Software Integrity Protection
Using Timed Executable Agents’

Juan A. Garay
Bell Labs — Lucent Technologies
600 Mountain Ave.
Murray Hill, NJ 07974, USA

garay@research.bell-labs.com

ABSTRACT

We present a software scheme for protecting the integrity
of computing platforms using Timed Fzecutable Agent Sys-
tems (TEAS). A trusted challenger issues an authenticated
challenge to a perhaps corrupt responder. New is that the
issued challenge is an executable program that can poten-
tially compute any function on the responder. The respon-
der must compute not only the correct value implied by
the agent, but also must complete this computation within
time bounds prescribed by the challenger. Software-based
attestation schemes have been proposed before—new capa-
bilities introduced in TEAS provide means to mitigate the
existing shortcomings of such proposed techniques. TEAS
are general and can be adapted to many applications for
which system integrity is to be tested.

Two types of adversaries to TEAS are considered. First,
we address attacks by “off-line” adversaries that attempt to
discern agents’ functions statically by analyzing their pro-
gram texts. We then consider “on-line” adversaries, which
operate while the agent runs. For off-line adversaries, we
show how complexity results from programming language
analysis, as well as undecidability considerations, can be
used to thwart such analysis by making it impossible for the
adversary to correctly decipher all potential agents and reply
in a timely fashion. In the on-line scenario, adversaries are
difficult to stop in general. We do however present strate-
gies that make it difficult for these adversaries to interpret
an agent in a virtual machine and to thereby redirect its
actions, for example.

*Preliminary version appeared as Lucent Internal Technical
Document ITD-04-45822G, Oct. 12, 2004.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ASACCS 06, March 21-24, 2006, Taipei, Taiwan.

Copyright 2006 ACM 1-59593-272-0/06/0003 ...$5.00.

Lorenz Huelsbergen
Bell Labs — Lucent Technologies
600 Mountain Ave.
Murray Hill, NJ 07974, USA

lorenz@research.bell-labs.com

We address the problem of creating large libraries of use-
ful and complicated (and hence difficult to analyze) agents
through a new technique of program blinding—we hide
critical functionality inside randomly generated machine-
language programs. We implemented a virtual machine that
allows experimentation with this approach. Experiments re-
veal that blinded agents whose execution conveys important
integrity information can be efficiently generated in abun-
dance.

Categories and Subject Descriptors

D.3.3 [Programming Languages|: [Language Constructs
and Features]; F.2.m [Analysis of Algorithms and Prob-
lem Complexity]: [Miscellaneous]

General Terms
Security, Verification.
Keywords

Data integrity, intrusion detection, software-based attesta-
tion, program analysis, mobile code and agent security.

1. INTRODUCTION

Integrity of computing systems is paramount to their use-
fulness. Software, hardware, and their interconnection must
be trusted to a high degree in order for them to be used
in critical and sensitive computations. However, most com-
puting platforms today are relatively devoid of protections
against malicious attack where, in particular, resident soft-
ware is modified or reconfigured. We propose a general
challenge-response scheme, based completely on software, to
determine and monitor the integrity of software subsystems
in a distributed hardware/software architecture.

Similar software-based protection schemes have been pro-
posed before [11, 16], which operate by performing a fized
function (checksum) on the state of the system being ver-
ified. Such systems however have certain limitations. For
example, they have been shown to not be secure [15], or
they are not suited for networks where the challenger and
the target system are physically far apart or have realis-
tic modern processors with cached data and instructions,

or they rely on conjectures that the implementation of the
verification function is in some sense optimal in time.

As one example of a system our approach is designed to
protect, consider a mobile phone client communicating with
hosts in the wireless telephony networks. It is quite possible
for the (sophisticated) user of a mobile phone to modify its
software. Since a phone interacts inside a network, the host
components that communicate with the phone client may
be interacting unbeknownst with malicious code. Other ex-
amples of scenarios for software integrity protection are: (1)
set-top boxes such as cable modems that need to be pro-
tected from malicious re-configuration, (2) hardware devices
comprised of multiple boards where authentication of the
configuration and software of the client boards is desirable
to prevent fraud (that enables features not contracted for,
for example), and (3) communication or sensor networks in
a military scenario where it is critical that client software be
intact and not corrupted by an enemy.

Although software clients can, and arguably should, be
protected with security hardware (e.g., with a tamper-
resistant cryptographic co-processor [18]), they usually are
not due to material costs and the additional engineering
complexities they impose. Legacy systems already deployed
in the field may also require protection post hoc—here, an in-
tegrity scheme based on software is the only option. Further-
more, many systems are assembled from commodity off-the-
shelf components which often contain only minimal hard-
ware security, if any.

Our approach to software-based integrity verification is
through Timed Ezecutable Agent Systems (TEAS). TEAS
typically consists of pieces of computer code—an agent—
designed to run on a client whose integrity is being ascer-
tained. Since the client will be asked to execute code un-
known to it, the agent must be signed by the sending host to
signify that it stems from a trusted entity. Upon receipt of
a TEAS agent, the client must execute it immediately and
return any results the agent produces to the issuing host.
Since the agent is an arbitrary computer program that runs
potentially with full permissions on the client, it is capable
of reading and writing all memory locations and performing
calculations on the client state (in the form of checksums,
for example). More complicated TEAS instances might per-
haps reconcile state modifications made by a prior agent’s
visit, among many other possibilities.

An important aspect of TEAS is that the ezecution period
of the agents on the clients is timed—the output of an agent
must be received by the host within a given period of time for
it to be valid. As we shall see, this helps prevent potentially
malicious code running on the client from expending compu-
tation on analysis of the agent and from introducing other
overheads, such as those incurred in dynamic interpretation
of the agent. The more tightly coupled the target system,
the more precise the a priori time-bounds for an agent can
be. For example in a wireless base-station box where com-

munication is through a tightly coupled backplane, commu-
nication as well as execution times can be precisely modeled.
On the other hand, in a system that communicates over the
Internet, tight bounds on in-transit times may be harder to
come by.

In general, TEAS is a probabilistic approach to integrity
verification. For example, a single agent may check only a
single memory location or compute the hash of a memory
region. It is probabilistic in the sense that if a reply is not
received in time, it may only signify a network delay and not
necessarily a critical integrity violation. It is the collection
of many agents operating over a long time period that can
establish, with a high degree of probability, that the software
running on the client is as intended and expected. TEAS
are general and can be adapted to many applications.

A large part of this paper’s contribution is a method
for generating computational agents randomly in order to
populate efficiently large libraries of useful agents. Man-
ually written agents, interspersed with random machine-
generated agents, both further obfuscated to create addi-
tional semantically equivalent variants, provide a large ob-
stacle that adversaries would need to “learn” in order to
combat TEAS protections effectively.

