing that [[xy]] was correctly computed
with respect to [[x]] and [[y]]. Following [ST04], we will refer to this protocol as
the private-multiplier gate.

For the performance comparisons presented at the end of this paper, we will
assume a setup using a (2,2)-threshold homomorphic ElGamal cryptosystem.



We note that in this case a conditional gate requires about 50 exponentiations
and 34|q| bits of communication, per invocation. Similarly, a private-multiplier
gate requires about 10 exponentiations and 6|q| bits of communication, per in-
vocation. In the same setting, a threshold decryption requires 6 exponentiations
and 6|q| bits of communication.

A final tool that we will use are verifiable mixes [SK95], a tool for verifi-
ably mixing lists of ciphertexts. More formally, a verifiable mix takes as input
a list of encryptions [[x1]], . . . , [[xm]], and produces another list of encryptions
[[x′1]], . . . , [[x

′
m]] as output such that [[x′π(1)]] = [[x1]] ∗ [[0]], . . . , [[x′π(m)]] = [[xm]] ∗ [[0]]

for some random permutation π of {1, . . . ,m}. Here, each occurrence of [[0]] de-
notes a probabilistic encryption of 0.

A verifiable mix also outputs a non-interactive zero-knowledge proof (for
which we assume the random-oracle model throughout). For concreteness, we
assume Groth’s efficient proof [Gro03], which for our setting requires about 14m
exponentiations and is of size 6m|q| bits.

We are now ready to describe our protocols for integer comparison.

3 New Solutions to the Integer Comparison Problem

In this section we present two new protocols for integer comparison following
different approaches. In both cases, the inputs x and y are given as sequences
of encrypted bits, [[xm−1]], . . . , [[x0]] and [[ym−1]], . . . , [[y0]], with x =

∑m−1
i=0 xi2i,

y =
∑m−1

i=0 yi2i. The output is [[[x > y]]]. Hence, both inputs and output are
available in encrypted form only.

As a starting point and for later comparison, we first the linear-depth circuit
of [ST04] for computing x > y, using simple arithmetic gates only (addition, sub-
traction, conditional gates). The circuit (or, oblivious program) is fully described
by the following recurrence:

t0 = 0, ti+1 = (1 − (xi − yi)2)ti + xi(1 − yi),

where tm is the output bit (hence tm = [x > y]). Rather than starting from the
most significant bit, this circuit computes [x > y] starting from the least signif-
icant bit. Although somewhat counterintuitive, the advantage of this approach
is that the circuit contains 2m − 1 conditional gates only (compared to about
3m conditional gates when starting from the most significant bit, see [ST04]).

A disadvantage is that the depth of the circuit is m, hence inducing a critical
path of m sequential secure multiplications (the terms [[x1y1]],. . . ,[[xmym]] can be
computed in parallel, but the computation of t1, . . . , tm must be done sequential).
The computational complexity and communication complexity of a protocol for
integer comparison based on this circuit is thus determined by the work required
for the conditional gates. For later comparison, in the two-party case, we have
about 100m exponentiations and 68m|q| bits of communication—and a linear
number of rounds.



3.1 Logarithmic round complexity with low computational
complexity

The result in this section shows how to reduce the depth of the circuit to O(log m)
without increasing its size beyond O(m). The idea relies on the following simple
but crucial property of integer comparison. Write x = X1X0 and y = Y1Y0 as
bit strings, where 0 ≤ |X1| = |Y1| ≤ m and 0 ≤ |X0| = |Y0| ≤ m. Then,

[x > y] =
{

[X1 > Y1], X1 6= Y1;
[X0 > Y0], X1 = Y1,

which may be “arithmetized” as

[x > y] = [X1 > Y1] + [X1 = Y1][X0 > Y0].

This property suggests a protocol that would first split the bit strings x and
y in about equally long parts, compare these parts recursively, and then combine
these to produce the final output. To evaluate the expression for [x > y] using
simple arithmetic gates, we introduce the following auxiliary function:

z(x, y) = [x = y] = 1 − (x − y)2

Let ti,j stand for the value of > when applied to the substrings xi+j−1, . . . ,
xi+1, xi and yi+j−1, . . . , yi+1, yi. Expressed explicitly in terms of the bits of x
and y, a full solution for [x > y] is obtained by evaluating t0,m from (using
l = bj/2c)4:

ti,j =
{

xi − xiyi, j = 1;
ti+l,j−l + zi+l,j−lti,l, j > 1.

zi,j =
{

1 − xi + 2xiyi − yi, j = 1;
zi+l,j−lzi,l, j > 1.

