
Abstract—Reducing the supply voltage to reduce
dynamic power consumption in CMOS devices, inad-
vertently will lead to an exponential increase in leakage
power dissipation. In this work we explore an architec-
tural idea to reduce leakage power in data caches. Pre-
vious work has shown that cache frames are “ dead” for
a significant fraction of time [14] . We are exploiting this
observation to turn off cache lines that are not likely to
be accessed anymore. Our method is simple: if a cache-
line is not accessed within a fixed interval (called decay
interval) we turn off its supply voltage using a gated Vdd

technique introduced previously [1] . We study the effect
of cache-line decay on both power consumption and
performance. We find that it is possible with cache-line
decay to build larger caches that dissipate less leakage
power than smaller caches while yielding equal or bet-
ter performance (fewer misses). In addition, because
our method can dynamically trade performance for
leakage power it can be adjusted according to the
requirements of the application and/or the environment.

1 Introduction
Striving for low-power, high-performance CMOS

devices drives supply voltage (Vdd) to ever lower levels
[6]. To maintain performance, a reduction in Vdd neces-
sitates a reduction in threshold voltage (V th), which in
turn increases leakage power dissipation exponentially
[4,9,10]. Since chip transistor counts continue to
increase, and every transistor that is powered on leaks
irrespective of its switching activity, leakage power is
expected to become a significant factor in the total
power dissipation of a chip [4]. Given the current trends
[8,10], the leakage power dissipated by a chip could
equal its dynamic power within three processor genera-
tions.

Although the leakage power of SRAM cells can be
lower than the leakage power of high-speed logic gates
[14], on-chip caches can still contribute a significant

percentage of a chip’s leakage power for two reasons.
First, because a large fraction of the transistors are in the
cache memory. Second, memory fabric cells are com-
posed of low fan-in gates, namely cross coupled invert-
ers with only a single leaking transistor to a power rail.
In contrast, significant parts of the logic circuits typi-
cally consist of higher fan-in gates with more transistors
connected in series to a power rail (stacked transistors
[9]). Given that the leakage power dissipation is becom-
ing significant, circuit-level or micro-architectural solu-
tions for on-chip caches are necessary to deal with the
whole problem.

One solution for reducing leakage power is to
switch off power to unused devices. Powell, Yang, Fal-
safi, Roy, and Vijaykumar recently proposed a micro-
architectural technique called DRI cache and a circuit-
level technique called gated Vdd to switch-off Vdd (or
Vss) to large blocks of the instruction cache [1,2]. Moti-
vated by their approach, we extend it by applying a sim-
ilar idea to data caches but instead of large portions of
the cache, we propose switching off individual cache
lines as required.

Our proposed scheme, called Cache Decay, consists
of invalidating and turning off power to cache lines that
have not been accessed for a certain interval, called the
Decay Interval. When a powered down cache line is
accessed, a cache miss is incurred while the line is
switched back on and data are fetched from memory.
Other cache-line aging techniques have been used in
other contexts, for example for Dynamic Self Invalida-
tion [11,13], and for managing group associative caches
[12]. In contrast to previous work, we propose very sim-
ple, low-overhead implementations since our main goal
is to reduce power consumption.

We studied the cache access patterns for a set of
SPEC95 benchmarks; they display a high degree of tem-
poral locality (see Section 2), and indicate that turning
off cache blocks that remain inaccessible for an appro-
priate period of time will not significantly increase miss

Cache-line Decay: A Mechanism to Reduce Cache Leakage Power
Stefanos Kaxiras,* Zhigang Hu,+ Girija Narlikar,* Rae McLellan*

* Bell Laboratories, Lucent Technologies
{ kaxiras, girija, rae} @research.bell-labs.com

+ Princeton University
hzg@ee.princeton.edu

rates. We study the effect of varying the decay interval
on a variety of benchmarks. For very small decay inter-
vals (thousands of cycles), the application can suffer a
larger number of cache misses; for very large intervals
(hundreds of thousands of cycles), very few cache
blocks may decay in time to be powered down. How-
ever, we find that for a wide range of decay intervals,
the cache decay technique is successful in switching off
large portions of the on-chip data cache without signifi-
cantly affecting miss rates.

Contributions of this paper are as follows:
• We propose cache decay as a mechanism to turn off

unused lines in the cache.

• We describe in detail a digital implementation of
the cache decay mechanism and discuss an analog
implementation.

• We study the effects cache decay on power and per-
formance using execution-driven simulation and
SPEC95 programs. Our results demonstrate the
effectiveness of the cache decay scheme. In particu-
lar, we show that an L1 data cache without cache
decay can be replaced by an L1 cache of twice the
size with the same performance but up to 56% less
leakage power.

Organization of this paper—In Section 2 we discuss
cache decay and its implementations. Section 3 presents
details of out experimental methodology and Section 4
results of our experiments. We conclude in Section 5.