We discuss related work in more detail in §6. Here we
mention briefly the previous systems most relevant to TEAS.
One of the first software-only schemes to verify the integrity
of computer systems was Kemell and Jamieson’s Genuin-
ity system [11]. Genuinity essentially uses a checksum of
pseudo-random virtual memory addresses, machine-specific
register values, and time to verify integrity. Genuinity’s
trusted host also computes the checksum, and if the client
being tested calculates the same checksum as the trusted
host and returns it “quickly enough,” the client software is
considered genuine, since it is assumed that there would be
no fast simulation. However, Shankar, Chew and Tygar [15]
present such simulation (with running time below the 35%
slowdown allowed by Genuinity), by mounting what they
call a substitution attack on the system: Imposter code that
sits in the client’s checksum page available memory, making
sure that correct values are incorporated into the checksum.
The work of Shankar et al. shows that there are “holes” in
Genuinity, making some assumptions about memory utiliza-
tion, that may or may not hold in practice. Central to their
attack is the knowledge that Genuinity is computing this
checksum. Agents in TEAS can of course compute similar
checksums, but are not restricted to one known function.

Seshadri et al.’s SWAT'T system [16] also uses a checksum
of a pseudo-random memory traversal to probabilistically
ascertain that memory has not been corrupted by malicious
code. In contrast to Genuinity, SWATT focuses on small
embedded microcontrollers, with fixed processor speeds and
(small) memory sizes. Importantly, SWATT relies on an ex-
tremely tight coupling between the trusted host and the tar-
get system to work properly. SWATT also requires knowl-

edge of the entire state being checked—or, equivalently, re-
quires the transmission of the client’s state to the trusted
host as part of the verification. SWATT’s checksum needs
a large number of memory accesses (O(nlogn), where n is
the size of the memory) in order to guarantee the checking
of all memory locations with high probability. Additionally,
the code implementing the checksum must not admit further
optimization in order to exclude malicious interpretation of
the checksum instructions; it is known that—at least for
non-trivial pieces of code—determination of this property
of the code is impossible.

In similarity with Genuinity and SWATT, TEAS does

not provide a provably correct solution to software-based
verification. It is however more practical than SWATT in
some dimensions and safer than Genuinity because TEAS
allows for the challenges (agents) to do perform more com-
plex and diverse tasks than a checksum—TEAS adversaries
must adapt in real time to TEAS’ ever changing verification
functions. TEAS’ diversity makes it more difficult for the
adversary to resist detection in all circumstances. Addition-
ally, TEAS does not require knowledge of the entire state of
the system being verified, Furthermore, against some adver-
saries TEAS uses a technique that we call program blinding
to obfuscate the functionality of the agent, and we rely on
the complexity of program analysis in order to prevent the
adversary from deciphering it. To our knowledge, this is the
first time that the complexity of program analysis is used
for intrusion detection.
Organization of the paper. The remainder of the paper
is structured as follows. In §2 we describe our computa-
tional/network model and give prerequisite definitions. We
then address integrity protection against the two classes of
adversary types—on-line and off-line—in §3 and §4, respec-
tively. We present some applications and practical consid-
erations for TEAS in §5 and a review of related work in §6.
We conclude the paper with a summary and directions for
further research in §7.

2. DEFINITIONS, ASSUMPTIONS AND
SYSTEM REQUIREMENTS

This paper concerns collections of computational nodes in
a (possibly ad hoc) network. The nodes comprise two types
of entities: secure hosts, and possibly insecure—in the sense
of being subject to malicious attacks—clients.

As mentioned in §1, the goal is for host nodes to estab-
lish the integrity of the client systems. We assume that
the clients execute computer programs specified with the
RAM model of computation. The RAM model corresponds
well with the architectures of contemporary microprocessors
and DSPs such as those produced by many manufacturers.
Load-store and memory-based instruction sets, as well as
stack architectures, are readily captured by the RAM model.
In this paper we consider hosts and clients that are unipro-
cessors; we use C, [C] = cycles/sec, to denote the CPU rate

of such processors. We further assume that the clients do
not possess any tamper-resistant hardware (containing, for
example, a secure processor to perform cryptographic op-
erations). The memory of a client consists of four areas:
code, data, unused memory, and program stack. Naturally,
parts of the data area may be unused at different points in
time. We will use M to denote the size of a client’s memory,
measured in number of words.

Regarding communication, we assume that the nodes in
the system, especially the hosts, have a fairly accurate es-
timate of the transmission delays in the network. This is
modeled by hosts’ knowledge of the available bandwidth on
the links or channels connecting them to the clients. We will
use B, [B] = bits/sec, to denote the available bandwidth on
a given link.!
Adversary model. The aim of our constructions is to
provide defense against client nodes being corrupted and/or
taken over by an attacker, which we will refer generically to
as the adversary. In the applications we have in mind, the
adversary will typically be a program running in the client’s
memory, such as a computer virus, or code implanted by
the enemy or a malicious insider. Since the adversary will
be executing at the client, it will be bounded to the client’s
computational power. More specifically, and as in [16], we
require that the adversary makes no changes to the client’s
hardware, such as increasing its memory or increasing its
clock speed.

Therefore, attacks are all software-based, and can range
from the adversary simply making modifications to the
client’s configuration or state, to actively controlling the
client. Our defense strategy against these attacks will con-
sist of sending programs (“agents”) to perform various tasks
at the client. In order to go unnoticed, the adversary will
have to provide the correct output, and—importantly—in a
timely fashion. Thus, we divide adversaries into two classes,
according to the type of analysis that they will perform on
such incoming programs;

— Off-line adversaries: In this class we assume that the
adversary controlling a client will try to analyze the in-
coming programs without running them. Recall that in
static analysis of programs [12, 1], programs are ana-
lyzed in isolation, without inputs and without the state
of the machine where they will run. An off-line ad-
versary will perform a similar type of analysis, except
that it might also have access to inputs and state of the
client. We let A,z denote the class of off-line adver-
saries.

— On-line adversaries: In this class, we assume that the
adversary controlling a client will also be able to run
the incoming programs. We use A.n to refer to this

class of adversaries.

!Estimation of measures such as computation rate and
bandwidth can be performed empirically.

We call a node (client) that has been attacked by an adver-

sary corrupted.

Since we assume that an adversary will execute at a client
whose computing power is known, computation steps can be
easily transformed into absolute time.

Timed Executable Agent System (TEAS). At the core

of our constructions is a general form of a challenge/response

system, where arbitrary challenges—or agents—are issued
between the various nodes in the network. We call the
node issuing the challenge (typically a secure host) the Chal-
lenger, and the node being queried (typically a client) the
Responder. Examples of tasks that such agents might per-
form include start executing at an arbitrary point of Respon-
der’s state, perform some (random) computation including
the content of memory locations or the state of Responder’s
stack, perform modifications (e.g., a random permutation)
of the state so as to disable a potential attacker controlling

Responder, etc. Besides the result expected by Challenger

from the execution of the agent at the target node, an im-

portant quantifiable side effect is the time it takes the agent

executing at Responder to provide the (correct) result. We
now provide a more formal definition of the agent system.

