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Abstract

In the DSP world, many media workloads have to perform a
specific amount of work in a specific period of time. This
observation led us to examine Simultaneous Multithreading
(SMT) and Chip Multiprocessing (CMP) for a VLIW DSP
architecture (specifically the Star*Core SC140), in conjunc-
tion with Frequency/Voltage scaling to decrease dynamic
power consumption in next-generation wireless handsets. We
study the resulting performance and power characteristics of
the two approaches using simulation, compiled code, and real-
istic workloads that respect real-time constraints. We find that
a multithreaded DSP can utilize the available functional units
much more efficiently, performing as well as a non-multi-
threaded DSP but with substantial power savings. Power con-
sumption can also be lowered by using a chip-multiprocessor
(CMP) operating at low frequency. We compare the power
consumption of an SMT DSP with a CMP DSP under different
architectural assumptions; we find that the SMT DSP uses up
to 40% less power than the CMP DSP in our target environ-
ment.

1 Introduction

New developments and new standards in communications,
such as third generation wireless technology, call for a signifi-
cant increase in DSP performance while at the same time the
mobile device market demands ever lower power consump-
tion. Developers are also moving from hand-written code to
compiled code, as standards become more complex and the
cost and time-to-market advantages of compilation outweigh
the performance disadvantages. We are investigating simulta-
neous multithreaded VLIW DSPs as a promising direction to
satisfy these diverse demands.

Using multithreading to improve the performance of a
workload rather than the performance of a single application
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ameliorates the drawback of compiled code. Multithreading is
particularly applicable to realistic cell phone workloads, which
consist of multiple multimedia applications running simulta-
neously on the handset.

Multithreading was originally proposed as a way to
increase throughput for a general-purpose workload by hiding
long latencies [5]. Other studies [3][13] proposed similar
mechanisms in order to allow multiple instruction streams to
exploit data parallel architectures. More recently Tullsen, Egg-
ers and Emer proposed simultaneous multithreading (SMT) to
increase utilization of out-of-order superscalar processors
[2][4]. What makes SMT appealing in that context is that the
same hardware mechanisms that support out-of-order execu-
tion can be used to handle multiple simultaneous threads [4].
Recently announced commercial implementations of SMT
include the Alpha 21464 [28] and the XStream network pro-
cessor [27].

In the DSP arena, VLIW [6] rather than out-of-order super-
scalar architectures have prevailed for simplicity and chip-area
reasons. Leading DSP architectures such as the TI 320C6x [7]
or the Star*Core SC140 [8] leverage VLIW technology to pro-
vide multiple operations per cycle. In this paper we propose an
SMT VLIW architecture using the Star*Core SC140 DSP as a
starting point. We provide replicated thread state (e.g., multi-
ple register files) but we share a single set of function units
among all threads. In each cycle we select multiple (variable
length) instruction packets from ready threads—as many as we
can accommodate—and assign them to the function units.

By multithreading the workload we increase parallelism
(Instructions per Cycle, or IPC), and can therefore decrease
clock frequency and still do the same amount of work in the
same time. Decreasing frequency also allows us to decrease
the supply voltage (voltage scaling). Both lower frequency and
lower voltage contribute to a significant reduction in power
consumption.

Adding support for multithreading increases the chip area,
leading to a higher load capacitance (which, in turn, increases
dynamic power consumption). However, we show that this
increase in power is offset by the power savings obtained from
scaling the voltage and frequency. In this paper we study the



power-performance trade-offs for two manufacturing technol-
ogies: a slower, .25 technology and a faster, .16 technology;
the two technologies differ in their range of feasible operating
frequencies and corresponding minimum V4, values (data pre-
sented in Section 4).
We simulate multithreaded DSP architectures running
workloads consisting a mix of speech encoders/decoders
(GSM EFR), channel encoders/decoders (Trellis modulated
channel encoding) and video encoders/decoders (MPEG-2).
Our workloads approximate real-world processing in cell
phones by respecting real time constraints. OQur results show:
¢ A multithreaded DSP (with just the function units of the
base DSP) can easily run a small number of compiled
threads without significantly degrading their perfor-
mance. By adding more load/store units—which are the
bottleneck in our workloads—performance improves fur-
ther.