2 Cache Decay
Recent work by Powell et al. [1] showed that pow-

ering down sections of the instruction cache and resiz-
ing it results in significant leakage-power savings.
Motivated by this approach we examined switching-off
parts of the data cache but at a much finer granularity
(cache-line granularity) and without resizing. We rely
on the fact that many cache frames are underutilized and
therefore can be turned off without impact on perfor-
mance. Evidence of this comes from two papers:
• Wood, Hill, and Kessler showed that the miss rate of

unknown references (cold misses) in a trace-driven sim-
ulation with unknown initial conditions is much
higher than the steady-state miss rate (e.g., 0.40 vs.
0.02) [14]. The high cold-miss rate is simply the
ratio of time a cache frame is dead (i.e., the time
between last hit and replacement).

• In a paper examining cache efficiency, Burger,
Goodman, and Kagi showed that most of the data in
a cache will not be used in the future (either will be
overwritten or will not be accessed at all) [3].

Although discovering dead data in a cache is not a

trivial matter, we hypothesized that a simple technique
could actually capture some of the benefit. Our
approach attempts to switch off least recently used
cache lines assuming that these will be unlikely to be
accessed in the future. To substantiate our hypothesis we
profiled the execution of SPEC95 programs. Figure 1
shows the distributions of access intervals—intervals
between consecutive accesses to the same cache line—
for three programs.1 The horizontal axis of the graphs is
the access interval (in hundreds of cycles) and the verti-
cal axis is the percentage of the accesses corresponding
to an access interval (i.e., distance from the previous
access). The last point in the horizontal axis represents
the tail of the distribution which is quite small in gcc
and vortex but sizable in compress.

Since most consecutive accesses to the same cache-
line are spaced closely in time—temporal locality—a
cache line that has not been accessed for some time
either will not be accessed again or it is one of the few
cache lines that will be accessed very far into the future.
Therefore, we propose to maintain power to cache lines
as long as they are accessed within some predefined
time interval (decay interval). We have identified digital
and analog implementations to detect the passage of a
decay interval from the last access to each cache line.
We present these implementations in sections 2.1 and
2.2.

Regardless of the implementation, cache-line decay
will increase the miss rate of the cache: a few lines will
be powered-off before they are accessed. However, as
we will show in Section 4 the miss rate of a decay cache
is still less than a smaller cache whose size matches the
average powered size of the decay cache. Another way
to view the decay cache is from a leakage power effi-
ciency perspective: the average powered size of a decay
cache is smaller than a cache of equal miss rate.

2.1 Digital implementation

One way to represent recency of a cache line’s
access is via a digital counter. This counter is cleared on
each access to the cache line and incremented periodi-
cally at fixed time intervals. Once the counter reaches its
maximum count it saturates and switches off power (or
ground) to the corresponding cache line.

A casual interpretation of the graphs in Figure 1
suggests decay intervals of tens or hundreds of thou-
sands of cycles. Because the number of cycles needed
for a reasonable decay interval makes it impractical for
the counters to count cycles (too many bits would be
required) it is necessary for the counters to “ tick” at a

1 Other SPEC95 programs produce similar results.

much coarser level, for example every few thousand
cycles. A global cycle counter can be set up to provide
the ticks for smaller cache-line counters (as shown in
Figure 2). Simulations show that a two-bit counter per
cache line provides sufficient resolution.

Global counter—To save power, the global counter
can be implemented as a binary ripple counter. An addi-
tional latch holds a maximum count value which is com-
pared to the counter. When the counter reaches the
maximum value, it is reset and a 1-clock-cycle T signal
is generated. This circuit can be implemented with 40N
+ 20 transistors, where N is the number of bits required.
The maximum-count latch is non-switching and doesn’t
contribute to dynamic power dissipation. On average,

only two bits of the counter and comparator—less than
80 transistors—will change state and dissipate dynamic
power each clock cycle.

Cache-line counters—To minimize state transitions
in these counters—and thus minimize dynamic power
consumption—we use Gray coding so only one bit
changes state at any time. Furthermore, to simplify the
counters and minimize transistor count we chose to
implement them asynchronously. Each cache line con-
tains circuitry to implement the state machine depicted
in Figure 3.

There are two inputs to the counter circuit:

FIGURE 1. Access intervals for gcc, compress and
vortex

gcc

0

10

20

30

40

50

60

70

80
0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

time(x100cycles)

%
ac

ce
ss

es

compress

0

5

10

15

20

25

30

35

40

45

0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96

t ime(x100cycles)

%
ac

ce
ss

es

vortex

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

time(x100cycles)

%
ac

ce
ss

es

FIGURE 2. High-level view of the digital
implementation with 2-bit, Gray-code, saturating
counters

FIGURE 3. Two-bit (S0,S1), saturating, Gray-code
counter with two inputs (WRD and T)

N-bit Global Counter

Cache-line data/TAG

......

...