An (e, A) Timed Ezecutable Agent System (TEAS) is de-
fined by the following two (probabilistic) algorithms, run-
ning on the node acting as Challenger:

1. The agent generation algorithm Tgen, which on in-
put of environmental parameters (the link’s band-
width B and Responder’s CPU rate C), outputs a
TEAS instance T = {(Pl, 01,%1, 7'('1), (Pz, 02,12, 71'2), vy
(Px, 0k, tk, k) }, where P;, 1 < 4 < k, is a program
(agent) to be executed at Responder, o; is its expected
output, t; is its expected transmission and execution
time, and 7; is its patience threshold.

Let |P;| denote the size of the ith program, and let
D(P;) denote the number of dynamic instructions ex-
ecuted during P;’s execution. Then ¢; will typically be
computed by Tgen as

_IPl | loil , D(P)
ti="m + 3 o (1)
2. The agent verification algorithm Tver, which takes as

input 7 and the list of pairs {(0},#})}¥, where o} is the
result provided by agent P; after executing at Respon-
der, and t; is the elapsed time since the agent was sent
to Responder until the result was received, as mea-
sured on Challenger’s clock, respectively, and outputs
v € {‘OK’,‘-0K’}.

We require that if Responder is corrupted by an adver-
sary in adversary class A, then the probability that Tver
will output ‘OK’ is less than €. On the other hand (and to
simplify), if Responder is not corrupted, then Tver should
not equivocate and always output ‘OK’.

Program analysis background and requirements. We
define a halting program to compute a function from a set
of input values to a set of output values in a finite num-

{ a=0;
while (a < 10) {
b+=M[a];
midloop:
at+;
}
if(x > 0)

goto midloop;

Figure 1: Sample program containing unstructured con-
trol flow (goto jump back into a loop body) that leads to
irreducible flow graphs, which in turn give rise to expensive
analysis times.

ber of computation steps. We consider two programs as
syntactically equivalent if their texts are the same; i.e., the
bit strings representing the programs are identical. We use
tzt(P) to denote the text of program P. Two programs are
semantically equivalent if they have the same input/output
relation.

The approach we propose in this paper to stymie off-line
adversaries, as described above, is to use the algorithmic
complexity of program analysis (see [12] for background) or
the undecidability of most non-trivial program properties
(see [10]). The automatic analysis of a program’s text, typi-
cally for optimization purposes, is almost as old as program-
ming languages themselves. Comprehensive treatments of
this field are given by Muchnick and Jones [12] and by Aho,
Sethi and Ullman [1]. The analyses and techniques we draw
on can be found in these standard works. Note that here we
do not consider new probabilistic analysis techniques, such
as the recently proposed random interpretation analysis [?].

In a nutshell, the behavior of a program P in terms
of the program’s output values as well as of any side ef-
fects that the program may perform may be determined in
part through some global data-flow analysis on the program.
Given tzt(P), some of the following tasks must be performed
in order to deduce statically its operation:

— extract P’s control flow graph (CFG) Gp;
— convert Gp to a reducible flow graph G'» (see below);

— perform global data flow analysis on Gp (or G').

In the best case the extraction of the CFG has time com-
plexity Q(n), where n is some static measure of the size of P,
such as the number of instructions it contains, or the num-
ber of assignments it has; but in the case of certain types
of branches, this complexity rises to superlinear—Q(n?) or
even higher [7]. Also, the resulting CFG may or may not
be reducible (cf. [1, 12]) depending again on the presence of
branches into loops. Figure 1 contains a program fragment
that, due to the unstructured goto into a loop body, gives
rise to an irreducible flow graph. As we shall see in §3, a

Code Data Stack

aby

2291bbs nwis

Figure 2: Memory map of Responder, with agent executing.

goal of agent generation is to make analysis difficult—this
can be done by introducing irreducible flow constructs. Con-
version of an irreducible graph to reducible one is possible
via so-called node-splitting, which however can increase the
program size (and hence its CFG size) exponentially [1, 12].
Global data flow analysis with the iterative algorithm on an
irreducible CFG has complexity Q(n?), but can approach
linear time on a reducible CFG using alternate algorithms.
System requirements. Common computing platforms
such as PCs or servers suffice to implement the Challenger
platform since it need only periodically issue challenges and
perform bookkeeping of its client Responders. Unlike the
Challenger, a Responder must meet special system require-
ments regarding the access and use of its resources in order
to be used in a TEAS system. In particular, it must per-
mit the execution of arbitrary code, albeit authenticated by
a trusted Challenger. However, since agents for TEAS are
constructed in conjunction with the particular application
in mind, we assume that the TEAS agents are not going to
harm the application. Agents automatically generated are
constructed in such a way as to adversely affect a Respon-
der$ state (Section 3.3). The authentication procedure (say,
public-key based) guarantees Responder that it is getting a
correct agent and does not introduce a new vulnerability
into the system.

In addition, the Responder’s operating system must allow
an agent full and uninterrupted access to the machine for
the duration of the agent’s execution—since agents would be
typically small and have low time complexities, this is not an
issue. In practice, this means that Responder must disable
interrupts (etc.) to prevent external or internal events such
as IO or time-slicing from the OS’s process scheduler. A
Responder must also allow an agent access to all memory.

Another requirement is that Responders are provisioned
to receive and execute agents. A Responder therefore re-
quires a (small) portion of free memory in which to place the
agent as well as the trivial software machinery for doing this
placement and for launching execution of the agent. This
is illustrated in Figure 2. More complicated schemes might
vary the locations of memory used for this; since agents are
general programs, they can modify the software, memory
locations, and parameters used for subsequent agent invo-
cations on a given Responder.

We assume that existing network transmission techniques
are used to acknowledge the correct receipt of an agent, so
that in scenarios where operation of an agent depends on
the operation of a previously sent agent, the correct order
of operations will be applied. That is, an acknowledgement
based transmission scheme might be used where transmis-
sion is retried until an agent is correctly received. (Note
that a retry might send a different agent than in the failed
transmission—it must only be in sync with the functions of
the other cooperating agents.)

Although it is unlikely that off-the-shelf operating sys-
tems, such as ones common on PC’s, are adequate for
TEAS due to the aforementioned requirements, the cus-
tomizable real-time operating systems used in many devices
such as mobile phones or proprietary computing appliances
like wireless basestations are sufficiently customizable and
low-level to admit a TEAS security approach.

3. INTEGRITY PROTECTION FROM OFF-
LINE ADVERSARIES

The approach we propose to combat off-line adversaries is
to use the algorithmic complexity of program analysis (see
[12] for background) or the undecidability of most non-trivial
program properties (see [10]). We first briefly elaborate on
the latter, and then turn our attention to the former.

3.1 Undecidability-based protection

A simple argument conceptually against the feasibility of
off-line analysis of an agent is the undecidability of non-
trivial program properties as given by Rice’s theorem [10].
Namely, properties such as whether generally a program
halts or how many steps it takes are non-computable so
they cannot (for all programs) be determined by an off-line
adversary.

