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Abstract— Pipelined ASIC architectures are increasingly being
used in forwarding engines for high speed IP routers. We explore
optimization issues in the design of memory-efficient data struc-
tures that support fast incremental updates in such forwarding en-
gines. Our solution aims to balance the memory utilization across
the multiple pipeline stages. We also propose a series of optimiza-
tions that minimize the disruption to the forwarding process caused
by route updates. These optimizations reduce the update overheads
by a factor of 2-5 for a variety of different core routing tables and
update traces.

I. INTRODUCTION

Recent advances in optical networking technology have pushed
linecard data transfer rates in high speed IP routers to 40Gbits/s, and
even higher data rates are expected in the near term. Given such high
data rates, packet forwarding in high speed IP routers must be done in
hardware. Current hardware-based solutions for high speed packet for-
warding fall into two main categories, namely, ASIC-based solutions
and ternary CAM or TCAM-based solutions.1

In this paper, we focus on ASIC-based packet forwarding engines
that utilize pipelining. ASIC-based architectures usually implement a
routing trie data structure using some sort of high speed memory such
as static RAMs (SRAMs) [19]. If a single SRAM memory block is
used to store the entire routing trie, multiple accesses (one per routing
trie level) are required to forward a single packet. This can slow down
lookups considerably, and the forwarding engine may not be able to
process incoming packets at the line rate. A number of researchers
have pointed out that forwarding speeds can be significantly increased
if pipelining is used in ASIC-based forwarding engines [6], [22], [24];
with multiple stages in the pipeline (e.g., 1 stage per trie level), one
packet can be forwarded during every memory access time period.

In addition, pipelined ASICs that implement forwarding tries pro-
vide a general and flexible architecture for a wide variety of forwarding
and classification tasks. This flexibility is a major advantage in to-
day’s high-end routers which have to provide IPv6 and multicast rout-
ing in addition to IPv4 routing, as well as packet classification or fil-
tering. Since longest prefix matching is applicable to all these tasks,
the same pipelined hardware can be used to perform them efficiently,
thereby producing significant savings in cost, complexity and space.
We also note that individual solutions tailored for a particular forward-
ing/filtering task can be designed (see, for example, [6]). However, to
our knowledge, a general hardware architecture that can simultaneously
accommodate various routing and forwarding tasks as efficiently as a
trie-based pipelined ASIC is difficult to design.

�

Network processor-based solutions are also increasingly being considered
for high speed packet forwarding, though network processors that can handle
40Gbits/s wire speeds are not yet available (to our knowledge).

Despite the various advantages of pipelined ASIC architectures,
managing routing tries during route updates in such architectures is dif-
ficult. One way to simplify management is to use double buffering, that
is, to create a duplicate copy of the lookup trie and use one for lookups
and the other for updates. However, the memory required becomes
twice as much as in the normal case. Therefore, we concentrate here
on providing efficient incremental updates. When updates are applied
incrementally, however, packet forwarding operations can be disrupted
by trie update operations—hence, the cost of update operations needs
to be minimized.

There are two main issues that affect the number of trie update op-
erations when incremental updates are applied. First, the memory allo-
cated to the trie should be evenly balanced across the multiple pipeline
stages (in addition to minimizing the total memory use). Otherwise, the
more heavily utilized stages may overflow on frequent insertions, and
the entire trie will have to be reconstructed. This can create a heavy
update load that will cause significant disruption to packet forwarding
operations. Second, the (possibly multiple) memory locations that are
modified due to route update operations must be limited in number and
evenly balanced across the multiple pipeline stages, ensuring that no
particular stage becomes a bottleneck. This will also allow modifica-
tions to different memory locations (up to one per pipeline stage) due
to multiple route updates to be combined into a single pipeline update
operation.

The main contribution of this paper is to address both these issues.
First, we present an algorithm to build a memory-efficient trie while
balancing the memory utilization over the different pipeline stages.
The balancing problem was first mentioned in [22] where the authors
pointed out that this is a difficult problem, and left it as future work.
Our algorithm balances the memory requirements across the pipeline
stages by finding the trie for which the size of the largest pipeline stage
is minimized. We find that the balance of memory allocations for the
trie (based on the initial prefix database) does not change significantly
even when large, real-life update traces are applied. We also present
upper bounds for the memory consumed per stage by our algorithm—
hardware designers can utilize these bounds to design for the worst-case
scenarios. Second, we develop multiple optimizations that leverage cer-
tain characteristics of the IPv4 address allocation process and the nature
of the BGP routing protocol. Our optimizations are aimed at reducing
as well as balancing the number of memory locations that are modified
in each pipelined stage due to route updates.

The combined effect of our optimizations produces a 2 to 5.7-fold
improvement in the trie update overheads to the pipeline when tested
over several core router tables and routing update traces. Even though
there has been previous work on optimizing memory usage in routing
tries [1], [3], [4], [5], [12], [15], [18], [22], [24], [25], it has mostly
focused on non-pipelined architectures. To our knowledge, this is the
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Fig. 1. (a) A routing table — the * in the prefixes represent the don’t care bits, (b) the corresponding forwarding trie, and (c) the corresponding trie with leaf pushing.
A ‘–’ represents a null pointer. In the trie without leaf pushing, each node has 2 fields: a prefix, and a pointer to an array of child nodes. In the leaf-pushed trie, each
node has only one field, a prefix, or a pointer to an array of child nodes.

first attempt to develop routing trie construction and management tech-
niques for pipelined ASIC architectures.

While route update rates can be around two orders of magnitude
lower than packet forwarding rates, we have noticed in our analysis
(using real traces) that a single route update (route add or withdrawal)
can modify over a thousand memory locations in the pipelined routing
trie. Therefore, unless route update operations are managed carefully,
the resulting pipeline writes may prevent packet forwarding operations
from keeping up with wire speeds. However, given that the route up-
date rates are small enough, it is still possible to process each individual
update in software and generate a sequence of optimized pipeline write
operations for each update. The advantage of such a software-based
scheme is that it is flexible and it keeps the forwarding hardware sim-
ple, thereby making it cost effective.

The rest of the paper is organized as follows. In the next section, we
provide an overview of trie-based lookups, along with issues that arise
when such lookups are pipelined. In Section III, we describe the exper-
imental setup and the assumptions that we make about the hardware to
abstract out the problem. Next, in Section IV, we list the characteris-
tics of the IPv4 address allocation process and the BGP routing protocol
that drive the optimizations presented in Sections V and VI. Finally, we
summarize related work in Section VII and conclude in Section VIII.