Cache array

2-bit Decay

Tick Pulse (T)

Cache-line data/TAG

Cache-line data/TAG

Cache-line data/TAGV

V

V

V

Valid bits

Counters

00 01 11
10

WRD signal (access)

T T T

T

State diagram for 2-bit Gray-code counter

POOFF=1

Next S0 = S0 · T · WRD + S1 · T · WRD

Next S1 = T · WRD + S1 · S0 · WRD
S1,S0

S0

S1

S0

WRD

T

S1

POOFF

S0

S1

T

T

S0

S1

1. A global time signal, T, is a periodic pulse to
indicate the passage of time and it is supplied
by the global cycle counter. T is a well behaved
digital signal whose period may be adjusted
externally to provide different decay intervals
appropriate for different programs.

2. The second state machine input is the cache
line access signal, WRD, which is decoded
from the address and is the same signal used to
select a particular row within the cache mem-
ory (e.g., the WORD-LINE signal).

State transitions occur asynchronously on changes
of the two input signals, T and WRD. But since T and
WRD are well behaved signals, there are no metastabil-
ity problems. The only output is the cache-line switch
state, POOFF (POwer OFF).

Implementation details—Switching-off power to a
cache line has important implications for the rest of the
cache circuitry. In particular, the first access to a pow-
ered-off cache line should:

1. result in a miss (since data and tag might be
corrupted without power)

2. reset the counter and restore power to the cache
line (i.e., restart the decay mechanism as per
Figure 3)

3. be delayed an appropriate amount of time until
the cache-line circuits stabilize after power is
restored.

To satisfy these requirements we use the Valid bit of
the cache line as part of the decay mechanism (Figure
4). First, the valid bit is always powered. Second, we
add a reset capability to the valid bit so it can be reset to
0 (invalid) by the decay mechanism. The POOFF signal
clears the valid bit. Thus the first access to a power-off
cache line always results in a miss regardless of the con-
tents of the tag. Since satisfying this miss from the lower
memory hierarchy is the only way to restore the valid
bit, a newly powered cache line will have enough time
to stabilize. In addition, no other access (to this cache
line) can read the possibly corrupted data in the interim.

2.2 Analog implementation

An alternative way to represent the recency of a
cache line’s access is via charge stored on a capacitor
(Figure 5). Each time the cache line is accessed, the
capacitor is grounded. In the common case of a fre-
quently accessed cache-line the capacitor will be dis-
charged. Over time, the capacitor is charged through a
resistor connected to Vdd. Once the charge reaches a
sufficiently high level, a voltage comparator detects it,
asserts the POOFF signal and switches off power (or
ground) to the corresponding cache line (data bits and
tag bits).

This method suffers from two problems. First, the
RC time constant cannot be changed. It is determined by
the fabricated size of the capacitor and resistor and can-
not be adapted to different program’s temporal access
patterns. Second, it is inherently a noise sensitive analog
circuit and can change state asynchronously with the
remainder of the digital circuitry. Some method of syn-
chronously sampling the voltage comparator must be
employed to avoid metastability. As in the digital imple-
mentation the valid bit is set to 0 (invalid) when a cache
line is powered-down.

3 Methodology
In this work we use execution-driven simulation to

study the run-time behavior of decay caches (e.g., miss
rate and ratio of powered-off cache-lines). We then use
the simulation results to model leakage power consump-
tion. The results of the power models allow us to make
comparisons among cache configurations with and
without decay mechanisms. In Section 3.1 we describe
in more detail our experimental setup and in Section 3.2
we discuss power consumption models.

3.1 Experimental Setup

To evaluate the effectiveness of cache-line decay
FIGURE 4. Cache-line power control

ROW

T

Vg
DECODERS M

B B

POOFF

VALID BIT

ALWAYS POWERED SWITCHED POWER

CACHE LINE BITS (DATA + TAG)

FSM
M

R
V

WRD

V

GLOBAL COUNTER

BBV

FIGURE 5. Analog implementation. Switch-off
cache line on capacitor charge.

Voltage
Comparator

Vdd

POOFF

WRD C

R

we use seven SPEC95 benchmarks. We present detailed
results for three programs exhibiting medium (gcc),
high (compress), and low (vortex) miss rates. We simu-
lated the execution of these benchmarks for 500 million
instructions using SPEC95 reference inputs on the Sim-
pleScalar simulator using the SimpleScalar 2.0 tool set
[5]. We use the detailed, out-of-order superscalar pro-
cessor (with non-blocking caches) simulator to run the
benchmarks since we must accurately account for time
differences in cache accesses. Simulator parameters are
shown in Table 1. In our studies we concentrate on L1
caches. We chose to examine small cache sizes from
8Kbytes to 32Kbytes because SPEC95 programs do not
stress larger caches (we want to be conservative since
our methods would work much better in larger, less uti-
lized caches). In small caches virtually all cache lines
were accessed during the execution of the programs.