¢ Despite the increased complexity and utilization of a mul-
tithreaded DSP, we can use it to reduce power consump-
tion. We show how we can exploit the high IPC of the
multithreaded architecture to reduce clock frequency and
voltage and thus reduce power (and conserve energy)
when the required performance is bounded. Power con-
sumption can be reduced by a factor of 4 over a single-
threaded DSP or by up to 40% over a chip-multiprocessor
(CMP) DSP also running at low frequency and low volt-
age.

Structure of this paper. In Section 2 we describe the base
architecture and the multithreaded DSP architecture. In Sec-
tion 3 we discuss our evaluation methodology. Section 4
describes chip area and power consumption estimation. Sec-
tion 5 presents the power comparison results, and Section 6
concludes this paper.

2 Multithreaded VLIW DSPs

To increase ILP without complexity, DSPs have turned to
very long instruction word architectures (VLIW)[7][8]. VLIW
directs data flow to all the parallel data units simultaneously as
instructed by the compiler, in lieu of more complex issue logic
attempting to uncover parallelism at runtime [6][24][20].
However, because the long instructions specify many simple
operations, instead of a few complex or compound functions,
VLIW DSPs make less efficient use of code memory. The
increased memory traffic due to larger code footprint, plus the
wide internal busses and function units running in parallel,
mean that VLIW DSPs consume more power to perform the
same work as more traditional DSPs.

2.1 Base architecture

The base architecture we have chosen for this study is the
Star*Core architecture developed by Motorola and Lucent
Technologies [8]. The Star*Core SC140 is a variable-length
VLIW architecture containing one to six atomic operations

which execute in parallel. Scheduling and instruction assem-
bly are performed by the compiler.

Figure 5(a) shows a block diagram of the base architecture.
The architecture contains four data ALUs (DALUs or MACs),
which can perform single-cycle multiply-accumulates, two
address AGUs (Address Generation Units), a bit-manipulation
unit (BMU) and four bitfield units (BFU). There are 32 regis-
ters, 16 data (DREG file) and 16 address registers (AREG
file). The data registers are internally extended to 40 bits wide
to provide the required fixed-point precision required by inter-
national standards. The data register file is duplicated in two
banks for fast access. Data registers can be read and written by
four different DALUs within a single cycle. In addition to the
above function units, there is program sequencer logic
(PSEQ), and debugging logic (OTHER).
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FIGURE 1. Block diagrams (not to scale) of (a) our base
architecture, similar to Star*Core SC140, and (b) the SMT
version, shown here with 3 hardware contexts. BMU is the
bit mask unit; BFU represents the four bitfield units;
AREG is the address register file; DREG is the data
register file.
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2.2 SMT architecture

For application workloads that consist of several indepen-
dent threads, the throughput of a DSP can be increased by rep-
licating the core DSP engine on a single die yielding a chip-
multiprocessor (CMP) structure [10][22]. However, the utili-
zation (the fraction of time spent in useful, non-idle computa-
tion) of function units is likely to be low, since not all threads
will be able to issue maximum-width operations simulta-
neously and so on any cycle at least some of the function units
will be idle.

An alternative to the CMP structure is Simultaneous Multi-
threading (SMT) [2][4][25]. Independent instruction issue
units, including the register arrays that comprise a thread’s
state, simultaneously issue commands to a single shared set of



function units. For the same number of register sets, SMT
architectures require fewer execution units than the aggregate
number used in CMP designs, and can potentially make more
efficient use of resources that are available. For example,
recent work studied the application of SMT to network proces-
sors [23].

Our model SMT architecture resembles the base architec-
ture in that it retains the same function units (both in number
and type). Instruction issue logic (PSEQ) and processor con-
text (DREG and AREG register files and related state) are rep-
licated appropriately to accommodate a fixed number of
threads. We can increase the number of data ALU’s, address
ALU’s and bit manipulation units arbitrarily but a single
thread cannot use more than six units (the architectural length
limit) at any given cycle. For both CMP and SMT alternatives
we used the same compiler.

The largest additional cost in implementing the SMT ver-
sion of the base architecture is routing data to and from the
register arrays to the function units and—in accordance to the
SMT work [4]—we allowed an additional pipeline stage over
the base model to account for wire and setup delays. In the
additional pipeline stage, we decide which threads will issue
instructions to the ALUs. Multiple threads can issue their
instructions as long as there are no resource conflicts.