Take for example the non-trivial program property of com-
puting the number of instructions a TEAS agent executes.
An agent could incorporate this dynamic value into the re-
sult it returns to the Challenger. The number of instruc-
tions executed can be trivially computed by the agent as it
runs, but is non-computable a priori. Any amount of off-
line analyses cannot exactly determine such an undecidable
property.

Unfortunately we do not yet know of automatic methods
for generating agents with given undecidability properties
(e.g., number of instructions executed). We therefore turn
our attention to complexity-based protection schemes where
we can present methods for automatic agent creation.

3.2 Complexity-based protection

Effectively, an off-line adversary is a program analysis-
based adversary, i.e., one which attempts to analyze the flow
of an agent and tries to deduce the result(s) of the agent us-
ing this analysis. By doing this, the adversary hopes to
discern, for example, which memory locations the agent ac-

cesses. In the case where the adversary needs to ¢

‘protect”
or “disguise” certain locations because they are being used
by the adversary toward a malicious end, such an analysis
can help pinpoint which locations must be temporarily “re-
stored” to their proper values before executing the agent.
(Note too that address values may be computed dynami-
cally in the agent, so non-trivial analyses are necessary to
determine all critical locations.) Furthermore, the analysis
must infer also the function that the agent computes on its
inputs. As pointed out in §2, program analysis has inher-
ent time and space complexities which we will use to force
the adversary to expend computation, and hence time, on
the analysis task which makes it harder for the adversary to
return the desired value(s) to the Challenger.

To combat off-line adversaries using program analyses in

such a manner, we construct our agents so that the time
complexity of performing the analysis causes the adversary
to violate the TEAS time frame for receiving a response. In
particular, we utilize the superlinear time complexity of per-
forming program analysis (e.g., Q(n?) in the case of iterative
data-flow analysis [12]).
Example: More concretely, consider a system with
the following bandwidth and computation parameters:
B = 10° bytes/second and C = 10° cycles/second and on
average the processor completes one instruction per cycle.
Suppose some TEAS agent is of size 102 instructions where
each instruction is four bytes in size. Furthermore, suppose
this agent to have linear dynamic runtime therefore requir-
ing at least 103/10° = 0.000001 seconds to complete on the
client. If the agent’s result fits in four bytes, the total time
for communicating the agent from the host to the client and
returning the client’s result to the host is bounded below
by 4 x 10%/10° + 4/10® = 0.004004 seconds for a total com-
munication and computation time of ¢ > 0.004005. Now, if
the adversary must perform at a minimum a Q(n?) analysis
with an implied constant > 1, the adversary must expend
an additional (at least) 0.01 seconds of computation time
giving it a time of ¢’ > 0.014005, therefore dominating ¢ by
a factor of (roughly) 3.5—a significant amount that should
be readily detectable in practice. By increasing the size of
the agent further this gap can be made arbitrarily large.

This example requires additional commentary. First, it is
necessary that the mix of agents sent to the client contain
agents with fast (linear or constant running times) in ad-
dition to more complex agents (perhaps with quadratic or
cubic execution time). This will ensure that for some agents
the analysis will dominate the patience threshold (m) for
those agents; this point can be handled by judicious agent
construction (cf. §3.3). Second, it must be possible to guar-
antee that for many non-trivial agents, an adversary’s anal-
ysis time be asymptotically larger than the agents running
time.

We now show how common analyses can be made to re-
quire superlinear (in the size of the agent) time—this again

statement defines uses
{ a = 10; a

b=a+ 1; b a

while (a—- > 0) { a a
c = atb+M[a]; c a,b,M[a]
bt+; b b

}

return c; } c

Figure 3: Results of a def-use analysis on a sample pro-
gram. Program statements are on the left, lists of variable
definitions in the center column, and lists of variable uses
in the rightmost column. The def-use lists can be automat-
ically inferred by a def-use program analysis.

is possible through careful agent construction.

An off-line adversary to TEAS must determine the critical
locations inspected by an agent, the function it computes,
and also any side-effects the agent may perform. A side-
effect is a modification to a program’s state that does not
directly affect the result value but can influence the sub-
sequent computation by the client or of future agents. An
off-line adversary must therefore perform some global data-
flow analysis (cf. §2) on the agent in question in order to
determine this.

As mentioned above, it must be the goal of the agent
writer to make analysis asymptotically more expensive than
execution, for at least some subset of agents. Here are two
ways one might do this:

1. Make CFG extraction expensive;

2. ensure that the extracted CFG is irreducible and that
its conversion to reducible form explodes the size of
the resulting CFG.

Doing (1) or (2) or both, implies that CFG extraction is

quadratic, the data flow analysis is quadratic, or the size of

the agent P after conversion to reducible form P’ is of the
form n’, for some § > 1 (so that even a linear analysis on

P’ is no longer linear in |P|).

Instances of analyses the adversary would have to do are
def-use and available expressions analyses [12, 1]. The first,
binds definition statements for a variable z to uses of z
within subsequent expressions. Available expression analy-
sis computes, for every program point, the set of previously
computed expressions that are still accurate given all vari-
able definitions between the initial computation of the ex-
pression and the current program point. On irreducible flow
graphs, such analyses require Q(n?) time using the standard
iterative algorithm. However, if the flow graph is reducible,
they could be performed faster, e.g., in time Q(n log n) using
alternative algorithms such as balanced path compression
[12]. But again, the required reduction step can increase
the size of the CFG drastically.

Figure 3 gives a short sample program and the results of

a def-use analysis on it. In the sample program, the ad-
versary must determine the value of ¢ returned by the last
statement. To do so, it must examine (among many other
things) the definitions of variables and their subsequent uses
in forming the resultant expression. In the example it is ev-
ident that the adversary must uncover c¢’s definition in the
while loop, which in turn depends on the values of a and b,
which are first initialized before the loop and then repeatedly
reassigned in it. Furthermore, using def-use information is
often not sufficient as the example also illustrates: arrays
are indexed using dynamic values (e.g., M[a]) and loops are
executed multiple times. Such program constructs compli-
cate the analyses required to even loosely bound, let alone
precisely determine, the values and side-effects computed by
a TEAS agent. As we argued above, and to summarize, this
information cannot be obtained in linear time in an off-line
manner using known program analysis techniques.

3.3 Automatic agent generation

An attractive approach to agent generation is to do it
automatically on the challenge server, by either precomput-
ing an agent library or by generating agents on-the-fly as
needed. Unfortunately, machine generation of programs is
insufficiently advanced to create programs anywhere close to
as complex and specific as can be created by humans. How-
ever, as we describe in this section, it is possible to combine
a small (hand-written) program with simple properties with
a random, obliviously generated one—we call this process
program blinding. Program blinding, in conjunction with
large sets of suitable agents, can prevent an off-line adver-
sary from adaptively learning the function being blinded,
since blinding hides the functionality of the program, and
drawing from a large set of programs furhter obfuscates it.