Correctness of the computation should be immediate, and its security fol-
lows from the security guarantees provided by the framework we are consider-
ing [CDN01], assuming secure arithmetic gates.

Regarding overhead, the number of conditional gates required for zi,j is 2j−1.
The number of conditional gates for ti,j is j − 1, not counting the conditional
gates for z. Thus, the total number of conditional gates for t0,m is bounded above
by 3m− 2. About log2 m conditional gates can be saved by observing that some
z-values are not needed for the evaluation of t.

The computational and communication complexities are dominated by the
number of conditional gates. In the worst case, 3m − 2 conditional gates are
required, resulting in about 150m exponentiations and 102m|q| broadcast bits.

4 Any value l, 0 < l < j, actually works, but only l ≈ j/2 gives logarithmic depth. The
msb-to-lsb and lsb-to-msb circuits in [ST04] are special cases, obtained respectively
by setting l = 1 and l = j − 1.



The depth of the circuit is exactly dlog2 me, hence O(log m) with hidden constant
equal to 1 for the base-2 logarithm.

As a further remark we note that this log-depth circuit allows for the com-
putation of sgn(x − y) at virtually no extra cost. Here, sgn(z) is the signum
function, which is equal to the sign of z (which is equal to −1 if z < 0, 0 if z = 0,
and 1 if z > 0). This follows form the fact that the circuit also computes [x = y],
next to [x > y], hence one obtains sgn(x − y) = 2[x > y] − 1 + [x = y] as well.

3.2 Constant round complexity with low computational complexity

In this section we seek to reduce the round complexity to O(1), adopting an ap-
proach quite different from the one above. We consider the problem of computing
[[[x > y]]] in the two-party case, and we wish to achieve a low, constant-round
complexity while keeping the size of the circuit small as well.

First, we note that the O(1)-depth and O(m)-size circuit for integer compar-
ison of [DFK+06] is only of theoretical interest to us: the depth of the circuit is
actually 19, and its size is 22m (only counting secure multiplication gates). For a
result that possibly competes with our logarithmic solution we take the protocol
for conditional oblivious transfer of Blake and Kolesnikov [BK04] (where the con-
dition is also an integer comparison) as a starting point. The main idea in that
protocol is to calculate the first position where the bits of x and y differ, starting
from the most-significant bit. Let i∗ be that position; then xi∗ − yi∗ ∈ {−1, 1}
indicates whether x > y or not. Jumping ahead a little, the position i∗ will be
determined as the unique index satisfying γi∗ = 1 (which is guaranteed to exist
if we assume x 6= y; see below). Of course, the value of i∗ must remain hidden,
which is achieved by the parties randomly permuting (i.e., mixing) the relevant
sequences.

The protocol is described in detail below. As said above, our starting point is
the protocol in [BK04] for the passive adversary setting. New ingredients include
the fact that we allow for encrypted inputs [[x]] and [[y]], rather than private
inputs x and y. Accordingly, we use a (2,2)-threshold homomorphic cryptosystem
instead of just a homomorphic cryptosystem, and we use secure multiplication
(conditional gates). Furthermore, we use a specific kind of blinding at the end
of the protocol in order to extract the outcome of the integer comparison in
encrypted form. Finally, as an important difference, we can actually use other
homomorphic cryptosystems, such as ElGamal, whereas [BK04] makes essential
use of Paillier.

Constant-round protocol. The protocol consists of the following steps:

1. Using m conditional gates, parties A and B jointly compute [[fi]] = [[[xi 6=
yi]]]. Then they publicly compute the γ-sequence: [[γm]] = [[0]]; [[γi]] = [[2γi+1+
fi]], for i = m − 1, . . . , 0.

2. For i = m − 1, . . . , 0, party A broadcasts [[rA
i ]] for random rA

i ∈R Zq and
produces sequence [[uA

i ]] = [[rA
i (γi − 1)]] using a private-multiplier gate.



3. Party B does the same with [[rB
i ]] producing sequence [[uB

i ]] = [[rB
i (γi − 1)]],

where rB
i ∈R Zq. Now they publicly produce sequence [[ui]] = [[uA

i ]][[uB
i ]][[xi −

yi]] = [[(rA
i + rB

i )(γi − 1) + (xi − yi)]].
4. Party A verifiably mixes sequence [[ui]] producing sequence [[u′i]].
5. Party B verifiably mixes sequence [[u′i]] producing sequence [[vi]].