As is common in DSP architectures we assume a memory
system consisting solely of on-chip memory. Memory latency
is 1 cycle and we model contention in the memory system
through the address ALUs (AGUs). A larger number of AGUs
translates to higher memory bandwidth. Memory banking can
be used to provide higher bandwidth. This is also the case
when we examine the CMP variant with shared on-chip mem-

ory.

3 Methodology

In this section we describe the DSP benchmarks used in our
experiments. We then present the experimental setup used to
compile and run the benchmarks.

3.1 Benchmarks

Our choice of benchmarks is intended to model next gener-
ation wireless handsets that support multimedia (voice and
video) applications. Real-time constraints play an important
role in this domain, especially for voice-based applications. It
becomes critical to ensure that their performance is not
affected by other, non-real-time applications that are running
on the same DSP. Therefore, instead of evaluating the perfor-
mance of each multimedia benchmark in isolation, we have
designed a set of benchmarks that run simultaneously on the
DSPs while obeying real-time constraints. We measure the
power and performance for runs of one second duration. The
following benchmarks will run simultaneously on a video-
enabled mobile phone:

¢  Speech encoder and decoder. We have used bit-exact C
code for a GSM standard speech coder, the Enhanced Full
Rate (EFR) coder [11]. The standard requires a bit rate of
12.2Kbits/sec, with 244-bit frames transmitted every
20ms (such a bit rate is appropriate for wireless hand-
sets). We therefore run the encoder and decoder on one
frame of data every 20 ms, ensuring that it completes
within the 20ms real-time deadline.

¢ Channel encoder and decoder. As shown in Figure 2 the
speech encoder and decoder are connected to a channel
encoder and channel decoder, respectively. The channel
encoder/decoder use Viterbi’s algorithm [16] for data
coding and trellis-coded modulation [15]. To match the
real-time requirements of the speech coder, we run both
the channel encoder and decoder once every 20 millisec-
onds, for one frame’s worth of input.
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FIGURE 2. Speech processing in a cellular phone.

e Video encoder and decoder. We use an implementation
of the MPEG-2 encoder and decoder provided by the
MPEG Software Simulation Group [17]. The MPEG
encoder is the most computationally intensive of all our
applications; we use image sizes of 32 x 32 for the slower
(-25p) handset technology, and 64 x 64 for the faster
(.16) technology. These are the largest frame sizes that
can be run on the single-threaded base SC140 core at the
highest operating frequencies for the two technologies.
The MPEG encoder encodes 2 frames per second and the
MPEG decoder decodes a 64 x 64 image at 3 frames per
second. We approximate a parallel encoder with 4 inde-
pendent MPEG encoder threads; each thread processes
one quarter of the original image size (16x16 for the
slower technology and 32x32 for the faster technology).

All the above six codes are adapted from sample implemen-
tations of industry standards, and were not modified to aid
optimization by the compiler. For the single-threaded experi-

ments, we run 6 threads: an MPEG encoder and decoder, a

speech encoder and decoder, and a channel encoder and

decoder. In the experiments with the SMT and CMP cores, we

run 9 threads (three additional MPEG encoders); each of the 4

MPEG encoder threads processes a quarter of the original

image. In all the experiments, the threads are run for a one sec-

ond duration. The speech and channel encoders and decoders
repeat for one frame of data every 20ms. The MPEG threads
run once from start to completion.



3.2 Simulation environment

The experiments were carried out using a cycle-accurate,
instruction-level simulator [18]. The simulator emulates the
SC140 DSP core, including exception processing activity. We
have extended the original simulator by adding support for
multiple threads, each with a separate address space and regis-
ter file. We use the Enterprise C/C++ compiler designed for
the commercial SC100 family of DSP cores [14]. All the bina-
ries used in our experiments were generated from pure C.
Table 1 shows the IPC for each benchmark run (simulated)
individually on the base SC140 architecture. Although the
SC140 has a peak IPC of 6, it is clear that the compiler is
unable to extract much parallelism. As the compiler evolves,

IPC Cycles for 1 sec
GSM EFR encoder (50 frames/sec) | 1.42 20137650
GSM EFR decoder (50 frames/sec) | 1.50 1815500
Trellis decoder (50 frames/sec) | 1.16 1306100
Trellis encoder (50 frames/sec) | 0.74 2018600
MPEG-2 encoder 16x16 frame | 0.58 16921130
(2 frames/sec)
MPEG-2 encoder 32x32 frame | 0.59 67013987
(2 frames/sec)
MPEG-2 encoder 64x64 frame | 0.61 268016411
(2 frames/sec)
MPEG-2 decoder 64x64 frame | 1.02 645008
(3 frames/sec)

TABLE 1: IPC and cycles for 4 threads (1 frame)

it will likely be able to discover more parallelism. Improve-
ments in parallelism are unlikely to affect the results signifi-
cantly until, and if, the compiler can reach substantially greater
levels of parallelism than it does now.