We implemented a virtual register machine (a basic pro-

cessor instruction set) to test approaches to automatic agent
generation. We now turn to the description of an efficient
random program generator and program blinding process,
followed by an evaluation of results obtained for several pro-
gram sizes.
Blinding programs with pseudo-random agents.
Given a machine language L with its syntax and semantics,
or more concretely, its (fixed) set of instructions together
with their corresponding actions, we call a (pseudo-)random
program of size n the result of (pseudo-)randomly generating
n valid instructions in L. Note that some of the programs
generated this way will not be terminating.

Key to our blinding operation is the notion of cross-over
taken from genetic algorithms. Given two programs P; and
P,, with their respective I/O relations and sets of proper-
ties, the cross-over between P, and P, is a program Ps,
obtained by means of some efficient transformation, with a
set of properties that contains some of the input programs’
properties. In other words, Ps; “inherits” some of the prop-
erties possessed by Pi and/or Ps.

We propose a particular kind of cross-over operation, de-
noted “®,” that we call, making an analogy with the notion
of “blinding” in cryptography [4], program blinding. In a
nutshell, given program P, the idea is to combine P with
a random program so that the resulting program maintains
some of P’s properties but its behavior (e.g., its output) is
difficult to predict. There would be several ways to produce
a juxtaposition of the two programs. In our case, as typi-
cally the target program would be much smaller than the
random program, we simply define ® as the interleaving of
each of P’s instructions uniformly at random in the random
program text. We call P* < P ® Pgr, where Pr is a random
program, the blinded program.

We now make the “difficult to predict” requirement more
precise. We say a program P is (e, n)-semantically uncertain
if no adversary A € A, given tzt(P) and an input instance
I, can determine O P(I) after n steps of analysis with
probability better than e, for all I. In the case of blinded
programs, we will set n = |P*|.

Finally, the blinded program’s output may or may not

depend on the original program’s input. We will call those
blinded programs where the dependency is preserved input-
sensitive blinded programs.
Experiments. To validate the idea of using blinding to
construct automatically agents we constructed a virtual reg-
ister machine (VRM) (similar, but simpler than, proces-
sor instruction sets). The details of our VRM as described
briefly below; a complete description is deferred to the full
version of the paper.

We use a simple program that tests a simple property,
namely the value of a potentially critical memory location
on the Responder: LOADrO([A]). That is, this program loads
the value of memory location A into register r0. We then
blinded this program with a random program of size n drawn
from the instructions of our VRM. We then ran the program
for at most n® instructions where the value at A was taken
to be the integer 70 (arbitrarily). If the program did not
halt, it was discarded. If it did halt, we recorded its output
which was arbitrarily chosen to be the value in register r1
upon termination. We then reset the program and reran it
again with A now holding the integer 50 (again arbitrarily).
If the result of the second run differed from the first, we
labeled the program as A-sensitive. Recall that a sensitive
blinded program is one whose output depends on the input
of the original program.

Programs labeled as A-sensitive by the above procedure
are good candidates as agents to test the integrity of location
A. This is because their result is a function of the value at A.
Furthermore, they are known to terminate and their number
of steps (for any expected value v of A can be computed by
setting A to v and re-running the blinded program).

Table 1 contains results from performing this blinding pro-
cess 10° times for programs of lengths n = 25, n = 50,
and n = 100 instructions. The entries in the n, n?, and

#instr. | n | n? | n® | forward jmps | backward jmps
25 687 | 48 | 1 2.5 1.9
50 422 | 59 | 1 5.3 4.2
100 282 | 26 | 1 10.7 9.6

Table 1: Results for blinding a program P that loads a
critical value into a register and returns the final content of
this register. P was blinded with random programs of size
25, 50, and 100 instructions. The number of terminating
blinded programs sensitive to this value are binned by the
number of instructions executed dynamically. Average num-
ber of forward and backward jumps per random program are
also given.

n® columns are the number of agents out of the 10° ran-
domly generated that are A-semsitive. Each column repre-
sents an upper bound on the running time in instructions
executed. Programs executing more than n® instructions
were terminated. Generating and testing 10° programs took
at most a couple of hours (for programs of length 100, less
for the shorter lengths). Much of this time is due to in-
terpretation overhead in our VRM and comes mainly from
non-terminating programs that were allotted n® instruction
steps. Nevertheless, random agent generation is fast and
can be used either for precomputing a library of agents or
for creating them on-the-fly. Note that agents are always
tested, so we are always sending tested agents to the client.

For each program length we give the average number of
forward and backward branches. Backward branches im-
ply the existence of loops which—as discussed in §2 and il-
lustrated in Figure 1—influence the complexity of program
analyses. By biasing the generation procedure, it would be
easy to generate agents containing more backward jumps
which imply more loops. Some further comments on these
results are necessary. First, our sample size of 10° is quite
small given the size of the search space. This can account for
the non-monotonically decreasing counts of the number of
quadratic programs with increasing program length. Also,
the fact that the experiments produced exactly one program
with cubic running time for all three program lengths may
be attributable to the sample size. Regarding the jump
statistics, note that the average numbers of forward jumps
is greater than the average number of backward jumps. This
is due to biases in our VRM and in our counting of jumps
with an offset of zero as a forward jump. Regardless of such
anomalies , the point of the experiments is to demonstrate
that program blinding is possible and to give initial statistics
for one possible blinding scheme.

The VRM itself consists of a small number of machine-
language instructions. For the experiments, we instanti-
ated the VRM with eight registers, of which register R;
was deemed to hold the agent’s result on termination. The
LOADrO() instruction is special, for it appears only in the

program being blinded, P = {LOADrO(w)}, where v took
values 70 and then 50 in these experiments; it is never orig-
inally present in a random agent Pgr. The blinding process
then introduces this instruction into the mix of random in-
structions that comprise Pr. The result of the blinding,
P* + PQ Pg, is therefore a random sequence of instructions
of the VRM with a single LOADrO(v) in it. We postulate
that by replicating the LOADrO(v) instruction more often,
one can achieve a higher degree of sensitivity on it which
implies more programs matching the sensitivity criteria and
faster generation times. Similarly, it should be possible to
generate random programs dependent on multiple locations
by blinding with programs containing load instructions for
the additional locations.

3.4 A construction and security arguments

We now illustrate and analyze a complexity-based TEAS
against off-line adversaries, based on the automatic agent
generation technique presented above. We focus on one of
the analysis-hardening properties discussed in §3.2, that of
generating agents with irreducible CFG’s.

Let pii..q denote the probability that a randomly gener-
ated agent of size n contains an irreducible CFG (and thus
implies a Q(n?) analysis time). Tgen, the TEAS genera-
tion algorithm, will be generating instances that include
((1 — pieq), n)-uncertain programs, for suitable n. De-
pending on the particular generation process, piy..q can be
estimated to various degrees of accuracy.” In principle,
this probability can be estimated analytically, by for exam-
ple estimating in the uniform instruction sampling process
the probability of loop occurrence with backward jumps oc-
curring into them. Alternatively, if an agent library is pre-
computed off-line, random agents can be first selected which
possess a high number of backward jumps, and then further
program analysis (using the best known methods) applied
to them. An on-the-fly generation (and testing) process can
also be aided by this off-line “knowledge base.”