Now, parties A and B take turns to multiply this last sequence by a randomly
selected number in {−1, 1}:

6. Party A broadcasts [[sA]], sA ∈R {−1, 1}, and uses a private-multiplier gate
to produce sequence [[v′i]] = [[sAvi]]. A proof that [[sA]] is an encryption of
either −1 or 1 is also given.

7. Party B does the same, broadcasting [[sB ]], sB ∈R {−1, 1}, and producing
sequence [[wi]] = [[sBv′i]] along with the required proofs.

8. Finally, parties A and B proceed to decrypt the sequence [[wi]] until they
find the unique index i∗ satisfying wi∗ ∈ {−1, 1}. The output is defined as
[[(vi∗ + 1)/2]].

The value vi∗ is either −1 or 1, hence (vi∗ + 1)/2 is either 0 or 1. This linear
transformation can be done for free because of homomorphic properties.

The above protocol assumes that x 6= y, in order that index i∗ is well defined.
If x = y, then no entry in the w-sequence will be equal to −1 or 1. One can put
“sentinels” to resolve possible equality, by setting f−1 = 1 and u−1 = (rA

−1 +
rB
−1)(γ − 1) + 1. The rest of the protocol is adapted accordingly.

In case the output need not be encrypted, steps 6 and 7 are omitted, and
the participants directly open the sequence v to find the position i∗ where vi∗ is
in {−1, 1}, where −1 means that x is less than or equal to y, and 1 means x is
greater than y.

For the complexities, the number of rounds for the protocol is small: at most
9 rounds (two rounds for the conditional gates in step 1, and one round for each
of the subsequent steps). For the number of exponentiations, we have 50m for
the conditional gates (step 1), 40m for the multiplication gates (steps 2, 3, 6,
and 7), 28m for the verifiable mixes, and 3m for the decryption (m/2 expected
decryptions), which amounts to 124m exponentiations in total. Similarly, 77m|q|
is the number of bits of communication. We have omitted further optimizations
for clarity of exposition.

The protocol easily extends to the multiparty case, but since the mixing is
done sequentially, constant round complexity is not achieved (note that secure
multiplication gates can be constant-round even in the multi-party case if Paillier
encryption is used, as in [CDN01]).

Proof of security. For the proof of security, we want to be able to simulate this
protocol assuming that one of the participants is corrupted. The idea is to give
the simulator the inputs [[xi]] and [[yi]] in such a way that a consistent view of
the protocol can be constructed without making use of the private information
of the honest participant.

We first review the simulation requirements for the building blocks. In order
to simulate a conditional gate, encryptions [[x]] and [[y]] are required, as well



as one encryption of [[xy]] with the requirement that x ∈ {−1, 1} (or, any other
two-value domain) and the contents of the encryptions are consistent. The actual
values x,y and xy need not be known. The same holds for the private multiplier
gate, where in this case the proof of knowledge of, say, x is simulated. For a
threshold decryption, we need to provide both [[x]] and x to the corresponding
simulator.

We now turn to the overall simulation strategy. We note that one problem
already arises at the first step of the protocol: in order to simulate the conditional
gate invocations in Step 1, the simulator has to produce [[xiyi]] only given [[xi]]
and [[yi]], which is impossible! We circumvent such problems by adopting the
approach recently introduced in [ST06], in which it is explained that simulation
for input/output pairs of a special form (see Theorem 1 below) suffice to ensure
integration with the framework of [CDN01]. This is a consequence of the fact
that the security proof in [CDN01] centers around the construction of a so-called
YADb distribution, which is defined as a function of an encrypted bit [[b]].

The structure of the security proof [CDN01] follows an ideal-model/real-
model approach. The YAD0 distribution is identical to the distribution of the
ideal case, whereas the YAD1 distribution is statistically indistinguishable from
the distribution in the real case. Therefore, if an adversary can distinguish be-
tween the ideal/real cases, it implies that the adversary can distinguish the YAD0

distribution from the YAD1 distribution. But as the choice between these two
distributions is determined by the value of the encrypted bit b, it follows that
the distinguisher for the ideal/real cases is a distinguisher for the underlying
encryption scheme. And this is done in tight way, i.e., without loss in the success
probability for the distinguisher. (See [CDN01,ST06] for more details.)

Thus, it is sufficient to show a simulation for inputs of a special form, namely,
[[x̃]] = [[(1 − b)x(0) + bx(1)]], where x(0) and x(1) are given in the clear to the
simulator, but b is only given in encrypted form [[b]]. The values x(0) and x(1)

correspond to the values arising in the YAD0 and YAD1 cases, respectively.