In our SMT experiments we found that the AGUs are a
major bottleneck when running multiple threads. Thus, we
examine an SMT design where we have increased the AGUs
from two to four. No individual thread can use all four AGUs
simultaneously since all threads have been compiled for only
two AGUs available. However, the benefits in the multi-
threaded architecture are considerable, as shown in Section 5.
Since AGUs are tied to memory ports in the SC140 architec-
ture, we assume four memory ports in the enhanced SMT. This
however does not lead to unfair comparisons with the CMP
since there too we assume multiple memory ports to the same
on-chip shared memory. Specifically, we assume that the CMP
runs a parallelized version of the MPEG encoder which
requires shared memory. Since each core in the CMP has by
default two memory ports, we easily exceed the memory ports
of the enhanced SMT when we use more than two cores. The
on-chip memory can be divided into multiple pipelined banks
to provide the necessary bandwidth in either design.

4 Power Computations

Dynamic power consumption is the chief source of power
consumption in CMOS processors. Dynamic power is defined
by the formula:

P = VzddxeAxC

where F is the operating frequency, ¥, is the supply volt-
age and C is load capacitance of the circuit. The term 4 is the
activity factor as used by Brooks, Tiwari, and Martonosi [26]
to represent the average switching activity of transistors per
clock cycle; it takes a value between zero (no switching) and
one (switching every cycle). We derive the average power con-
sumption over the one second period for an architecture (sin-
gle- or multi-threaded) operating at frequency F using the
following steps:
1. Given F, we scale V' ; from Figure 3 which shows
the range of frequencies and the corresponding min-
imum ¥y, for the two manufacturing technologies

(0.25p and 0.16p IC technologies).
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FIGURE 3. Minimum V_ ; vs. frequency for .251
DSP1628 (data adapted from [12]) and .16pL SC140
processes. V;; does not decrease below 0.9Volts in the
.16 process in frequencies below 120MHz.

2. Since we do not have the absolute values of the load
capacitances (C), we instead compute the power
consumption of the SMT and CMP architectures rel-
ative to the power consumption of the base architec-
ture, based on area estimates. For the multithreaded
case, we use the load capacitances given 5 threads
(hardware contexts). We assume conservatively that
the increase in the load capacitance of a subblock
will be proportional to the increase in area [29].
Area estimates are presented in Section 4.1.

3. We use our cycle-accurate simulator to determine
the activity factors for the different subblocks on the
DSP core similarly to the Wattch simulator [26]. For
example, if over the 1-second run, the simulator
finds that on average 1 DALU (out of 4) is busy per
cycle, the DALU utilization 4 ;,;, is computed to be

1/4. The AGU utilization 4,4, is derived in a similar



manner. The AGU and DALU utilizations as a func-
tion of clock frequency are given in Figure 4. The
activity factor of the address/data registers and their
interconnect is the same as that of the AGUs/
DALUEs.

4. The average power consumption is:

P=V3d><F>< z

subblockb

Cbx [Ab+(1 —Ab) x Idle]

where Cp, is the load capacitance of the subblock b.
Idle, the idle ratio of the chip, is the fraction of each
subblock (in terms of area) that always incurs tran-
sistor switching, even when the subblock has no
other activity. The global clock distribution network
is a subblock assumed to have a constant activity
factor of 1. 4, is the activity factor for subblock b.

4.1 Chip area computation

As a starting point we use subblock areas of a synthesized
SC140 core (subblock areas for the .16 technology are listed
in Table 2). Data and address register files are replicated on the
SMT but since no single thread can issue more than 6 instruc-
tions per cycle, each individual register file has the same num-
ber of ports—hence same size—as in the base architecture.
The increased program sequencer logic (PSEQ) and intercon-
nect among the registers and functional units also contributes
to the additional area in the SMT. Support circuitry and other
function units (e.g., BMU) are not replicated in the multi-
threaded architecture.