We now explain how Tgen would work to generate an
(e, Aofr) TEAS instance. First, Tgen is given the target
program(s) that is (are) supposed to perform some checks
at Responder. As mentioned at the beginning of the sec-
tion, target programs are assumed to be simple programs
consisting of a handful of operations. Then, on input CPU
rate C at Responder and link bandwidth B (and its variance
statistics), Tgen chooses n so that the time consumed by a
quadratic analysis would dominate the time incurred by a
fast-executing (e.g., at most linear) agent by a large factor.
How large this factor is would depend on the bandwidth
variance statistics. (For example, a factor of three or more
assuming a zero probability of half bandwidth—recall the
example in §3.2.) This allows Tgen to fix a preliminary pa-
tience threshold for all agents (e.g., # = 2); however, Tgen

%It can also be mangled, by for example biasing the sampling
procedure.

might perform some additional fine tuning after the next
step.

Tgen now proceeds to blind the target program(s) with &
terminating random programs of size n such that:

1. every program is input-sensitive; and,

2. the running time of (at least) k' < k agents is at most
n, where k' is the minimum integer satisfying (1 —
pﬁred)kl <e

Tgen determines the input sensitivity of the random pro-
grams by running them; at this time, besides recording for
each blind program P;; 1 < i < k, its output o;, Tgen
also computes and records t;, i.e., the sum of the programs’
running time plus their expected transmission time, accord-
ing to Equation (1). In the case of computation-intensive
agents, Tgen might also adjust (lower) their patience thresh-
old, to reflect the fact that computation time for these agents
will be the dominating term. Finally, Tgen outputs TEAS
instance {(P},0;,t;, ;) }" thus constructed, and Challenger
now submits the agents in the TEAS instance, one by one,
to Responder.

In order to determine whether Responder is corrupted,
Tver takes the TEAS instance and the list of pairs {(o}, ;) }¥,
where 0} is the result provided by agent P; and t; is the
elapsed time since the agent was sent to Responder until
the result was received, as measured on Challenger’s clock,
respectively, and applies the test

if AP7,1<i<k s.t. 0;#0} OR i >m then
output ‘-OK’.

By construction, the probability that an adversary A €
Aog corrupting Responder will pass the test is less than e.

This concludes the section on protection against adver-
saries who try to discern program properties by performing
off-line analysis. As we shall see in the next section, an ad-
versary that emulates or interprets an agent may be able to
determine properties with only moderate overhead. We now
show how to structure agents to avoid such on-line adver-
sarial attacks.

4. INTEGRITY PROTECTION FROM ON-
LINE ADVERSARIES

To illustrate, consider this example. An adversary cor-
rupting Responder is trying to protect a memory location
£. As a concrete example, £ may contain configuration data
that has been changed to modify the characteristics of a set-
top box. When Responder now receives a TEAS agent P,
the adversary applies analyses to it before running it to de-
termine if the memory locations accessed by P contain £. If
the adversary is able to determine that P accesses ¢, it could
restore £ to the proper value, and cache the improper mali-
cious value at a location ¢’ that it has determined not to be
accessed by P. When P completes it returns a correct value

to the Challenger (since £ contained the proper value), but

then the adversary can reinstall its improper configuration

into £.

In fact, it would be easy to articulate such an interpreter
attack by an on-line adversary, assuming a memory map as
depicted in Figure 2. Essentially, and assuming the existence
of some unused area of memory (free space, or unused space
in the data area) at Responder’s memory, the adversary can
control the execution of the agent in such a way that loads
and stores from/to protected regions, as well as executions of
pieces of code in such regions are always avoided. Note that
the overhead for interpreting the agent would be constant
(say, five to ten instructions per simulated instruction).

We now present an on-line defense construction and cor-
responding security arguments. At a high level, our strat-
egy for defeating interpreter attacks will be to generate a
TEAS instance that will either force the adversary to relin-
quish control of Responder if the instance is executed com-
pletely, or risk detection by again not being able to provide
results in a timely manner. In more detail, we assume that
Challenger has a detailed knowledge of the code area; recall
also that we do not allow the adversary change any of the
client’s hardware, in particular its memory size (M). Tgen
now generates TEAS instances having the basic structure of
agents {P1, P», P3}, where:

— P; is an agent carrying code (or arguments) for a
pseudo-random permutation of Responder’s memory.
P, returns a ‘ready’ message upon completion to Chal-
lenger. Figure 4 shows the fragment of such an agent.
Note that in an actual implementation this permuta-
tion code would insure that the agent itself, and any
support routines required by it such as network drivers
for talking to the Responder, are not permuted. This is
possible since we can assume the agent knows where it
and its support routines are located in memory.

— P, carries a sequence of (now random) locations of
memory and program control locations (e.g., the pro-
gram stack) whose contents are to be returned to Chal-
lenger. (P» could itself consist of several agents.)

— P; is an agent carrying code (or arguments) for the
inverse pseudo-random permutation that P; performed.
I.e., P; restores the state of Responder.

First assume that P;, the agent carrying the permutation
code, gets executed at Responder.
sponder will be under control of the agent. P», the agent

Then, necessarily, Re-

carrying the queries, will now be able to inspect Respon-
der’s configuration. This is possible since Challenger, know-
ing the seed of the pseudo-random permutation, knows how
the memory locations get mapped because of it. By the
same token, the execution of the queries should be very fast.
Additionally—and importantly— P» will also be able to in-
spect the program call stack, which should point to areas
of valid code, whose contents can also be verified. Should
Tver detect a time violation in the execution of P; or P», or

/* agent fragment */

a2 = seed;

for (i = 0; i < M; i++) {
al
a2 = random(al);
t = M[al]l;
M[a1] = M[a2];
M[a2] t;

random(a2) ;

}

Figure 4: Random permutation of all of Responder’s mem-
ory. An actual implementation would ensure that the agent
and its support routines are not permuted during this oper-
ation.

receive an incorrect result from P;, it outputs ‘-OK’.

If, on the other hand, P; does not get executed at Re-
sponder, then the probability of correctly responding to a
P> query is, roughly, ﬁ Alternatively, the adversary
could also retain control of Responder by computing the
memory mapping without performing the actual permuta-
tion of memory locations by constructing a table contain-
ing a mapping from a location to its permuted location.
This would allow an interpreter attack to decipher location
queries and thereby provide correct values in response to a
memory query in P,. This is possible since the adversary
would know the seed that P; carries. However, the mem-
ory requirements for such a table would be O(M) and the
adversary would face the risk of being disabled also in this
case. For example, in the limit Challenger might permute
all locations which would force the adversary to create and
maintain a table larger than its available memory. Again,
partial construction of such table would have a low proba-
bility of success in answering P»’s queries.