II. TRIE-BASED IP LOOKUPS IN

PIPELINED FORWARDING ENGINES

In this section, we describe some terminology for trie-based data
structures and explain how routing tries can be implemented in
pipelined forwarding engines.

A trie is essentially a tree that is used to store a set of routing prefixes
for longest prefix matching. Every prefix in the set is represented by a
node in the trie. Each trie node contains two fields: an IP prefix repre-
sented by the node (null if this prefix is not in the set) and a pointer to
an array of child nodes (null if none). The packet lookup process starts
from the root and works as follows. At each trie node � ,

�
consecutive

bits (called the stride of node � ) from the destination IP address are
used as an index to select which of the ��� child nodes to traverse next.
When a leaf node is reached, the last prefix seen along the path to the
leaf is the longest matching prefix for the packet. Note that this im-
plies that the prefix represented by a node � is determined by the path
from the root node to � . Figure 1(b) shows a sample trie. In general,
the stride at each trie node can be selected independently. A trie that
uses the same stride for all the nodes in one level is called a fixed-stride
trie; otherwise, it is a variable-stride trie. The trie in Figure 1(b) is a
fixed-stride trie.

A. Pipelined Lookups Using Tries
Tries are a natural candidate for pipelined lookups; each trie level

can be stored in a different pipeline stage. In a pipelined hardware ar-
chitecture, each stage of the pipeline consists of its own fast memory
(typically SRAMs) and some hardware to extract the appropriate bits
from a packet’s destination address (see Figure 2). These bits are con-
catenated with the lookup result from the previous stage to form an
index into the memory for the current stage. A different packet can be
processed independently in each stage of the pipeline. It is easy to see
that if each packet traverses the pipeline once, the forwarding result for
one packet can be output every cycle.

Using an optimization called leaf-pushing [24], the trie memory as
well as the bandwidth required between the SRAM and the logic can be
halved. Here, prefixes at non-leaf nodes are pushed down to all the leaf
nodes under it that do not already contain a more specific prefix. In this
manner, each node need only contain one field—a prefix pointer or a
pointer to an array of child nodes. Thus each trie node can now fit into
one word instead of two. In a leaf-pushed trie, the longest matching
prefix is always found in the leaf at the end of the traversed path (see
Figure 1(c)). For the rest of this paper, we only consider leaf-pushed
tries.

B. Issues in Pipelined Architectures
Since the pipeline is typically used for both forwarding and classi-

fication, its memories are shared by multiple tables (such as IPv4 and
IPv6 routing tables, as well as packet filtering tables and multicast rout-
ing tables for each input interface). Therefore, evenly distributing the
memory requirement of each table across the pipeline memories simpli-
fies the task of memory allocation to the different tables. It also reduces
the likelihood of any one memory stage overflowing due to route/filter
additions.

Updates to the forwarding table go through the same pipeline as the
lookups. A single route update can cause several write messages to be
sent through the pipeline. For example, the insertion of the route 1001*
in Figure 1(c) will cause one write in the level 2 node (linking the new
node to the trie), and 4 writes in the level 3 node (2 writes for 1001*
and 2 writes for pushing down 100*).

These software-controlled write messages from one or more route
updates are packed into special write packets and sent down the
pipeline, similar to the reads performed during a lookup. We call each
write packet a bubble—each bubble consists of a sequence of (stage, lo-
cation, value) triples, with at most 1 triple for each stage. The pipeline
logic at each stage issues the appropriate write command to its asso-
ciated memory. Minimizing the number of write bubbles introduced
by route updates reduces the disruption to the lookup process. Finally,
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Fig. 2. A typical � -stage forwarding pipeline. In general, a packet header can
travel through the pipeline multiple times.

care should be taken to keep the trie in a consistent state between con-
secutive write bubbles, as route lookups may be interleaved with write
bubbles.

III. SOLVING THE PIPELINED ARCHITECTURE PROBLEM

In order to address the issues described in the previous section, we
developed a series of optimizations using a combination of simulation
and data analysis. To this end, we first developed a simulation model
of the packet forwarding components in a typical (high-end) router
linecard. We then used certain well-known characteristics of the IPv4
address allocation process and the BGP routing protocol to develop the
optimizations for balancing the memory allocations and reducing the
occurrence of “write bubbles” in the pipeline. Finally, we validated
our findings by incorporating these optimizations in our simulator and
running a set of route update traces through the simulator. We now
briefly describe the simulator for the packet forwarding engine and the
assumptions that we made.

A. Forwarding Engine Model

The distributed router architecture described in this section is similar
to that of commercially available core routers [2], [20]: the router has
a central processor that processes BGP route updates from neighboring
routers and communicates the resulting forwarding table changes to
the individual linecards. Each linecard has a local processor that con-
trols the pipelined forwarding engine on the linecard. Using a software
shadow of the pipelined routing trie, the local processor computes the
changes to be made to each stage of the forwarding pipeline for each
route update. It also typically performs all the memory management
for the pipeline memories. In this work, we focus on optimizations that
will minimize the cost of route updates, and not on memory manage-
ment issues.2

Our simulation model consists of three components—first, we have
the trie component that constructs and updates the routing trie (see Fig-
ure 3). It processes one route update at a time and generates the corre-
sponding writes to the pipeline memories. The second component is the
packing component that packs writes from a batch of consecutive route
updates into write bubbles that are sent down the pipeline. When a new
subtree is added to the trie (due to a route add), the pipeline write that
adds the root of the subtree is tagged by the trie component. The pack-
ing component ensures that this write is not packed into a write bubble
before any of the writes to the new subtree (to prevent any dangling
pointers in the pipelined trie). Finally, we have a pipeline component
that actually simulates the traversal of these write bubbles through a
multi-stage pipeline.

B. Assumptions

We now describe the assumptions about the forwarding engine setup
that we made when designing the simulation model (which therefore
affect the nature of the optimizations that we have developed).

�
In particular, we do not address how memory blocks are allocated for trie

construction and how the free lists are maintained.
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Fig. 3. The software system on the linecard that constructs and maintains the
forwarding trie.

site date table size #updates Avg upd Max upd
rrc03 4/1/01 102,424 3.00M 19.20 8,451
rrc04 5/2/01 104,181 2.74M 17.75 52,012

TABLE I. The two datasets used to study the workload characteristics. rrc03
is a peering point in Amsterdam, and rrc04 is a peering point in Geneva. “Avg
upd” (or “Max upd”) are the average (or maximum) number of updates that have
the same timestamp (granularity—1 second).

� The initial trie construction takes as input a snapshot of the entire
table. After this construction phase, it is only updated incrementally
for the several million updates in our datasets.