Theorem 1. Given input values x
(0)
i , y

(0)
i , x

(1)
i and y

(1)
i and an encryption [[b]]

with b ∈ {0, 1} the above protocol can be simulated statistically indistinguishably
for inputs [[x̃i]] = [[(1 − b)x(0)

i + bx
(1)
i ]] and [[ỹi]] = [[(1 − b)y(0)

i + by
(1)
i ]].

Proof. Let x
(0)
i , y

(0)
i , x

(1)
i and y

(1)
i and encryption [[b]] with b ∈ {0, 1} be given.

Assuming that party A is corrupted, the simulation works as follows:

1. For Step 1, we rely on the simulator for the conditional gates, which we
need to provide with the inputs [[x̃i]] and [[ỹi]] and the corresponding output
[[f̃i]] = [[x̃iỹi]]. The latter values are computed as [[(1− b)x(0)

i y
(0)
i + bx

(1)
i y

(1)
i ]],

using [[b]] and the homomorphic properties of the cryptosystem.
Similarly, the simulator also computes [[γ̃i]] = [[(1−b)γ(0)

i +bγ
(1)
i ]]. Let i0 and

i1 denote the indices such that γ
(0)
i0

= γ
(1)
i1

= 1 as these values are known to
the simulator.

2. Next, we let party A do her work. She will broadcast [[r̃A
i ]] and [[ũA

i ]], for all
i. The values r̃A

i can be extracted by rewinding the proof of knowledge of
the private-multiplier invocation.



3. The idea of this step is to generate values r
B(j)
i such that the simulator may

put equal values (up to sign) in the u-sequences, which will later decrypt to
the same value independently of b. For this the simulator does the following.
First, he selects s

(0)
B ∈R {−1, 1}. The value of s

(1)
B depends on the result of

the comparison of x(0) against y(0), and x(1) against y(1). If both comparisons
have the same result, then s

(1)
B = s

(0)
B , otherwise s

(1)
B = −s

(0)
B .

Now the simulator selects r
B(0)
i , r

B(1)
i in such a way that u

(0)
i and u

(1)
i satisfy

the following:
(a) u

(0)
i s

(0)
B = u

(1)
i s

(1)
B , for i 6∈ {i0, i1};

(b) u
(1)
i0

s
(1)
B = u

(0)
i1

s
(0)
B ;

(c) u
(0)
i0

s
(0)
B = u

(1)
i1

s
(1)
B .

First, we note that, for j = 0, 1:

u
(j)
i = (r̃A

i + r
B(j)
i )(γ(j)

i − 1) + (x(j)
i − y

(j)
i ).

For case (a) we essentially need that s
(0)
B s

(1)
B u

(0)
i = u

(1)
i , which means that

s
(0)
B s

(1)
B

(
(r̃A

i +r
B(0)
i )(γ(0)

i −1)+(x(0)
i −y

(0)
i )

)
=(r̃A

i +r
B(1)
i )(γ(1)

i −1)+(x(1)
i −y

(1)
i ),

where i 6∈ {i0, i1}.
This can be achieved by first selecting r

B(0)
i at random, and then isolating

and obtaining r
B(1)
i (which in turn is random in each selection of b).

Similarly, in case (b), we require that s
(1)
B s

(0)
B u

(1)
i0

= u
(0)
i1

, which is equivalent
to

s
(1)
B s

(0)
B

(
(r̃A

i0+r
B(1)
i0

)(γ(1)
i0

−1)+(x(1)
i0
−y

(1)
i0

)
)
=(r̃A

i1+r
B(0)
i1

)(γ(0)
i1

−1)+(x(0)
i1
−y

(0)
i1

),

and it is solved as in case (a).
For case (c), just taking r

B(0)
i0

and r
B(1)
i1

at random is enough: in those
positions the γ-sequences take the value 1 and the randomization is “lost”
when considering u-sequences.
The simulator now prepares [[r̃B

i ]] as [[(1 − b)rB(0)
i + br

B(1)
i ]] and [[ũB

i ]] as
[[r̃B

i (γ̃i−1)]], for all i. These encrypted values are broadcast, and the simulator
for the private-multiplier gate is invoked, with multiplicands [[r̃B

i ]] and [[γ̃i]],
and result [[(1 − b)rB(0)

i γ
(0)
i + br

B(1)
i γ

(1)
i ]].