5. APPLICATIONS OF TEAS

TEAS are general and can be adapted to many applica-
tions for which system integrity is to be tested. To convey
this, we describe three systems in which it could be used:
— terminal devices such as mobile phones or set-top boxes,
— computing “appliances” such as wireless basestations,

and

— sensor networks.

Following a discussion of these, we address some practical
issues regarding TEAS implementations.

Terminal devices. For the first TEAS application, con-
sider a network of set-top boxes (or mobile phones) where
the provider owns both the network and the terminal devices
(e.g., the cable network and cable modems, or a satellite tele-
vision system). It is of extreme interest to the provider to en-
sure that the terminal devices are not misused or that rogue
devices do not receive service. Malicious users routinely
“hack” cable-modems, for example, to up the bandwidth

delivered to them; similarly, people reprogram their satel-
lite receivers to get additional unauthorized services. Using
TEAS one can help protect against such misuse by period-
ically sending an agent to inspect the state of active cable
modems (or satellite receivers). Since the provider typically
owns all of the infrastructure, device and timing parameters
are fully known. Furthermore, transmission times from the
network’s edge routers to a cable modem can be quite de-
terministic. Modifications of the terminal hardware is much
more difficult (for both the provider and a malicious hacker)
than reprogramming its software, making such a system an
ideal candidate for integrity protection via TEAS.
Computing appliances. Define a computing appliance as
a tightly coupled collection of co-located computing devices.
An example of this is a wireless basestation that contains a
controller board (computer) and a number of channel cards
(also containing microcontrollers). The network connecting
these components is a typically a fast backplane with highly
deterministic transit times. Often basestation channel cards
can operate at various capacity levels depending on the li-
cense purchased with the card. The operating capacity, if
only a software configuration, is changeable by unscrupu-
lous operators. TEAS can aid in protecting such a system
by having the controller card serve as the Challenger and
all channel cards as Responders. As in the above example,
agents would query critical configuration information.
Sensor networks. Our third example, that of sensor net-
works, is similar to the first since it too might span a ge-
ographically large area with associated network latencies.
Different however is the threat level. In a military or criti-
cal mission application it is of utmost importance that data
gathered by the sensors be true. TEAS can contribute here
because of the flexibility of the challenges (full-fledged pro-
grams). If for instance one surmises a sensor has been
coopted and is being operated by a malicious entity, cus-
tom challenges can be designed to probe our unauthorized
modification of the software. Furthermore, agents could in
some cases even be used to check for hardware tampering
if the hardware modifications alter the operation of some
software.

Practical issues. Here we address practical issues fac-
ing TEAS implementations. They concern two aspects of
TEAS: first, setting the parameters required for agent selec-
tion and generation (§2 and §3.3); and second, implementa-
tion details of the client Responders.

Parameters of the agent model require fairly precise spec-
ification of the computation rates on the Respondersas well
as of the communication rates between the Challenger and
its Responders. Since we assume that both the Challenger
and the Responder are operated by the same entity, it is
fairly easy to establish device characteristics empirically in
the lab. For instance, one can precisely measure the time
required per instruction on the Responder processor(s). Sim-
ilarly, one can measure the bandwidth and network laten-

cies by sending large random® streams and measuring ac-
tual throughput and latency. Variance statistics can then
be computed from the empirical measurements to give ac-
ceptable operating ranges.

The TEAS implementation of agents must be compatible
with the operating system and environment of the client Re-
sponder’s on which it will run. In particular, system issues
such as process scheduling and interrupts impact the design
of a TEAS system. However, since a TEAS agent is small
relative to modern software (tens of thousands of bytes is
a large agent) and its execution is swift, it will not inter-
fere with all but the most time-critical applications on the
Responder. For example, in many applications it suffices to
suspend the current application’s processes and to disable
interrupts immediately upon receipt of an agent. Upon re-
ceipt, the agent authenticated and loaded into the memory
it specifies, is run, and its result returned to the Challenger.
The Responder’s application is now resumed.

6. RELATED WORK

This paper’s introduction already introduced the primary
previous work related to TEAS. Here we further elaborate
on the prior Genuinity and SWATT systems and also discuss
work related to agent security in mobile systems.

Recently, Kennelly and Jamieson [11] also suggested hav-
ing a client compute a challenge problem in order to verify
that it is running the correct version of uncorrupted software
(specifically, a kernel). In their Genuinity system, the chal-
lenge problem is a checksum of the contents of pseudoran-
dom (virtual) memory addresses and other processor state;
the verification code resides at the client, and the sequence
of pseudorandom addresses is sent by the secure host to the
client in the form of a linear-feedback shift register. The
client constructs the checksum by adding the one-byte val-
ues at those virtual addresses. Between additions, the code
also incorporates other, hardware-specific (Intel x86 archi-
tecture) values into the checksum, such as the mapping of
a particular instruction or Data TLB entry, if it exists; in-
struction or data cache tags; values of performance counters
which measure the number of (branch) instructions encoun-
tered; etc. The trusted host also computes the checksum,
and if the client being tested calculates the same checksum
as the trusted host and returns it “quickly enough,” the
client software is considered genuine, since it is assumed
that there would be no fast simulation.

In their refutation of Genuinity [15], Shankar, Chew and
Tygar present a “fast enough” simulation (with running time
below the 35% slowdown allowed by Genuinity), by mount-
ing what they call a substitution attack on the system, which
is similar to what we call the interpreter attack by on-line
adversaries: Imposter code that sits in the client’s checksum
page available memory that makes sure that correct values

3Random, to avoid compression mechanisms in the network
hardware.

are substituted for malicious ones in the checksum. TEAS
differs from Genuinity in several ways. First is the general
formulation and variety (and unpredictability) of challenges
that TEAS can draw from. Second is the technique to pre-
vent the substitution (interpreter) attack, which makes it
difficult for the imposter code (on-line adversary) to per-
form in a timely manner without being disabled. In fact,
this makes the TEAS techniques for the off-line scenario
yet more relevant, since should an adversary corrupting the
client try to return the correct responses without running
the challenges, in order to avoid being disabled, it would face
solving the difficult program analysis problems that TEAS
can pose.

The other system directly relevant to TEAS is Seshadri
et al’s SWATT system [16]. SWATT applies the so-called
coupon collector problem to probabilistically ensure that a
random traversal of O(nlog n) memory locations (in a mem-
ory of size n) will almost always visit every location at least
once. In SWATT as implemented, the verification code re-
sides on the machine being verified. This code is supplied
a seed to a PRG by the challenger. The PRG then gov-
erns the memory traversal order. The large amount of the
work required by the verification code makes it practical
only on small memory sizes. Furthermore, SWATT requires
the challenger to know the entire content of memory exactly,
which is probably not the case for non-trivial applications.
Two other key points are that (1) the time required by the
verification code is crucial to SWATT’s success and relat-
edly that (2) the verification code is “optimal” in time (to
ensure the accuracy of the its timing by the challenger).
This implies that SWATT is applicable only to very deter-
ministic processors (no caches, for instance). Furthermore,
it requires a tight coupling between challenger and respon-
der since network latencies cannot be incurred in SWATT.
It is not specified how the device being challenged is even
made aware that a challenge is present on an input port since
the device could be busy with a lengthy computation. The
SWATT authors do not address how interrupting the device
can severely affect their tight timing constraints necessary
for their scheme to work in practice.