Unit area (mm2) area (%)
MAC x4 1.04 10%
BFUx 4 0.80 8%
DREG x2 2.09 21%
BMU 2.35 24%
AGU x2 .50 5%
AREG 1.04 10%
PSEQ .80 8%
OTHER 1.33 14%
TOTAL 9.95 100%

TABLE 2: Absolute and relative areas of function
units and register files for the synthesized SC140
core using Lucent’s COM2 SCDS process (.16
technology).

Similarly to previous work [13], we use the process-inde-
pendent parameter A to estimate the size of the registers and
their interconnects. X is equal to one half of the minimum fea-
ture size; for the .25 technology, A = .125um and for the .16
technology, A = .08um. Based on the areas for each block of
the base architecture (Table 2) and assuming a wire pitch of
6, we compute the lengths and areas in the base and SMT
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frequency for the multithreaded DSP running a fixed
workload for one second.



cores in terms of L. The dimensions of the data and address
registers, the MACs (DALUSs), the AGUs, and their bus-based
interconnect for the .16p technology are shown in Figure 5.
We conservatively assume that the area for the program
sequencer logic (PSEQ) increases linearly with the number of
hardware contexts. In Figure 5, we illustrate an SMT with only
3 (instead of the 5 we use in our evaluations) hardware thread
contexts for clarity. Since A is process-independent, we also
apply the same A-based area increments to the .25 technol-

ogy.

12800 7

4x84807.
- - - - - - > < - >
A . A
128007 ! DREG AREG| ' 12800
‘
OTHER X X
4X40x3X6 ). ! Interconnect Interconnget T a2xax6 1
X MAC |MAC [MAC| MAC Actac x 6400 1.
8480 7. V BFU |BFU |BFU |BFU v

(@)

PSEQ 1
OTHER

N x 2 x 12800 % N x 12800 %

BFU |BFU |BFU |BFU

A
A ! ! ! |

12800 LV‘ DREGO | DREG1 | DREG2 | |AREG| AREG| AREQ ' 12600
: v

4x40x3x6 ’A Interconnect \M‘ 4X32x3x6 .

! H

84807 . MAG |MAC |MAG \MAG AGU AGY AGU AGU* 6400,
! v

(b)

FIGURE 5. Subblock dimensions for (a) our base
architecture and (b) an SMT with 3 hardware contexts.

The SMT version of the SC140 has 5 pairs of DREGs, one
for each hardware context; each pair is 212800 A wide.
Therefore, the length of the DALU-DREG interconnect now
becomes 5*2+12800 A, and its area becomes 2.36mm?. There-
fore the additional routing (interconnect) overhead for the
DREGs in the SMT is 2.36-0.625 = 1.735mm? = 17.4% of the
base SC140 chip area (see Figure 5). In addition to the inter-
connect, the total area for the DREGs is scaled up by a factor
of 5 for the SMT.

The area for the AGUs, the address registers, and the inter-
connect between them is derived in a similar manner. When
the number of AGUs is increased to 4 in the SMT version, the
height of the bus-based interconnect also doubles (the number
of buses goes from 2 to 4). The number of read/write ports
(and hence the area) for each address register remains the

same, since each hardware context can only access two AGUs
in any cycle. Thus, the areas of the address registers and the
AGU s are scaled up linearly with number of threads.

Table 3 shows estimated areas for the multithreaded DSPs
with up to five threads. All percentages are with respect to the
chip area of the base architecture. The chip area for a CMP
increases linearly with the number of cores, while the corre-
sponding area overhead for the SMT is significantly lower.

2 AGUS
Threads

Block Base 2 3 4 5
4 MACs+ BFUs 18% 18% 18% 18% 18%
2 AGUs 5% 5% 5% 5% 5%
1 BMU 24% 24% 24% 24% 24%
Data register files 21% 42% 63% 84% 105%
Address register files | 10% 20% 30% 40% 50%
PSEQ 8% 16% 24% 32% 40%
Other 14% 14% 14% 14% 14%
Routing over-head 0% 7% 14% 21% 28%
Total 100%  144% 188%  232% 276%
CMP Area 100%  200% 300% 400%  500%