The sequence [[ũi]] is constructed as in the protocol:

[[ũi]] = [[ũA
i ]][[ũB

i ]][[x̃i − ỹi]].

By construction, it follows that [[ũi]] = [[(1 − b)u(0)
i + bu

(1)
i ]], for all i.

4. The simulator lets party A mix the sequence [[ũi]], producing a new sequence
[[ũ′i]]. The simulator can also extract the permutation πA that links both
sequences.

5. Now the simulator randomly selects two indices, call them ĩ∗ and ĩ∗∗, and
constructs two permutations π

(0)
B and π

(1)
B as follows:



– π
(0)
B (πA(i0)) = π

(1)
B (πA(i1)) = ĩ∗;

– π
(0)
B (πA(i1)) = π

(1)
B (πA(i0)) = ĩ∗∗;

– for the remaining positions the permutations are randomly defined under
the condition that π

(0)
B (πA(i)) = π

(1)
B (πA(i)), i 6∈ {i0, i1}.

The next step is to call the simulator of the mix proof depending on [[b]],
because the simulator will never know which permutation, π

(0)
B or π

(1)
B , is

actually used. For this, he constructs the sequences v
(j)
i = u

(j)

π−1
A (π

(j)
B

−1
(i))

, for

j = 0, 1, and then defines the sequence [[ṽi]] = [[(1 − b)v(0)
i + bv

(1)
i ]], for all

i. With the mixed sequence broadcast by party A in the previous step and
this last sequence, the simulator now calls the simulator for the mix proof.

6. Party A multiplies the entire sequence [[ṽi]] by a number s̃A (which is ex-
tracted from the corresponding private-multiplier proof for [[s̃A]]), resulting
in sequence [[ṽ′i]].

7. Now the simulator has almost all the work already done. At this stage he
constructs [[s̃B ]] = [[(1− b)s(0)

B + bs
(1)
B ]], and broadcasts it. Then he constructs

the sequence [[w̃i]] = [[(1 − b)v(0)
i s̃As

(0)
B + bv

(1)
i s̃As

(1)
B ]]. Note that ṽ′i = ṽis̃A.

The private-multiplier simulator is now invoked on inputs [[s̃B ]] and [[ṽ′i]], and
output [[w̃i]].

8. To simulate the last step, the simulator can link back the plaintext of en-
cryptions [[w̃i]] by using permutation πA ◦ π

(j)
B , for j = 0, 1; note that the

sign of these values is affected by the factor s̃A. Thus,

w
(j)
i = s̃As

(j)
B u

(j)

π−1
A (π

(j)
B

−1
(i))

,

for all i, due to the construction at step 5.
Moreover, the plaintexts in [[w(0)

i ]] and [[w(1)
i ]] are equal, as a result of the

work of the simulator at step 3. It also follows that w
(0)
i = w

(1)
i = w̃i,

independently of [[b]]. Hence, the simulator for the threshold decryption is
called, for instance, over inputs [[w̃i]] and s̃As

(0)
B u

(0)

π−1
A (π

(0)
B

−1
(i))

.

The values generated in this way by the simulator are consistent, and there-
fore an adversary cannot statistically distinguish them from the ones resulting
in a real execution. The case when party B is corrupted is similar with some
minor differences, due to the order in which tasks are executed. This completes
the proof. ut

4 Conclusions

In this paper we have presented two new solutions to the integer comparison
problem. Our first solution achieves a logarithmic round complexity of exactly
dlog2 me rounds for m-bit integers, whereas the second solution achieves a con-
stant number of rounds (in the two-party case). In Table 1 we show a comparison



Integer Comparison Solution No. Exponentiations Broadcast Bits

Linear-depth circuit [ST04] 100m 68m|q|
Logarithmic-depth circuit 150m 102m|q|
Constant-round protocol (two-party) 124m 77m|q|

Table 1. Comparison of different secure solutions for [x > y]

between the different solutions presented in this paper and the linear-depth cir-
cuit of [ST04].

Evidently, going below O(m) rounds comes at the cost of an increase in
computational and communication complexity. For the constant round solution,
the additional costs are smaller than for the logarithmic round solution; however,
the logarithmic round solution also applies to the multi-party case.

From a practical point of view, our multi-party logarithmic-depth solution
is very good compared to the known results so far: communication and com-
putation are are only 50% worse than for a linear-depth solution. Even though
O(1)-round is not achieved this way, the number of rounds is very low when
considering integers x and y of practical size, e.g., m = 32 or m = 64, in which
cases the depth is only 5 and 6, respectively.
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