� Bubbles are processed by the pipeline in the same order as they are
generated by the packing component. A bubble is not interrupted in
its progression from the first to the last stage of the pipeline. How-
ever, consecutive bubbles may be interspersed with lookups. There-
fore, the trie structure should always be consistent between consec-
utive write bubbles.

� Only tries with fixed strides are considered. Although variable-stride
tries could be more efficient, they are difficult to maintain during
incremental updates — since each node can have a different stride,
there is no straightforward way to determine the strides for trie nodes
that are created when new prefixes are added.

� We focus on leaf-pushed tries. Although updates to leaf-pushed tries
can result in more pipeline writes, leaf pushing allows for a higher
pipeline throughput and more efficient use of the pipeline mem-
ory. All our optimizations, however, are also applicable to non-leaf
pushed tries.

� Writes to different pipeline stages can be combined into a single
write bubble — each bubble can contain at most one write to each
stage of the pipeline. We use the number of bubbles created as a mea-
sure of how disruptive incremental updates are to the search process.
Note that it is possible to have more than one write to each pipeline
stage in a single bubble. Our assumptions (of at most one write per
stage) therefore provide an upper bound on the number of bubbles
generated (worst-case).

� The packing component is permitted to pack pipeline writes from
multiple route updates into a single write bubble, as long as the route
updates arrive with the same timestamp (granularity—one second).
To further limit the delay in updating the pipelined trie, we combine
writes from batches of at most 100 such concurrent route updates.

� Our experiments focus on IPv4 lookups, since no extensive data is
currently available for IPv6 tables or updates. We focus on a pipeline
with 8 stages, and assume that only one pass is required through the
pipeline to look up a IPv4 packet. Section VI also shows results for
pipelines with fewer stages.

� The next hop information is stored in a separate Next Hop table that
is distinct from the pipelined trie.

� Memory management is done by a separate component. In particu-
lar, we assume the existence of malloc and free-like primitives
(see, for example, [22] for work in this area).

IV. ROUTING TABLE AND ROUTE UPDATE CHARACTERISTICS

In this section, we describe certain characteristics of the IPv4 ad-
dress allocation process and the mechanics of the BGP routing proto-



label site location start date start time table size hops # updates Avg upd Max upd
rrc01 rrc01 London Oct 1, 2001 2:30am 103,555 37 4,719,521 12.52 30,060
rrc03-a rrc03 Amsterdam Jan 31, 2001 7:00pm 98,974 74 3,769,903 16.70 8,867
rrc03-b rrc03 Amsterdam Oct 1, 2001 12:00am 108,267 80 4,722,493 12.45 30,060
rrc04 rrc04 Geneva Nov 1, 2001 3:30am 109,600 29 3,555,839 13.80 36,326
me-a mae-east Virginia Oct 29, 1999 12:00am 50,374 59 3,685,469 10.63 8,509
me-b mae-east Virginia July 1, 2000 12:00am 46,827 59 4,350,898 09.66 10,301
mw mae-west San Jose Aug 16, 2000 12:00am 46,732 53 2,856,116 10.71 14,024

TABLE II. The 7 datasets used in all the experiments in Sections V and VI. “hops” is the number of unique next hops in the table; this is representative of the number
of peers at the peering point. “Avg upd” (or “Max upd”) are the average (or maximum) number of updates that have the same timestamp (granularity—1second).

col. These characteristics affect the structure of the routing tables in
the Internet core as well as the route update process, and have been
described elsewhere in the literature. We use these well-known charac-
teristics (which we also corroborated using the sample traces in Table I)
to drive the optimizations for pipelined lookup architectures.

The IPv4 address allocation process and its consequences on BGP
routing tables were described in a recent study [8]. The growth in the
routing table sizes in the pre-CIDR era was mainly due to the growth
in the Class C addresses (i.e., 24 bit prefixes), while very few Class A
addresses (i.e., 8 bit prefixes) were allocated. Even though the intro-
duction of CIDR caused more addresses in the 19-20 bit range to be
allocated, the 24 bit prefixes still continue to dominate the BGP routing
tables of today. This kind of uneven growth has resulted in the follow-
ing characteristics of the routing tables.
O–I: A majority of the prefixes in the routing tables of today are 24 bit

prefixes—consequently most routing updates affect 24 bit pre-
fixes. For example, 57.7% of the rrc03 prefixes and 58.8% of the
rrc04 prefixes were 24-bit prefixes. 64.2% of rrc03 route updates
and 61.6% of rrc04 route updates were to 24-bit prefixes.

O–II: The number of very small (
�

8 bit) prefixes is very low, and
very few updates affect them. For example, about 0.02% of the
prefixes in the rrc03 and rrc04 prefixes were less then 8 bits long,
and 0.04% of the rrc03 updates and 0.03% of the rrc04 updates
were to such prefixes. However, since a short route is typically
replicated a number of times in a trie3, each update to it may
result in modifications to a large number of trie nodes.

Route aggregation considerations have also influenced the nature of
routing updates. Historically, IPv4 addresses have been allocated in
a hierarchical fashion such that routing advertisements can be aggre-
gated. In particular, the address blocks allocated to an ISP customer
are sub-blocks of the address block allocated to the ISP. This has two
important consequences.
O–III: Prefixes corresponding to the customers of a given ISP are typ-

ically neighboring 24-bit prefixes. Hence prefixes close together
and differing in only a few low order bits (but with possibly dif-
ferent next hops) often fully populate a range covered by a single,
shorter prefix.

O–IV: A link failure (recovery) in an ISP network disconnects (re-
connects) some or all of its customer networks (represented by
neighboring prefixes in the routing trie). In turn, this can cause
updates to the corresponding neighboring routes to occur simul-
taneously. For example, in the rrc03 and rrc04 traces, we ob-
served multiple instances of routes in an entire subtree getting
added or withdrawn at the same time (in the same second).

O–V: Finally, recent studies of BGP dynamics [10], [11] indicate the
following. First, the proportion of route updates corresponding
to network failure and recovery is fairly high: about 40% of all
updates are route withdrawals and additions in response to net-

�
This is because tries are often designed to have a stride of 12-16 bits in the

very first level.

work failure and recovery [11]. Second, once a network failure
occurs, the mean time to repair is of the order of several min-
utes [10]. Thus, a large proportion of routes that are withdrawn
get added back a few minutes later. For example, our analysis of
the rrc03 and rrc04 traces indicate that about 80% of the routes
that are withdrawn get added back within 20 minutes.