The simulator was modified to switch off cache
lines (both tag and data) according to the cache decay
schemes described in Section 2. Every access to the
cache block restarts the decay mechanism for that line.
We use the simulator to measure various statistics such
as the number of cache misses, the fraction of the cache
that is powered up, the number of times the decay
counters are incremented and change state, etc.

3.2 Power computation

The additional dynamic power dissipated due to the
decay circuitry is proportional to the product of its load
capacitance and the switching activity of its transistors.
For the implementation described in Section 2, less than
110 of its transistors switch every cycle, and the entire

decay circuitry involves a very small number of transis-
tors: a few hundred for the global counter plus under 30
transistors per cache line. Thus, the dynamic power dis-
sipation of the decay circuitry is negligible compared to
the dynamic power dissipated in the remainder of the
chip, which presumably contains millions of transistors.
We therefore compute in detail only the leakage power
of the cache with and without decay.

We assume a fixed threshold voltage in our experi-
ments. The leakage power for the cache is therefore
assumed to be proportional to the total number of cache
lines that are powered-on in the cache. We compare the
leakage power of the original cache with that of the
additional decay circuitry by assuming it to be propor-
tional to the total number of transistors in both those
subblocks. We compute the total number of transistors
in the original cache (we include both data bits and tag
bits) and the additional decay circuitry from the transis-
tor counts in Section 2.

4 Results
We start our evaluation with the behavior of the

decay scheme using full counters per cache-line (Sec-
tion 4.1). This is an idealized scheme—clearly impracti-
cal—but shows the behavior of various cache
configurations with precise control of the decay interval.
Subsequently, Section 4.2 presents detailed results for a
realistic digital implementation with a global counter
and 2-bit counters per cache-line. In the same section we
show power and performance benefits of the decay
caches over standard caches half their size. Section 4.3
shows an alternative view of cache decay comparing
equal size decay and standard caches for seven SPEC95
programs.

4.1 Sensitivity to decay interval, cache
size and block size

Results in this section were obtained with precise
control over the decay interval: a cache line is switched-
off when a specific number of cycles has passed since it
was last accessed. We achieve this by simulating full
counters (as many bits as needed) per cache line. Vary-
ing the decay interval, we measure miss rate and active
ratio for a given cache configuration. We define active
ratio as the average part of the cache that is switched on
per cycle during the execution of a program. Figure 6
shows the graphs for three programs using 16K, 16-
byte-block caches. An infinite interval (“ inf.” on the x
axis) represents the standard cache where nothing is
turned off. In this case we have the minimum miss rate
and the maximum active ratio. For all three programs
the active ratio is 100% meaning that the whole cache is
accessed. Decreasing the decay interval to 512K and

Parameter Value
Physical Registers 64-INT, 64-FP
Fetch width 4 instructions per cycle
Decode width 4 instructions per cycle
Issue width 4 instructions per cycle
Commit width 4 instructions per cycle
Functional Units 4 IntALU, 1-IntMult/Div, 2 FP ALU, 1-

FPMult/Div, 2 MemPorts
Branch Predictor Combined, Bimodal 4K table, 2-Level 1K

table, 10bit history, 4K chooser
BTB 1024-entry, 2-way
Return Address
Stack

32-entry

Mispredict pen-
alty

7 cycles

L1 Dcache Size 8K, 16K and 32K, 2-way, 16B blocks
L1 Icache Size 64K, 2-way, 32B blocks
L2 (Omitted in
some experi-
ments)

Unified, 256K, 8-way LRU, 32B blocks,12-
cycle latency

Memory 100 cycles
TLB Size 128-entry, 30-cycle miss penalty

TABLE 1: Simulator configuration parameters

64K cycles, increases miss rate slightly but decreases
the active ratio significantly. However, further decreas-
ing the decay interval to 8K and 1K cycles starts to
show dramatic increases in miss rate. This result also
agrees intuitively with data presented in Section 2: as
we begin to switch-off valuable cache lines (frequently
and heavily accessed), miss rate becomes increasingly
worse.

Figure 7 extends the graphs of Figure 6 by adding
curves for smaller (8KBytes) and larger (32KBytes)

caches. Similar miss rate and active ratio curves resulted
for smaller and larger caches albeit shifted with respect
to the axes. As expected, smaller caches have higher
miss rates. However, the miss rate of all caches con-
verges to the same value as we decrease the decay inter-
val. Smaller caches also have higher active ratios for a
given decay interval. Active ratios converge toward
100% as we increase the decay interval. Figure 7 pro-
vides two rules for decay intervals:

FIGURE 6. Miss-ratio/Active ratio graphs for gcc,
compress and vortex varying the decay interval.

compress

� � � � � �

� � � � � �

� � � � �� � � � � �

� � � 	 � �

� � �

 	