We believe that ideas in TEAS, combined with the ad-
vances in the Genuinity and SWATT systems, can make
software-based verification more practical as well as more
sound. In particular, TEAS can tolerate some latencies
between Challenger and Responder due to its probabilistic
nature. Furthermore, it can cope with the commonplace
scenario where the state of the Responder is only partially
known at any point in time. Finally, the general nature of
TEAS’ agents arguably makes an adversaries task of main-
taining a malicious presence much more difficult, if not im-
possible.

There is a large body of work dedicated to security issues
that arise in mobile code systems (see, e.g., [19] and refer-
ences therein). With a few exceptions (e.g., [14]), most prior

work focuses on security mechanisms and policies that would
determine whether the requests issued by the mobile code
should be allowed or denied by the (remote) host executing
the code. Work that considers the case of malicious hosts
includes the work by Esparza et al. [9] where the execution
time of an agent is also used to detect possible malicious
behavior by the host; the purpose of that work, however, is
to protect the agent against abuses from a malicious host.
Specifically, each host on the agent’s itinerary is required
to save the agent’s arrival and departing time. When the
agent returns to the host of origin, a set of checks verifies
that no host spent more time than expected executing the
agent Naturally, this approach works only if measures can
be taken to prevent malicious hosts from misrepresenting an
agent’s incoming and departing times. In contrast, our use
of time checks is founded on the design of problems that an
adversary would, in all likehood, not be able to solve in a
timely manner.

7. CONCLUSIONS AND FUTURE WORK

This paper presented TEAS, a general approach toward
improving the security of systems that, for whatever reason,
TEAS
consists of a trusted challenger that issues challenges to a

cannot or are not protected by hardware means.

perhaps corrupted client responder. New is that the chal-
lenges can be arbitrary programs and can therefore perform
intricate tasks on the client. Furthermore, challenges are
timed. Using results from programming languages and com-
puting theory, we show that agents may be constructed in
ways to make it very difficult for an adversary to discern
their behavior within acceptable time bounds. Finally, we
introduced techniques toward automatic derivation of agents
with such properties, which we call program blinding. As
such, TEAS can augment existing protection mechanisms.

TEAS are general and can be adapted to many applica-
tions for which system integrity is to be tested, such as (1)
terminal devices such as mobile phones or set-top boxes, (2)
computing “appliances” such as wireless basestations, and
(3) sensor networks. However, future work is necessary to
incorporate features of high performance processors, such as
caches and virtual memory, into the basic model of our re-
sponder’s processor (Section 2). Such features would impact
reliance on deterministic timing assumptions.

Many extensions and refinements to TEAS are possible.
The construction of agents that are difficult for adversaries
to analyze efficiently is of interest and valuable. Such study
can improve effectiveness of the program blinding procedure.
In particular, future work can be directed toward character-
izing the “reducibility” of their flow graphs (cf. §3).

In conclusion, we have described a flexible software-only
system that can be used to check the integrity of a comput-
ing system within a trusted domain. We gave methods for
creating security agents and argued that an adversary’s anal-
ysis of these is necessarily difficult. We believe the TEAS

can become a valuable component in the tools available to
implementors of secure systems.

8. REFERENCES

[1] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley, 1986.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A.
Shai, S. Vadhan, and K. Yang. On the (Im)possibility of
Obfuscating Programs. In Proc. CRYPTO 02,
LNCS(2139), pp. 1-18, Springer-Verlag, August 2001.

[3] D. Boneh and M. Naor. Timed commitments (extended
abstract). In Proc. CRYPTO 00, LNCS(1880), pp.
236-254, Springer-Verlag, August 2000.

[4] D. Chaum. Blind signatures for untraceable payments. In
Proc. CRYPTO ’82, pp. 199-203. Plenum Press, New York
and London, 1983, August 1982.

[5] C. Collberg and C. Thomborson. Watermarking,
Tamper-Proofing, and Obfuscation—Tools for Software
Protection. IEEE Trans. on Software Engineering, Vol. 28,
No. 8, Aug. 2002.

[6] C. Collberg, C. Thomborson and D. Low. A Taxonomy of
Obfuscating Transformations. Technical Report #148,
Dept. of Computer Science, University of Auckland, 1997.

[7] K. D. Cooper, T. J. Harvey and T. Waterman. Building a
Control-Flow Graph from Scheduled Assembly Code.
Technical Report #TR02-399, Rice University, June 2002.

[8] C. Dwork and M. Naor. Pricing via processing or
combatting junk mail. In Proc. CRYPTO ’92, LNCS(740),
pp- 139-147, Springer-Verlag, August 1992.

[9] O. Esparza, M. Soriano, J. Mufioz and J. Forné. Limiting
the execution time in a host: a way of protecting mobile
agents. In IEEE Sarnoff Symposium on “Advances in
Wired and Wireless Communications,” 2003.

[10] J. E. Hopcroft and J. D. Ullman. Int. to Automata Theory,
Languages, and Computation. Addison-Wesley, 1979.

[11] R. Kennell and L. Jamieson. Establishing the genuinity of
remote computer systems. In 12th USENIX Security
Symposium, pp. 295-310, 2003.

[12] S. S. Muchnick and N. D. Jones. Program Flow Analysis:
Theory and Applications Prentice-Hall, 1981.

[13] R. Rivest, A. Shamir, and D. Wagner. Time-lock puzzles
and timed-release crypto. MIT/LCS/TR-684, 1996.

[14] T. Sanders and C. Tschudin. Protecting mobile agents
against malicious hosts. In Mobile Agents and Security,
LNCS(1419), Springer-Verlag, 1998.

[15] U. Shankar, M. Chew and J.D. Tygar. Side effects are not
sufficient to authenticate software. In In 13th USNIX
Security Symposium, pp. 89-101, 2004.

[16] A. Seshadri, A. Perrig, L. van Doorn and P. Khosla,
SWATT: SoftWare-Based ATTestation for Embedded
Devices. In IEEE Symp. on Security and Privacy, 2004.

[17] S. Smith, R. Perez, S. Weingard, and V. Austel. Validating
a high-performance, programmable secure coprocessor. In
22nd National Information Systems Security Conference.
October 1999.

[18] Trusted Computing Group (TCG). https://www.
trustedcomputinggroup.org/, 2003.

[19] D. Wallach. A New Approach to Mobile Code Security.
Ph.D. Dissertation, Princeton University, January 1999.

[20] M. Wolfe. Optimizing Supercompilers for Supercomputers.
MIT Press, 1989.