Our optimizations for constructing and maintaining the pipelined
lookup trie are based on the above observations. To test the effective-
ness of our optimizations, we use seven datasets that are different from
the two datasets described in Table I. These datasets will be referenced
in the following sections by the labels listed in Table II. The rrc ���
datasets were collected from the Routing Information Service, while
the Mae-east and Mae-west databases were obtained from the Internet
Performance Measurement and Analysis (IPMA) project.4 Note that
the traces have widely distributed spatial (location of collection) and
temporal (time of collection) characteristics—this ensures that our op-
timizations are not specific to a particular router interface or a specific
time interval.

V. MEMORY OPTIMIZATIONS

We now present a trie construction algorithm that, given the routing
table prefixes, finds the trie that minimizes the size of the largest trie
level (pipeline stage). If there are multiple such tries, the algorithm
finds the most compact (least total size) trie among them. Such an
algorithm makes it easier to pack multiple different protocol tables into
the set of available pipelined memories, and avoid memory overflows
as routing tables grow. We also provide upper bounds on the worst-
case performance of this algorithm—this enables hardware designers
to decide how big each pipeline stage should be.

A. Designing non-pipelined tries
Tries present a trade-off between space (memory requirement) and

packet lookup time (number of trie levels, assuming one lookup oper-
ation per level). Large strides reduce the number of levels (and hence,
the lookup time), but may cause a large amount of replication of pre-
fixes (for example, see Figure 4(a)).

To balance the space-time tradeoff in trie construction, Srini-
vasan and Varghese [24] use controlled prefix expansion to construct
memory-efficient tries for the set of prefixes in a routing table. Given
the maximum number of memory accesses allowed for looking up any
IP address (i.e., the maximum number of trie levels), they use dynamic
programming to find the fixed-stride trie with the minimum total mem-
ory requirement.5

The problem of constructing a fixed-stride trie reduces to finding the
stride-size at each level, that is, finding the bit positions at which to ter-
minate each level. The dynamic programming technique in controlled
�
http://www.merit.edu/ipma�
We assume no path compression is used. There is also a dynamic program-

ming algorithm for finding the smallest variable-stride trie presented in [24] that
is not directly relevant to our work.
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Fig. 4. (a) A sample routing table, (b) the corresponding 1-bit trie, and (c) the corresponding 4-bit trie. The dotted lines show the nodes at each level in the tries; of
these, only the black nodes contain a prefix. The 4-bit trie has a smaller depth (1 vs 4 memory accesses) but a larger number of nodes compared to the 1-bit trie.
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Fig. 5. Optimizing Memory (a) using the controlled prefix expansion al-
gorithm by Srinivasan and Varghese, and (b) using our MinMax Algorithm.
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prefix expansion works as follows. First, a 1-bit auxiliary trie is con-
structed from all the prefixes (e.g., see Figure 4(b)). Let ���� �!
"�#%$�& be
the number of nodes in the 1-bit trie at level $ . If we terminate some trie
level at bit position $ and the next trie level at some bit position ')(*$ ,
then each node in ���
 �!�"�#%$�+-,�& gets expanded out to ��.0/21 nodes in the
multi-bit trie (see [24] for details). Let 354 '�687�9 be the optimal memory
requirement (in terms of the number of trie nodes) for covering bit po-
sitions 0 through ' using 7 trie levels (assuming that the leftmost bit
position is 0). Then 3:4 '�6�7�9 can be computed using dynamic program-
ming as (see also Figure 5(a)):

3:4 '�6;7
9=< >@?BACEDGF�H / �8I J J J I .�/ �LK #�354 MN687POQ,R9S+
���
 �!�"�#%MT+U,�&WV � .�/ CYX (1)

3:4 '�6�,R9=< � .[Z �

(2)

Here, we choose to terminate the #%7\O],�&8^�_ trie level at bit positionM , such that it minimizes the total memory requirement. For prefixes
with at most ` bits, we need to compute 354 `aO],�6�b�9 , where b is
the number of levels in the trie being constructed. This algorithm takesc #dbeVe` � & time; for IPv4, `f<hg�� .

B. Implications for memory usage and update performance
The controlled prefix expansion algorithm finds the fixed-stride trie

with the minimum total memory. It can easily be applied to a pipelined
lookup architecture by fixing the number of trie levels to be the num-
ber of pipeline stages (or some multiple of it). However, the algorithm
does not attempt to distribute the memory equally across the different
pipeline stages. As a consequence, some stages may be heavily loaded,
while others may be very sparse. Figure 6 shows the amount of memory
allocated in each stage of an 8-stage pipeline for the two routing tables
rrc03 and rrc04. Each fixed-stride trie was constructed with controlled
prefix expansion and uses leaf pushing. The memory allocations are
highly variable across the different stages. In particular, the stage that
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Fig. 6. Memory allocation for the forwarding trie in different stages of the
pipeline using controlled prefix expansion for the two tables: (a) rrc03, and (b)
rrc04.

contains 24-bit prefixes has the highest memory requirement. Besides
increasing the chance of memory overflows in this stage, this imbal-
ance can negatively impact the update performance: the overloaded
stage contains the 24-bit prefixes and therefore typically gets many
more writes than the other stages. This makes it difficult to pack the
pipeline writes into a small number of bubbles. Note that this follows
directly from observation O–I in Section IV.

C. A New Algorithm for Pipelined Architectures

We have developed an algorithm (based on controlled prefix ex-
pansion) that attempts to evenly allocate memory across the different
stages. Our algorithm assumes that each pipeline stage contains ex-
actly one level in the lookup trie, and constructs a trie that satisfies the
following constraints:

� Each level in the fixed-stride trie must fit in a single pipeline stage.
� The maximum memory allocated to a stage (over all stages) is min-

imized. This ensures that the memory allocation is balanced across
all the pipelined stages.

� The total memory used is minimized subject to the first two con-
straints (we explain why this is important later in this section).