� �

� �

�
�

� � �

� � �

� � �

� � �

� � �

� � �

� �
 � � � � � � � � 	 � � �

Decay Interval (cycles)

m
is

s
ra

te

�
� �

� �
� �
� �
� �
� �

 �
	 �
� �

� � �

A
ct

iv
e%

� �

vortex

� � � � � 	
� � � � � �

� � � � � �� � � � � �

� � � � � �
� � �

� �

� �

� �

�

� � � �

� � � �
� � � �

� � � 	
� � �

� � � �
� � � �

� � � �

� �
 � � � � � � � � 	 � � �

Decay Interval (cycles)

m
is

s
ra

te

�
� �

� �
� �
� �
� �
� �

 �
	 �
� �

� � �

A
ct

iv
e%

� �

cc1

� � �
 �

� � � � �� � � � �

� � � � �

� � � �

� � �
� �

� 	

� �

�
� � � �

� � � �

� � � �

� � � �

� � � �

� � � �

� �
 � � � � � � � � 	 � � �

Decay Interval (cycles)

m
is

s
ra

te

�
� �

� �
� �
� �
� �
� �

 �
	 �
� �

� � �

A
ct

iv
e%

� �

FIGURE 7. Miss rate and Active ratio as a function
of decay interval for GCC, Compress and Vortex. 32,
16, and 8 KByte caches, 2-way, 16-byte blocks

c c 1

0 .0 9 0 0 .0 9 1 0 . 0 9 5

0 .1 1 8

0 .0 6 9 0 .0 6 9
0 . 0 7 5

0 .0 5 0 0 .0 5 2
0 . 0 6 4

0 .1 9 7

0 .1 0 7

0 .1 9 6

0 .1 0 4

0 .1 9 5

1 0 0
9 8

8 4

1 2

1 0 0

9 4

6 8

2 6

6

1 0 0

8 6

4 8

1 4

3

4 3

0 .0 0

0 .0 5

0 .1 0

0 .1 5

0 .2 0

0 .2 5

in f . 5 1 2 K 6 4 K 8 K 1 K

m
is

s
ra

te

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

A
ct

iv
e%

m .r . 8 K m .r . 1 6 K m .r . 3 2 K A .% 8 K A .% 1 6 K A .% 3 2 K

v o r t e x

0 . 0 4 0 5 0 .0 4 1
0 . 0 4 5

0 .0 6 8 2

0 . 0 2 3 4 0 .0 2 4 6
0 . 0 3 2 1

0 .0 6 2 8

0 . 0 1 4 0 .0 1 6

0 . 0 2 7 2

0 . 1 5 2 8

0 . 1 5 1 5
0 .1 5 1 4

0 .0 6 2 1

1 0 0
9 8

8 6

4 5

1 4

1 0 0

9 0

6 3

2 4

7

1 0 0

7 0

3 8

1 2

3
0

0 . 0 2

0 . 0 4

0 . 0 6

0 . 0 8

0 .1

0 . 1 2

0 . 1 4

0 . 1 6

0 . 1 8

in f . 5 1 2 K 6 4 K 8 K 1 K

m
is

s_
ra

te

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

A
ct

iv
e%

Decay Interval (cycles)

Decay Interval (cycles)

Decay Interval (cycles)

c o m p r e s s

0 .3 3 7 6 0 .3 3 8 6 0 .3 4 5 2

0 .3 8 1 9

0 .1 9 9 5 0 .2 0 3
0 .2 2 3 9

0 .3 1 6 6

0 .0 7 9 2 0 .0 8 8 3

0 .1 3 4 5

0 .2 9 0 5

0 . 4 8 5 7

0 .4 8 1 2
0 .4 8 0 9

1 0 0

8 6

6 6

3 6

1 0

1 0 0

7 8

5 4

2 4

5

1 0 0

6 4

3 7

1 4

2
0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

in f . 5 1 2 K 6 4 K 8 K 1 K

m
is

s
ra

te

0

1 0

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

1 0 0

A
ct

iv
e%

Decay Interval (cycles)

1. Smaller caches need a smaller decay interval to
achieve the same active ratio.

2. Smaller caches need a smaller decay interval to
yield the same relative increase in miss rate.

We also examined the relation of the decay interval
to line size. Figure 8 shows how the active ratio and the
miss rate change as a function of line size (16, 32 and 64
Bytes). Whereas miss rate can either increase or
decrease depending on the spatial characteristics of the
application, active ratio decreases with larger line size.
For a given decay interval larger cache lines are less
likely to be turned-off.

4.2 Digital cache-line decay in data
caches

As we described in Section 2, a realistic digital
implementation employs two-bit counters per cache line
and a global counter to generate the tick (T) signal at
regular intervals. The global counter’s period, Tperiod,
can be set externally. The decay interval in this case is
not exact but rather varies from two to three times
Tperiod with an average value of 2.5 Tperiod. Comparing
results of the variable decay interval with those
presented in the previous section (precise decay
interval) we found very little difference. The resolution

of the two-bit counter is enough to approximate a
precise decay interval equal to 2.5 Tperiod.

Using two-bit counters we compare decay caches to
standard caches by: first, keeping the miss rates equal,
and second, maintaining the effective size of the decay
cache equal to the size of the standard cache.