4 AGUS

Threads

Block Base 2 3 4 5
4 MACs+ BFUs 18% 18% 18% 18% 18%
2 AGUs 5% 10% 10% 10% 10%
1 BMU 24% 24% 24% 24% 24%
Data register files 21% 42% 63% 84% 105%
Address register files 10% 40% 60% 80% 100%
PSEQ 8% 16% 24% 32% 40%
Other 14% 14% 14% 14% 14%
Routing over-head 0% 11% 21% 30% 40%
Total 100% 175% 234% 292% 351%
CMP Area 100%  200% 300% 400%  500%

TABLE 3: Chip area estimates for the multithreaded
architecture (all estimates conservative). All
percentages correspond to chip area of the base
architecture. CMP areas are for configurations with
1 to 5 processors.

5 Experimental Results

In all the experiments, we simulate one full second of pro-
cessing for the base architecture, the CMP with five replicated
cores, and the SMT architecture with five hardware contexts.

The speech and channel threads involve a fixed amount of
computation and their spacing every 20ms dilutes the IPC as a
function of clock frequency: the higher the frequency, the
lower the IPC. Figure 6 shows the IPC as a function of clock
frequency for the two technologies and for two and four
AGUs. As frequency increases the multithreaded DSP is able



to finish the large MPEG encoder threads early, leaving the

speech and channel threads running every 20ms.

For all our SMT experiments we selected the following
mapping, which allows the benchmarks to meet their deadlines
at the lowest possible frequency (see Figure 7); this was also
the mapping of threads to processors in the CMP experiments.
e .25u technology: one of the five hardware contexts exe-

cutes the speech encoder, while the other four hardware
contexts each execute an MPEG encoder thread along
with one of the other four remaining applications (speech
decoder, channel encoder, channel decoder, MPEG
decoder).

e .16u technology: the four MPEG encoders run on sepa-
rate hardware contexts, while the remaining five applica-
tions (speech codecs, channel codecs, and MPEG
decoder) all execute on the fifth hardware context.

4
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FIGURE 6. Average IPC of a fixed cell phone workload
running for one second as a function of clock frequency for
a multithreaded DSP with 5 hardware contexts

5.1 Comparison of power consumption

In the SMT case, for the .25 technology, the lowest feasi-
ble operating frequency was 28 MHz (using 2 AGUs). Lower-
ing the frequency further did not allow the workload to meet
the 20ms real-time deadline. Increasing the number of AGUs
to 4 increases performance, and therefore allows the frequency
to be further lowered to 21 MHz. Similarly, for the .16 tech-
nology, the lowest feasible operating frequency was deter-
mined to be 85 MHz using 2 AGUs and 71 MHz using 4

Base (Single Thread) DSP

| 20 ms | | 20ms |

Y] GSM-EFR encoder 74 Channel decoder
B GSM-EFR decoder [[] MPEG-2decoder

[[] Channelencoder [ ] MPEG-2 encoder

FIGURE 7. Schedule for the cell-phone workload. The
GSM and Channel codecs run once every 20ms and have to
finish within this time. The MPEG-2 codecs consume the
rest of the cycles within the one second we simulate. In the
base architecture (top) threads context-switch with zero
overhead. In the multithreaded architecture threads run in
five hardware contexts.

AGUs. In this case, the MPEG encoder was the limiting factor
in reducing frequency. Similarly, the lowest possible frequen-
cies for the CMP architecture are 20 MHz for the .25 technol-
ogy, and 67 MHz for the .16p technology. For the .16p
technology voltage scaling stops at 120MHz and we cannot go
below 0.9Volts ¥V, for lower frequencies (Figure 3).

We ran the multithreaded experiments at different frequen-
cies ranging from the lowest to the highest feasible operating
frequencies. For each frequency, we computed the power con-
sumptions of the CMP and SMT DSPs relative to the base
architecture. Based on previous work [26] we assume that the
global clock distribution network requires either 0% or 10% of
the chip area. Similarly, the idle ratio (fraction of each sub-
block that is always switching) is assumed to be either 0% or
10%. The resulting power consumptions for the 4 (idle ratio,
global clock) combinations are shown in Figures 8, 9, 10, and
11. In all four cases, substantial savings in power over the base
architecture are possible at low frequencies using both the
SMT and CMP versions of the DSP. As clock frequency is
increased, however, they begin consuming more power
because the effect of increased frequency and V;; outweighs
the effect of lower utilization. Further, the load capacitances of
the SMT and DSP chips are higher than the base DSP, and
therefore as frequency is increased, they eventually begin to
consume more power than the base DSP. For example, the
break-even points for the SMT DSP are at 60MHz and
195MHz for the .25u and .16p technologies respectively,