More formally, as before, let 3:4 '�6;7
9 denote the total memory required
for covering bit positions 0 through ' using 7 trie levels, when the above
conditions are satisfied. Furthermore, let i denote the size of each
pipeline stage. Then, the first and the third constraints are satisfied by
the following equations:

3:4 '�687�9j<k>@?BACED�l5m 35#%MN6;7nOo,0&p+ ���� �!
"�#%Mq+*,0&WV � .0/ CrX (3)

3:4 '�6�,[9s< � .[Z �

(4)

wheret < u�Mwv 7EOo, � M � 'rOo, and

���
 �!
"�#%MT+*,0&WV � .0/ C � i:x (5)



To satisfy the second constraint, we introduce some additional notation
first. For a partition � of bit positions 0 through ' into 7 levels in the
multi-bit trie, let

t
�����R!�4 '�6�7�6��S9 denote the memory allocated to the 7 th

level in the multi-bit trie. In other words, we have:t
�����R!G4 '�6�7
6��S9 < ���� �!
"�#%MT+U,�& V � .�/ C (6)

where bit positions 0 through M are covered by 7@O , levels in the
trie. (Note that this implies that the 7 th level in the trie covers bit po-
sitions M + , through ' ). We then define 	
���

t
������!G4 '�687�6�� 9 as the

maximum memory allocated to any trie level when partition � is used
to split bit positions 0 through ' among 7 levels in the multi-bit trie (see
Figure 5(b)). More formally, we have:

	
���
t
������!G4 '�6L7�6�� 9 < >�
����� C � H

t
�����R!�4 C� 1�� ��� 1 68M 6��S9 (7)

where � 1 denotes the stride-size of the $ th level in the trie, and� H1�� � � 1 < ' . Now let 	h$ ��	����
t
�����R!�4 '�687�9 be the minimum value

of 	
���
t
������!G4 '�687�6��S9 for all possible partitions � of bit positions 0

through ' into 7 levels. Then,

	*$ ��	
���
t
������!G4 '�6�7
9 < >@?BA��D Part

	����
t
�����R!�4 '�687
6��S9 (8)

where Part is the set of all possible partitions. Then, in addition to the
equations (3) and (4), the following equation must also be satisfied by
the variable M :

	*$ ��	
���
t
������!G4 '�6�7�9 < >@?BACEDGl #%>�
���# ���� �!
"�#%MT+U,�& V � .�/ C 6

	h$ ��	����
t
�����R!�4 MN687POQ,R9�&8& (9)

	*$ ��	
���
t
������!G4 '�6�,R9 < � .RZ �

(10)

We give equation (9) precedence over equation (3) when choos-
ing M . When multiple values of M yield the same value of
	h$ ��	
���

t
�����R!G4 '�6�7�9 , equation (3) is used to choose between these

values of M . In other words, our primary goal is to reduce the maxi-
mum memory allocation across the pipeline stages, and the secondary
goal is to minimize the total memory allocation. We found that it was
important to maintain this secondary goal of memory efficiency to pro-
duce tries with low update overheads. A memory-efficient trie typically
has smaller strides and hence less replication of routes in the trie; a
lower degree of route replication results in fewer trie nodes that need to
be modified for a given route update.

For a set of prefixes where the longest prefix length is ` bits, and
the maximum number of lookups is b (i.e., b trie levels), this algorithm
takes

c #db � Vs` & operations (same as the controlled prefix expansion
algorithm [24]). We refer to this algorithm as the MinMax algorithm.

Worst Case Memory Bound. The MinMax algorithm is intended for
use in hardware design — an important measure of performance in such
cases is the worst case memory usage (in addition to lookup and update
times). In other words, given a b -stage pipeline, and a prefix table of
size � with a maximum prefix length of ` , we would like to compute
the worst-case memory size for a pipeline stage. The proof is omitted
due to space limitations (see Figure 7 for a partial explanation).

Theorem 1: For any set of � prefixes of maximum length ` , the
maximum memory per pipeline stage required to build a b -level trie
using the MinMax algorithm is ���! " Z$# � /&%"(')��* +�,�-/.0. trie nodes.

For � = 1 million, bh<21 , and ` < g�� this bound amounts to
4 million trie nodes per stage. Assuming a pointer size of 22 bits (to

root

Fig. 7. The 1-bit auxiliary trie corresponding to the worst possible input of3
prefixes for the MinMax Algorithm; the longest prefix length is 4 bits.

There is maximum fan-out (i.e., each node has two descendants) till we reach
level 57698;: 3=< . Thereafter, every node has a single descendant till level 4 is
reached—all the

3
prefixes are of length 4 and lie in level 4 of the 1-bit trie.

Table rrc01 rrc03a rrc03b rrc04 meb mea mw
Overhead (%) 17.2 17.6 16.4 16.5 16.5 17.8 13.8
Max reduc. (%) 42.2 41.7 42.0 41.8 44.3 44.5 44.2

TABLE III. The additional (total) memory overhead of the MinMax algorithm,
and the reduction in the memory requirement of the most populated pipeline
stage. Both values are relative to the corresponding values for controlled prefix
expansion.

address each of the 4 million entries in a stage), we get a maximum
memory requirement of 11MB per stage. For � = 150,000 (which is
the size of current routing tables), a similar calculation yields 2.5MB
per stage.

Performance. The performance of the MinMax algorithm is shown
in Figure 8; it reduces the maximum memory allocation across the
pipeline stages (by over 40%) at the cost of a slightly higher (13–18%)
total memory overhead compared to controlled prefix expansion (see
Table III). We also point out that in each of the graphs in Figure 8,
some of the levels show disproportionately low memory usage even af-
ter the MinMax algorithm is applied (for example, levels 7 and 8 in
Figure 8(a)). In each of these cases, the levels in question are the ones
that are assigned to bit positions 24 to 31 (recall that bit positions are
numbered from 0). Since there are very few prefixes of length more
than 24, the number of prefixes terminating in these levels is low, hence
the low memory usage.

Finally, we note that instead of minimizing the maximum, mini-
mizing some other metrics could also balance out the memory allo-
cation across the multiple stages. We have experimented with three
other strategies, namely, (a) minimizing the standard deviation of all
the

t
������!G4 '�6;7�6��S9 ’s, (b) minimizing the sum of squares of all thet

�����R!�4 '�687
6��S9 ’s, and (c) minimizing the difference between the max-
imum

t
������!G4 '�687�6�� 9 and the minimum

t
������!G4 '�6;7�6��S9 . However, the

quality of the results for the MinMax algorithm proves to be just as
good or better than the other (computationally more intensive) algo-
rithms. For the rest of the paper, we shall use the MinMax algorithm
for calculating stride lengths.

As shown in Figure 9, both controlled prefix expansion (CPE) and
MinMax are fairly effective in reducing the number of write bubbles
generated by the packing component, when compared to the baseline
case of using a trie with equal strides (4 bits) at each level. We also
point out that the CPE algorithm was not explicitly designed to solve
the pipelined architecture problem. However, for the rest of the paper,
we omit the baseline case (of tries with equal strides) and only present
comparison figures for our optimizations and the CPE algorithm since
it is the most competitive algorithm we could find.