4.2.1 Equal miss rate comparisons

Cache-line decay is a trade-off between dynamic
and static power. By switching off cache lines we save
leakage power but, on the other hand, we incur more
misses which consume power. Dynamic power is also
dissipated by the power-management circuits but this is
negligible. Quantifying power consumption for a cache
miss requires precise knowledge of implementation
details: bus power consumption, timing, buffers, etc. We
believe that results specific to an implementation cannot
be generalized.

We remove power consumption due to cache
misses by comparing standard caches to decay caches of
double size but of equal miss rate. We control miss rate
in the decay caches by choosing an appropriate decay
interval per application.

We use curve fitting on the data presented in Figure
7 to approximate miss-rate curves. In this way we esti-
mate a decay interval that will give us a desired miss-
rate.2 Figure 9 shows the results of this approach. The
first graph compares a 32KByte decay cache to a
16KByte standard cache and the second graph compares
a 16KByte decay cache to a 8KByte standard cache. We
list the estimated decay intervals for every case in
Table 2. The bar pairs show miss rates for the decay and
standard caches, while the solid line shows the effective
size of the decay cache (active ratio multiplied by actual
size). The effective size of the 32KByte decay cache is
27%, 50%, and 10% smaller than the 16KByte standard
cache for gcc, vortex, and compress respectively (for the
16KByte decay cache, 26%, 59%, and 5% smaller than
the 8KByte standard cache).

By keeping the miss rates constant we reduce leak-
age power but on the other hand we have added addi-
tional circuitry that dissipates both dynamic and leakage
power. The increase in dynamic power is negligible
compared to the dynamic power dissipation of the entire
chip; in particular, on average 80 transistors in the addi-
tional decay circuitry switch every clock cycle (com-

FIGURE 8. Miss rate and active ratio as a function
of block size for GCC and Vortex with 16KBytes, 2-
way caches.

Vortex

0.023

0.022

0.024
97.257

90.512

79.254

0.02

0.02

0.02

0.02

0.02

0.02

64B 32B 16B

Block Size

M
is

s
R

at
e

0

10

20

30

40

50

60

70

80

90

100

A
ct

iv
e

%

Miss Rate Active Ratio

GCC

0.032

0.040

0.054
93.695

88.663
82.258

0.00

0.01

0.02

0.03

0.04

0.05

0.06

64B 32B 16B

Block Size

M
is

s
R

at
e

0

10

20

30

40

50

60

70

80

90

100

A
ct

iv
e

%

Miss Rate Active Ratio

2 Our methods introduce small errors so the miss rates of the
decay caches are not strictly equal or smaller to those of the
standard caches for this paper. However, miss-rate differ-
ences are so small that for our purposes we consider them
insignificant. More conservative decay-interval estimates
can reduce miss-rate to the desired value.

pared to the millions switching in the processor core).
We therefore focus on computing leakage power. Figure
10 shows the relative change in the leakage power of the
cache itself when the cache decay mechanism is used.
Although the additional circuitry increases leakage to a
small extent, the total leakage power of the cache is
reduced significantly because large portions of the data
cache get turned off. Since the cache is one of the main
contributors to the total leakage power of the chip (Sec-
tion 1), cache decay results in large savings when leak-
age power becomes significant.

4.2.2 Equal size comparisons

An alternative way to examine decay caches is to
keep their effective size the same as a standard cache
half the size, i.e., keep the active ratio less than or equal
to 50%. Again we estimate the decay interval that will

give us such an active ratio from the graphs in Figure 7.
Figure 11 shows that equal effective size means
decreases in miss rate (significant in the case of com-
press). This in turn translates into increased perfor-
mance and decreased dynamic power attributable to
misses.

4.3 Effects on performance

Besides the above relative comparisons, we show
the effects of cache-line decay on miss rate, IPC, and
active size by comparing decay caches to standard
caches of equal size. Here, we do not use L2 caches—
L1 misses are serviced directly from memory—for two
reasons: i) we want to make evident the IPC impact of
the decay mechanisms (L2 caches tend to reduce it to
insignificant levels), and ii) we concentrate on small L1
caches to reflect the size of the benchmarks—cache-line
decay would work well in relatively large cache hierar-
chies.

Figure 12 shows the miss rate, IPC, and effective
size (percent of actual size) for 32KByte decay and stan-
dard caches. We chose a single decay interval of 128K
cycles for all benchmarks (which may not be optimum
for all benchmarks). This decay interval is larger than
what Figure 7 would suggest for the miss rates and

32KByte Decay
cache

16KByte Decay
cache

gcc 32Kcycles, Tperiod = 14.4K 17Kcycles, Tperiod = 6.8K

compress 24Kcycles, Tperiod = 9.6K 6Kcycles, Tperiod = 2.4K

vortex 100Kcycles, Tperiod = 40K 29Kcycles, Tperiod = 11.6K

TABLE 2: Decay intervals for equal-miss-rate
comparisons

FIGURE 9. Equal miss-rate comparisons: a 32KByte
(16KByte) decay cache has smaller effective size than
a 16KByte (8KByte) standard cache.