@36 25 low power technology

v 1ot 065
\Iz\ 6 042

0.2

0 20 40 60 80 100

Freq
smt_25_2AGU —x¢—smt_25_4AGU —e— cmp_25

4.5
ae o 16p technology (SC140
’ 321
o 3
%25 2T I S
c , aN
15 it
1 0.85
0.86 - 0.87 0.57
05 %‘%ﬁi
0 ‘ ‘ —
0 100 200 300 400

Freq
—— smt_16_2AGU —¢—smt_16_4AGU —e—cmp_16

FIGURE 8. Power ratio [Base/(SMT or CMP)] executing
the same workload in one second. Ratios greater that one
indicate that the SMT or CMP DSP is more power-efficient
than the base architecture. We vary the frequency of the
SMT and CMP DSPs down to the lowest possible
frequency that can safely accommodate the workload.
Frequency cannot be further decreased without breaking
real-time constraints. Here idle ratio = 10% and global
clock =10%.

when the idle ratio is 10% and the global clock is 10%.

For the SMT architecture, we show results for both 2 and 4
AGUs. Increasing the number of AGUs allows a lower operat-
ing frequency, and this benefit outweighs the increased load
capacitance of the AGUs and address registers. As seen in Fig-
ures 8-11, this benefit is cancelled out at higher frequencies.

For both technologies, the lowest feasible operating fre-
quency for the CMP system is lower than that of the SMT sys-
tem; this is because the most computationally intensive
benchmarks run on separate processors and do not contend for
resources. However, as seen from the results, the benefit of a
lower frequency is outweighed by the increased load capaci-
tance of the CMP system, except when no power is consumed
in idle mode (idle ratio = 0% and global clock = 0%). In that
case, the CMP outperforms the SMT in the power comparison,
since it operates at a lower frequency and ¥, setting. Also, the
power consumption increases slightly at the lowest frequen-
cies for the .16p technology (Figure 11). This is because ¥,
cannot be lowered beyond 0.9V for frequencies below
120MHz, and unlike in Figures 8-10, no power is consumed
during idle cycles at higher frequencies. In a more realistic set-
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FIGURE 9. Power ratio [Base/(SMT or CMP)] executing
the same workload in one second. Here idle ratio = 10%
and global clock = 0%.

ting when the idle ratio = 10% and global clock = 10%, the
SMT system consumes 28% (40%) less power than the CMP
system for the .25 (.16p1) technology.

6 Conclusions

Signal processing and real-time applications often require a
different figure of merit than minimizing the number of cycles
required to complete a task. Minimization of power may be
more important, as long as application-specific real-time
requirements are met. We conducted experiments that repre-
sent real-world multimedia workloads for mobile handsets,
where power consumption is a major concern.

The experiments show that using SMT it is possible to save
power (by up to a factor of 4.6) in comparison with a unipro-
cessor, single-threaded architecture running at a higher clock
rate. The SMT processor can meet the application-specific real
time deadlines at a lower clock rate and supply voltage by run-
ning tasks in parallel as separate threads and making more effi-
cient use of the functional units. Compared to a CMP that can
also run multiple tasks in parallel at low frequency and low
voltage, the SMT typically retains some advantage in power
consumption.

We used a commercial DSP architecture as the base of our
study, and did not modify the compiler or other software tools.
The results are therefore conservative in that it is possible to
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FIGURE 10. Power ratio [Base/(SMT or CMP)] executing
the same workload in one second. Here idle ratio = 0% and
global clock =10%.

optimize the programs to exploit the SMT configuration and
extend the efficiency advantages of SMT over CMP organiza-
tions. On the other hand, our study is constrained by the com-
piler we used and the workloads we chose. Our compiled
codes do not exhibit high IPC so a multithreaded architecture
can easily accommodate multiple instances. However, we
believe that compiled code is becoming increasingly important
in the development cycle for DSP applications and an architec-
ture that reduces the impact of lower compiled performance is
likely to find acceptance. In many applications, the power and
cost benefits of the SMT approach could make it a more attrac-
tive alternative to a simpler CMP design.
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