0

200

400

600

1 2 3 4 5 6 7 8

pipeline stage

CPE
minmax

(a) rrc01

0

200

400

600

1 2 3 4 5 6 7 8

pipeline stage

CPE
minmax

(b) rrc03-a

0

100

200

300

1 2 3 4 5 6 7 8

pipeline stage

CPE
minmax

(c) me-a

0

100

200

300

1 2 3 4 5 6 7 8

pipeline stage

CPE
minmax

(d) mw
Fig. 8. Memory allocation (in KB) in the different pipeline stages using the MinMax algorithm for trie construction, compared to using controlled prefix expansion.
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the cost of updating this separate table. CPE is controlled prefix expansion, and
MinMax is our new tree building algorithm. “filt8” denotes the runs when the
short prefixes were stored separately.

VI. REDUCING WRITE BUBBLES

Minimizing the disruption to the fast-path lookup pipeline by route
updates is an important goal of this work. We now describe a series of
optimizations aimed at reducing the number of write bubbles that are
sent to the pipeline when routes are added to or withdrawn from the
forwarding trie. These optimizations are implemented in either the trie
component or the packing component from Figure 3. In some cases,
the packing component applies an optimization based on writes that
are specially tagged by the update component. As we describe each
optimization, we show its benefits when applied incrementally along
with the previous optimizations.

A. Separating out updates to short routes

The number of short routes (
� 1 bits) in all the tables is very small

(O–II, Section IV). However, even a small number of updates to these
routes can cause a big disruption to the pipeline. For example, if the
trie root has a stride of 16, the addition of a 7-bit route can cause up
to �

��� /��@<���, � writes to the first stage of the pipeline. These writes
cannot be packed into a smaller number of bubbles since they all tar-
get the same pipeline stage.6 Since the trie construction algorithms do
not take into account such update effects when determining the strides

�
In fact, we have even observed the addition and deletion of a 1-bit route in

some of our traces.

(a)

A = 192.37.8/24

B = 192.37.9/24
A B C D E F G H
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level = 3
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——

Fig. 11. A subtree (a) before, and (b) after node pullup has been performed.
The 24-bit prefixes A, B, 	
	�	 , H can be pulled up 2 levels. The number of trie
nodes can at best decrease (in this case from 16 to 10) after node pullups.

in the trie, we instead suggest storing all short routes, of up to 8 bits
length, in a separate table with �
�s< ����� entries. Assuming 32 bits
per entry, this only requires an additional 1KB of fast memory. The IP
lookup process now searches the pipeline first. If no route is found, an
additional lookup is performed in this table using the first 8 bits of the
destination address. This lookup can also be pipelined similar to the trie
lookups. Figure 10 shows the benefit of using this simple optimization.
The figure includes the cost of writing to the new table. For example,
an update to a 7-bit route now causes 2 writes to the new table (which
cannot be packed into the same bubble). The benefit of this simple opti-
mization ranges between 1.6%–35% when using MinMax to construct
the trie. The routing tables for rrc01 and rrc03b benefit more than the
rest because they have a larger number of updates to very short routes,
including 1-bit routes.

An alternative to adding a separate table for short prefixes would be
to simply add another stage (with a stride of 8 bits) at the beginning of
the pipeline. However, with such a pipeline stage, many copies of the
short prefixes would be pushed down into lower parts of the trie (due
to leaf pushing) — adding a separate table at the end of the pipeline
avoids this overhead.

B. Node pullups

In fixed-stride tries, all 24-bit prefixes lie in a single level of the trie.
Since most updates are to 24-bit prefixes (O–I, Section IV), a large
fraction of the pipeline writes are directed to that level, which resides
in a single stage of the pipeline. This makes it harder to pack the writes
efficiently into bubbles. Node pullups are an optimization aimed at
spreading out the 24-bit prefixes in the trie. Given that there are many
groups of neighboring 24-bit prefixes in the trie (O–III, Section IV),
we can move entire such groups above the level that contains the 24-bit
prefixes. This pullup can be performed by increasing the stride of the
node that is the lowest common ancestor of all the neighboring prefixes
in the group. Let � be the level that contains the 24-bit prefixes. Con-
sider a node in a level b above level � ; say b terminates at bit position �
(where ��� ��� ). For some node in level b , if all of the �

� � /�� possible
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Fig. 12. Number of prefixes in each level of the pipelined trie before and after
node pullup. For both the datasets, the tallest bar in the original trie represents
the stage with the 24-bit prefixes.

24-bit prefixes that can be descendants of this node are present in the
trie, we pull all of them up into level b . The stride of the parent of the
pulled-up node is increased by ���\O � . We start examining nodes to
pull up in a top-down manner, so that the 24-bit prefixes are pulled as
far up as possible.

The node pullup optimization ensures that the memory requirement
of the transformed trie can possibly reduce, but not increase (see Fig-
ure 11). Thus, the MinMax algorithm constructs a strictly fixed-stride
trie; node pullups subsequently modify the strides of some nodes in a
controlled manner. This optimization is similar to the Level Compres-
sion scheme described in [18]. However, the motivation here is differ-
ent (we use it to reduce update overheads) and we have also developed
a modification to enhance the performance of this optimization (see the
next paragraph).

State Tries. Figure 12 shows the distribution of prefixes in different
levels of an 8-level trie before and after node pullups have been per-
formed for three of the datasets. Here we used the MinMax algorithm
to construct the trie. Node pullups are successful in spreading out the
prefixes across the pipeline stages. They also helped reduce the size of
the largest pipeline stage by an average of 6.5% compared to MinMax.
However, simply using the node pullup optimization is not sufficient.
The pullup information (in the form of a changed stride length) is stored
in the node where the pullup has occurred.7 Therefore, if the node it-
self is deleted, and then re-inserted (due to a route withdrawal, followed
by an insertion), this information cannot be reconstructed. Instead, the
only information available is the trie level information that has been
calculated by the MinMax algorithm. To remedy this shortcoming, we
use a state trie in software when pullups are applied. The state trie
stores the pullup information at each node. When there is a deletion
followed by an insertion, the stride size of the inserted node is obtained
from the corresponding node in the state trie.

Figure 13 shows the benefit of node pullups (with a state trie) for
reducing the total number of write bubbles. The benefits were lower
than we expected: updates to neighboring routes often appear together
(O–IV, Section IV), and all the neighboring routes are typically in the
same level, whether or not they have been pulled up. This makes it
difficult to pack the resulting writes to that level into write bubbles.