0.071

0.191

0.023

0.069

0.200

0.023

11.66

8.06

14.31

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

cc1 compress vortex

0

2

4

6

8

10

12

14

16

32K Decay 16K Standard Effective Size of 32K Decay (KB)

0.090

0.338

0.041
0.090

0.338

0.041

6.33

7.62

3.30

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

cc1 compress vortex

0

1

2

3

4

5

6

7

8

16K Decay Cache 8K Standard Cache Effective Size of 16K Decay Cache (KB)

A
ct

iv
e

S
iz

e
(K

B
yt

es
)

A
ct

iv
e

S
iz

e
(K

B
yt

es
)

M
is

s
ra

te
M

is
s

ra
te

FIGURE 10. Static power dissipation of decay caches
(16K and 8K) normalized to standard caches (16K
and 8K) for gcc, compress and vortex

Static power

0.76

0.53

0.93

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

gcc (32K) compress (32K) vortex (32K)

P
o

w
er

 (
n

o
rm

al
iz

ed
 t

o
 1

6K
 s

ta
n

d
ar

d
 c

ac
h

e)

Static power

0.82

0.44

0.99

0

0.2

0.4

0.6

0.8

1

1.2

gcc (16K) compress (16K) vortex (16K)

P
o

w
er

 (
n

o
rm

al
iz

ed
 t

o
 8

K
 s

ta
n

d
ar

d
 c

ac
h

e)

active ratios of Figure 12. This is because the lack of L2
expands the time between cache accesses. The increased
average memory latency necessitates an increase in the
decay interval. Increases in miss rate range from 8%
(m88Ksim) to 293% (go) with an average of 88%. How-
ever, the decrease in IPC is moderate and ranges from to
6% (m88Ksim and li) to 18% (go) with an average of
14%. The superscalar out-of-order core largely hides the
increase in average memory latency. Decrease in leak-
age power for the cache memory array ranges from 57%
(gcc) to 75% (go) with an average of 67%.

5 Conclusions
In this paper we propose cache decay, a mechanism

to reduce leakage power dissipation in caches. We turn
off power to cache lines that have not been accessed
within a decay interval. By controlling power at a cache-
line granularity we can achieve a significant reduction
in leakage power while at the same time preserve much
of the performance of the cache. A decay cache can
have an effective size much smaller than a cache of
equal miss-rate. Alternatively, a decay cache with the
effective size of a small cache performs better. In addi-
tion, the full performance of the decay cache is available

to demanding applications when power consumption in
not an issue. This flexibility of the decay cache is partic-
ularly useful in battery-powered computers.

Our results show that different applications have
different optimal decay intervals for a given miss-rate/
active ratio target. Our proposed digital implementation
can be controlled at run-time by the operating system
via the global cycle counter. The OS can set the period
of the global counter (Tperiod) to produce the desired
decay interval according to the demands of the execut-
ing application and the power-consumption require-
ments of the system. Profiling and/or run-time
monitoring can be used to adjust decay intervals. In con-
trast, the analog implementation is not as flexible—the

FIGURE 11. Equal area comparisons: a 32KByte
(16KByte) decay cache of about 16KByte (8KByte)
effective size has a smaller miss rate than a 16KByte
(8KByte) standard cache.

0.084

0.231

0.041

0.090

0.338

0.041

7.62
7.967.75

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

cc1 compress vortex

0

1

2

3

4

5

6

7

8

16K Decay Cache miss rate 8K Standard Cache miss rate

Effective size of 16K Decay Cache (KB)

0.064

0.103

0.021

0.069

0.200

0.023

15.76
15.73 16.24

0.00

0.05

0.10

0.15

0.20

0.25

cc1 compress vortex

0

2

4

6

8

10

12

14

16

32K Decay Cache miss rate 16K Standard Cache miss rate

Effective size of 32K Decay Cache (KB)

A
ct

iv
e

S
iz

e
(K

B
yt

es
)

A
ct

iv
e

S
iz

e
(K

B
yt

es
)

M
is

s
ra

te
M

is
s

ra
te

FIGURE 12. Miss rate, IPC and Active ratio for 32K
standard and 32K decay cache. There is no L2 cache.
128K cycles decay interval for all programs.

� � � �
� � � �

� � � �
� � � �

� � � �

� � � �
� � � �

� � � �

� � � � � � � �
� � � �

� � �
� � � �

� � � � � � � !
� � � !