C. Eliminating excess writes
Since neighboring routes are often added in the same timestep (O–

IV, Section IV), the same trie node can be overwritten multiple times

� 5 bits are sufficient to represent strides of up to 32 bits; these 5 bits can be
easily fit into the single 32-bit word that represents a trie node. Assuming 1 bit
is used to flag leaf nodes, this leaves 26 bits for addressing, which implies about
64 million locations can be addressed—much more than the size of a pipeline
stage.
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Fig. 13. Reduction in the number of write bubbles after node pullups have
been performed (labeled “pullup”). “writes” shows the further reduction in write
bubbles when excess writes are eliminated. For both these optimizations, the trie
was constructed using the MinMax algorithm, and shorter prefixes were filtered
out.
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(b)
Fig. 14. (a) The portion of the trie before and after four neighboring prefixes A,
B, C, and D are added. The numbers (indexes) denote the memory locations in
the pipeline stage, and the value 0 denotes a null pointer. (b) Three excess writes
(and therefore 3 excess write bubbles) are eliminated by the packing component;
the write that adds the root of the new subtree is tagged ( � ) by the trie compo-
nent, and all trie nodes under it must be written at least once before the tagged
write is sent to the pipeline.

before all the nodes are added. We eliminate these extra writes (by
eliminating all except the last write to the same trie node), while tak-
ing care not to create any dangling pointers between consecutive write
bubbles. For example (see Figure 14), when neighboring 24-bit routes�

, � , � , and � are added in the same timestamp, the first route (say�
) may cause all four new nodes to be created. A pointer to

�
will

be written in one node and a null pointer will be written to its three
neighboring nodes (a total of 4 write bubbles). When � , � , and � are
added, pointers to them are written in these neighboring nodes. Thus,
the first of the two writes to each neighboring node ( � , � , and � ) can
be eliminated. Once again, the writes must be correctly ordered such
that the trie is never left in an inconsistent state with pointers pointing
to uninitialized nodes.

Excess writes can also be eliminated when neighboring routes are
withdrawn. Often an entire subtree is deleted when neighboring routes
are withdrawn. The trie component from Figure 3 tags any pipeline
write that deletes the root of an entire subtree. The packing component
then eliminates all the writes in that subtree that occur with the same
timestamp before the tagged write. Figure 15 shows how writes are
eliminated when the four neighboring routes added in Figure 14 are
withdrawn.

The effectiveness of both optimizations increases when a large num-
ber of neighboring routes are added or withdrawn in a single timestamp.
Figure 13 shows the benefit of eliminating the excess writes. Combined
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pointers to the nodes at levels 4, 5, and 6, respectively, and the numbers denote
memory locations.

with node pullups, it results in an incremental reduction of 18–25% in
the number of write bubbles over using MinMax and filtering out short
prefixes.

D. Caching deleted subtrees

A route is often withdrawn, and added back a little later with possi-
bly a different next hop (O–V, Section IV). Since the withdrawal and
the add often do not appear with the same timestamp, we cannot simply
update the next hop table in this case. Instead, when a route withdrawal
causes a subtree to be deleted, the trie component caches the subtree in
software and remembers the location of the cached trie in the pipeline
memory. The deleted subtree contains pointers to the withdrawn route,
as well as (possibly) pointers to a shorter routing prefix that was pushed
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Fig. 17. Effect of caching subtrees that are withdrawn and added back soon
after. The label “cache” denotes using the caching optimization (along with all
the previous optimizations).

down into the subtree due to leaf pushing.8 Therefore, the only infor-
mation that must be stored with the cached subtree is the prefix that was
pushed down, and the last route in the subtree that was withdrawn. If
the same route is added before any other neighboring route gets added,
and the prefix that is pushed down remains unchanged, we can simply
add back a pointer to the deleted subtree in the pipeline memory. All
this checking is performed in software by the trie component, and the
pipeline sees only one write instead of a number of writes. The caching
optimization is equivalent to allowing a fast “undo” of one route with-
drawal. Figure 16 shows how this optimization works.

When multiple routes withdrawn in the same timestep result in the
deletion of a subtree, the caching optimization can conflict with the op-
timization of eliminating excess writes (Section VI-C). For example,
consider Figure 15 after routes

�
, � and � are withdrawn. If route �

is withdrawn now and we cache the deleted subtree, the cached subtree
would still contain routes

�
, � , and � — pipeline writes that deleted

these routes were eliminated by the packing component as an optimiza-
tion. If route � is now added back, and if the cached subtree is rein-
serted into the trie, routes

�
, � , and � would also (incorrectly) be

added back to the trie. To avoid this error, the trie component caches a
subtree only if a single route is deleted from it in one timestamp. By
storing timestamps in the shadow trie nodes when they are modified,
the trie component checks for this condition before caching a subtree.
Figure 17 shows that caching subtrees reduces the number of write bub-
bles by an additional 13-16%.

Memory Requirements. Not all withdrawn routes are added back
soon after. Therefore, caching subtrees can consume precious pipeline
memory. However, since a route withdraw is often closely followed
by an add, we get most of the benefit of caching subtrees by incur-
ring small memory overheads. Therefore, we limited the amount of
caching memory to a fixed size. We observed that nodes withdrawn
several timestamps ago are less likely to be added back—hence, we
maintained a FIFO list of cached nodes. When the caching memory in
use went over the fixed size limit, the oldest cached nodes were deleted.
We experimented with the amount of memory required for caching in
order to get good performance from the caching optimization. The re-
sults are shown in Figure 18. The X-axis shows the caching memory
overhead per pipeline stage as a percentage of the trie memory usage
(actual allocation, not worst case) in that stage. In the Y-axis, we show
how effective the optimization was when compared to the case where
we could use unlimited caching memory. Thus, the 100% reduction
number (on the Y-axis) refers to the case where we can cache as many
deleted nodes as we want. We find that as much as 80% of the optimiza-
tion benefits can be obtained even if we restrict the cached memory to
only 5% of the memory allocated to the trie. The caching results in
Figure 17 were obtained using a 5% memory overhead threshold.

� At most one prefix can be pushed down into any subtree from above the
subtree.
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Fig. 19. Percentage reduction in the number of write bubbles; the base case
here is a trie constructed using MinMax, with no other optimizations. The effect
of each optimization is shown here in isolation (with no other optimizations
turned on); “all” shows the effect of turning on all the optimizations. Sometimes,
multiple optimizations target (eliminate) the same update; the “all” bar is slightly
lower in those cases.

E. Summary and discussion
The benefits of applying each optimization individually, and together

with the other optimizations is shown in Figure 19 — all the tries in
these experiments were built using MinMax. As noted before, the ben-
efits of the node pullup optimization are small. However, it does help
to further balance the memory requirements and prefixes across the
pipeline stages. Each of the remaining optimizations appears promis-
ing in reducing the number of write bubbles. Compared to using con-
trolled prefix expansion to construct the trie, the optimizations (along
with MinMax for trie construction) result in (on average) a factor of 2
fewer bubbles — compared to a trie with even strides (4 bits per stage),
the optimizations reduce the number of write bubbles on average by a
factor of 5.7 (see Figure 20).

We also tested the effectiveness of our optimizations with fewer
pipeline stages. Figure 21 shows the results of applying all the opti-
mizations when the pipeline has 4 or 6 stages (and therefore, 4 or 6 trie
levels, respectively) instead of 8. The graphs show that we get simi-
lar improvements for both the 4 and the 6-stage pipeline—hence, our
optimizations are not specific to a given number of pipeline stages.

Prefix Table Dynamics. The MinMax algorithm attempts to balance
the memory allocations across the pipeline stages — one of the motiva-
tions behind this was to avoid frequent rebuilding of the trie after incre-
mental updates. However, performing a large number of incremental
updates may cause the trie to gradually become unbalanced. Indeed,
it is possible that because of this unbalanced growth, the memory re-
quirements for some of the pipeline stages may exceed the capacity of
the pipeline stage when updates occur, and MinMax would need to be
re-applied to balance out the memory allocations. Hence it can be ar-
gued that optimizing the memory allocation based on an initial prefix
table snapshot may not be the right approach.

To explore this idea further, we did some measurements on how
much the structure of the optimal trie (as chosen by MinMax) changes
when large update sequences are applied to an initial trie. We used the
same update traces that we have been using so far and the results are
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Fig. 20. Number of write bubbles generated for the different tables. Here
“even” uses a trie with even (4-bit) strides, “CPE” uses controlled prefix ex-
pansion (with no additional optimizations), and “opt” constructs the trie using
MinMax and uses all the optimizations listed in this section.
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Fig. 21. Number of write bubbles when the lookup pipeline has fewer (4
or 6) stages. Here “CPE” denotes the number of bubbles generated when the
trie is constructed using controlled prefix expansion (with no additional opti-
mizations), and “opt” is when the trie is constructed using MinMax and all the
optimizations listed in this section are applied.

shown in Table IV. The table shows the percentage difference in the
size of the largest stage after all the updates are applied, and the size
of the largest stage if the MinMax algorithm were applied at the end of
the updates to rebalance the trie once more. For all the tables, the basic
structure of the trie (in terms of strides at each level) chosen by MinMax
remained the same before and after the updates. The small difference
in the sizes of the largest stage shown in Table IV is due to some ad-
ditional nodes being pulled up when the trie is rebuilt at the end of the
updates. Note that the optimal trie structure at the end of the updates
remained unchanged even for the me-a and me-b tables, which grew
by 34% and 61%, respectively. In conclusion, our approach based on
optimal memory allocation using an initial prefix table snapshot works
reasonably well. Of course, as the size of the table grows significantly,
periodic rebalancing (and eventually, more physical memory) will be
required.

Table rrc01 rrc03a rrc03b rrc04 meb mea mw

Diff. in max 3.4% 1.5% .09% 0.5% 7.9% 1.8% .38%

TABLE IV. “Diff. in max” is the difference in the size of the largest stage after
all the incremental updates are applied, and the size of the largest stage when
MinMax is re-applied after the updates to reconstruct the trie from the new set
of prefixes.

VII. RELATED WORK

Packet forwarding in high speed routers has been a well studied area.
In particular, several techniques have been suggested to optimize IP
lookup using binary trees [5], [7], [13], [15], [23], or binary search [12],
[24], [25].

Multi-bit tries (such as the ones considered in this paper) have been
also been used extensively for fast IP lookups. Gupta et. al. in [6]
proposed a 2-level multi-bit trie where the first level had a stride length
of 24 and the second level had a stride length of 8. This was based on



the observation that most routing table entries have a prefix length of
24 bits or less. Consequently, most routing lookups could be done in 1
memory access — however, updating shorter prefixes can require sev-
eral writes to memory. In another scheme, Nilsson et. al. [18] use the
Level Compression technique (similar to the node pullup technique de-
scribed in Section VI) to convert binary search tries into multi-bit tries.
In their scheme, (nearly) full binary subtrees with b levels are converted
(recursively) into a single multi-bit trie node with stride length b to re-
duce the number of lookups.

Several schemes, such as the Lulea Algorithm [4], apply path com-
pression to optimize multi-bit tries. Crescenzi et. al. [3] use run length
encoding to efficiently compress the routing table. The more general
problem of constructing multi-bit tries (with either fixed or variable
strides) that are optimal in terms of total memory usage for a given
number of lookups was solved by Srinivasan and Varghese in [24]; this
is the algorithm described in Section V. Cheung and McCanne [1]
have developed an algorithm for trie layout that improves the average
case performance using dynamic programming and Lagrange multi-
pliers. Narlikar and Zane [16] built a performance model to improve
the average-case performance of trie-based lookups in the presence of
caching.

Almost all of the work described above deals with non-pipelined ar-
chitectures, and the focus is to minimize the routing trie size or the
lookup time. One exception is work by Sikka and Varghese [22], which
presents efficient memory allocators to support fast updates, and points
out the memory allocation problem for pipelined architectures. Our
work is the first (to our knowledge) to focus on minimizing the over-
heads of incremental route updates in multi-stage pipelined architec-
tures.

Technologies based on Ternary CAMs (TCAMs) [9], [17] provide
an attractive alternative to ASIC-based designs that implement tries.
TCAMs are content addressable (fully associative) memories that allow
each bit to have a 0, 1, or “don’t care” value. A TCAM can return
one lookup result per cycle. Multiple matches for a given destination
address are typically resolved by selecting the entry with the lowest
(highest) memory location, requiring the table to always be sorted with
respect to prefix lengths.

Recent work on TCAMs has looked at strategies for efficiently com-
pressing and updating TCAM routing tables [14], [21]. The biggest
advantages of TCAMs are their lookup speeds and ease of manage-
ment. However, they are typically more expensive and consume sig-
nificantly more power than ordinary random access memories that are
used in ASIC-based designs.

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we have presented a scheme for minimizing route up-
date overheads in forwarding engines that use pipelined ASIC architec-
tures. Our optimizations are driven by certain well-known characteris-
tics of the IPv4 address allocation process (especially related to aggre-
gation), and the BGP routing protocol. On applying these optimizations
to a set of real route update traces obtained from the Internet core, we
find that they can produce more than a 5-fold reduction in the num-
ber of write bubbles that go through the packet lookup pipeline when
compared to the baseline case of assigning equal strides to each level.
Further, when compared to an existing optimization algorithm that uses
controlled prefix expansion, our algorithm shows a 2-fold reduction in
write bubble overheads. Future work would include the development
and evaluation of schemes for pipelines that require multiple passes
through the pipeline for lookups and updates. This would be especially
useful for IPv6 lookups.
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