� � � �

� � � �

� � � "

� � � �

� � �

� � � �

� � � �

� � � "

go

m
88

ks
im cc

1

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

M
is

s
ra

te

$ %

& $ '

$ (
$ %

$ (

& $ (
& $)

$ *

& $ &

& $ (

$ *

& $ &

$ (

& $ % & $ '

$ %

$ #

$)

& $ # #

& $) #

+ $ # #

+ $) #

go

m
88

ks
im cc

1

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

IP
C

� � � � �
� 	 � � � � � � � � � 	 � � 	 � � � � �

� � �
 � � � � 	 � � � � � �

�
� �

� �
� �
	 �

� � �
� � �

go

m
88

ks
im cc

1

co
m

pr
es

s li
ijp

eg pe
rl

vo
rte

x

A
ct

iv
e

ra
ti

o

� � � , � � � - � � - � � � . � � � /

decay interval is fixed at design time by the RC delay.
However, its simplicity may be appealing for selected
embedded applications. We are working to refine imple-
mentation details of the analog design and quantify its
behavior. Cache decay can also be applied to instruction
caches. Limited experimentation showed moderate suc-
cess but further work is needed to understand decay in
instruction caches.

6 Acknowledgments
We would like to thank Margaret Martonosi (Princ-

eton U.) for the discussions we had about this work. We
would also like to thank Sean Dorward (Bell Labs),
Mark Hill, Guri Sohi, and Jim Goodman (U. of. Wiscon-
sin), and the anonymous referees of PACS ‘00 for their
comments and suggestions.

7 References
[1] Mike D. Powell, Se-Hyun Yang, Babak Falsafi, Kaushik

Roy, T. N. Vijaykumar “Gated-Vdd: A Circuit Technique
to Reduce Leakage in Deep-Submicron Cache Memo-
ries,” ACM/IEEE International Symposium on Low Power
Electronics and Design (ISLPED).

[2] Se-Hyun Yang, Michael D. Powell, Babak Falsafi, Kaushik
Roy, and T. N. Vijaykumar, “An Integrated Circuit/Archi-
tecture Approach to Reducing Leakage in Deep-Submi-
cron High-Performance I-Caches,” To appear in ACM/
IEEE International Symposium on High-Performance
Computer Architecture (HPCA), 2001.

[3] Douglas C. Burger, James R. Goodman, and Alain Kagi
“The Declining Effectiveness of Dynamic Caching for
General-Purpose Microprocessors,” University of Wiscon-
sin-Madison Computer Sciences Dept. Tech. Report 1261,
January, 1995.

[4] Shekhar Borka, "Design Challenges of Technology Scal-
ing", in IEEE Micro, Vol. 19, No. 4, July/August 1999.

[5] Doug Burger and Todd Austin, “The SimpleScalar Tool Set
Version 2.0,” University of Wisconsin-Madison Computer
Sciences Dept. Tech. Report 1342, June, 1997

[6] I.C Kizilyalli et al. “A WSi/WSiN/Poly:Si Gate CMOS
Technology for 1.0V DSPs,” In Proceedings of the First
International Symposium on ULSI Process integration,
The Electrochemical Society Proceedings Vol. 99-18. pp
347-352.

[7] Tohru Ishihara and Hiroto Yasuura, “Experimental Analy-
sis of Power Estimation Models of CMOS VLSI Cir-
cuits,” IEICE Trans. Fundamentals, Vol.E80-A No.3,
pp.480-486, March 1997.

[8] Scott Thompson, Paul Packson, Mark Bohr, “MOS Scal-
ing: Transistor Challenges for the 21st Century,” Intel
Technology Journal, 3rd Quarter, 1998.

[9] Zhanping Chen, Mark Johnson, Liqiong Wei and Kaushik
Roy, "Estimation of Standby Leakage Power in CMOS
Circuits Considering Accurate Modeling of Transistor

Stacks," Proceedings of 1998 international symposium on
Low power electronics and design. Pages 239-244.

[10] S. Bobba and I.N. Hajj, “Maximum Leakage Power Esti-
mation for CMOS Circuits,” Proceedings of the IEEE
Alessandro Volta Memorial Workshop on Low-Power
Design.

[11] Alvin R. Lebeck and David A. Wood, “Dynamic Self-
Invalidation: Reducing Coherence Overhead in Shared-
Memory Multiprocessors,” International Symposium on
Computer Architecture (ISCA), June 1995

[12] Jih-Kwon Peir, Yongjoon Lee, Windsor W. Hsu, “Captur-
ing Dynamic Memory Reference Behavior with Adaptive
Cache Topology,” Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS VIII),
1998.

[13] An-Chow Lai and Babak Falsafi, “Selective, Accurate,
and Timely Self-Invalidation Using Last-Touch Predic-
tion,” International Symposium on Computer Architecture
(ISCA), May 2000

[14] David A. Wood, Mark D. Hill, R. E. Kessler, “A Model
for Estimating Trace-Sample Miss Ratios,” ACM SIG-
METRICS, May 1991.

[15] J. Adams Butts and Gurindar Sohi, “A Static Power
Model for Architects,” To Appear in MICRO-33 - 33rd
Annual International Symposium on Microarchitecture.

