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Abstract— Ternary Content-Addressable Memories (TCAMs)
are becoming very popular for designing high-throughput for-
warding engines on routers: they are fast, cost-effective and sim-
ple to manage. However, a major drawback of TCAMs is their
high power consumption. This paper presents architectures and
algorithms for making TCAM-based routing tables more power
efficient. The proposed architectures and algorithms are simple
to implement, use commodity TCAMs, and provide worst-case
power consumption guarantees (independent of routing table con-
tents).

I. INTRODUCTION

Ternary Content Addressable Memories (TCAMs) are fully asso-
ciative memories that allow a “don’t care” state to be stored in each
memory cell in addition to 0s and 1s. This feature makes them partic-
ularly attractive for packet classification and route lookup applications
which require longest prefix matches. When a destination address is
presented to the TCAM, each TCAM entry is looked up in parallel,
and the longest prefix that matches the address is returned. Thus, a sin-
gle TCAM access is sufficient to perform a route lookup operation. In
contrast, conventional ASIC-based designs that use tries may require
multiple memory accesses for a single route lookup. Therefore, rout-
ing latencies for TCAM-based routing tables are significantly lower
than ASIC-based tables. Moreover, TCAM-based tables are typically
much easier to manage and update than tables implemented using
tries.

Despite these advantages, routing vendors have been slow in adopt-
ing TCAM devices in packet forwarding engines because of two main
reasons. First, TCAM devices have traditionally been more expen-
sive and less dense compared to conventional ASIC-based devices.
However, both the density and the cost of TCAMs have dramatically
improved in the past few years, making them a viable alternative to
ASIC-based designs in high-speed core routers. The second reason is
that of high power consumption. Current high-density TCAM devices
consume as much as 12–15 Watts each when all the entries are enabled
for search. Moreover, a single linecard may require multiple TCAMs
to handle filtering and classification as well as IP lookup on large for-
warding tables. This high power consumption number affects costs
in two ways—first, it increases power supply and cooling costs that
account for a significant portion of an ISP’s operational expenses [1].
Second, it reduces port density since higher power consumption im-
plies that fewer ports can be packed into the same space (e.g., router
rack) due to cooling constraints. Therefore, it is important to mini-
mize the power budget for TCAM-based forwarding engines to make
them economically viable.

In this paper, we focus on the problem of making TCAM-based for-
warding engines more power efficient by exploiting commonly avail-
able TCAM features. Several TCAM vendors (e.g., [3]) now provide
mechanisms for searching only a part of the TCAM device in order

to reduce power consumption during a lookup operation. We take ad-
vantage of this feature to provide two different power efficient TCAM-
based architectures for IP lookup. Both of our architectures utilize a
two stage lookup process. The basic idea in either case is to divide
the TCAM device into multiple partitions (depending on the power
budget). When a route lookup is performed, the results of the first
stage lookup are used to selectively search only one of these parti-
tions during the second stage lookup. The two architectures differ in
the mechanism for performing the first stage lookup. In the first ar-
chitecture, we use a subset of the destination address bits to hash to
a TCAM partition (the bit-selection architecture), allowing for a very
simple hardware implementation. The selected bits are fixed based on
the contents of the routing table. In the second architecture, a small
trie (implemented using a separate, small TCAM) is used to map a
prefix of the destination address to one of the TCAM partitions in the
next stage (the trie-based architecture). This adds some design com-
plexity, but we show that it results in significantly better worst-case
power consumption.

The main contributions of this paper are as follows. First, for each
architecture, we bound the worst-case power consumption. For the
bit-selection architecture, the bounds will depend on some assump-
tions regarding prefix distributions. The worst-case bounds provide
hardware designers with a worst-case power budget. Second, we
present partitioning algorithms for both architectures, and analyze the
performance of these algorithms. Finally, we evaluate our partitioning
algorithms using real routing table traces obtained from various core
routers in the Internet. We show that in realistic settings, the power
savings are larger than are guaranteed by the worst-case analysis. We
also note that while this paper focuses on IPv4 address lookups, simi-
lar techniques can be used for IPv6 address lookups.

The rest of the paper is organized as follows. Section II describes
the architecture of a typical TCAM device. Section III describes the
bit-selection architecture along with an algorithm with good average
case performance as well as a bound on the worst-case power budget.
Section IV describes the trie-based architecture, along with two algo-
rithms and their bounds on the worst-case power budgets. In both
these sections, we validate our results using real life routing table
traces. Section V addresses issues involved in updating the routing
tables on both the proposed architectures. Related work is summa-
rized in Section VI, and we conclude in Section VII.

II. TCAMS FOR ADDRESS LOOKUPS

A Ternary Content Addressable Memory (TCAM) is a fully asso-
ciative memory that allows a “don’t care” state for each memory cell,
in addition to a 0 and a 1. A memory cell in a “don’t care” state
matches both 0s and 1s in the corresponding input bit. The contents
of a TCAM can be searched in parallel and a matching entry, if it ex-
ists, can be found in a single cycle (using a single TCAM access). If



multiple entries match the input, the entry with the lowest address in
the TCAM is typically returned as the result.

The characteristics described above make TCAMs an attractive
technology for IP route lookup operations where the destination ad-
dress of an incoming packet is matched with the longest matching
prefix in a routing table database. TCAMs can be used to implement
routing table lookups as follows. If the maximum prefix length is � ,
then each routing prefix of length ��������� is stored in the TCAM
with the rightmost �
	�� bits as “don’t cares”. For example, the IPv4
prefix 192.168.0.0/15 will have “don’t care” in the last 17 bit posi-
tions. To ensure that the longest prefix match is returned, the prefixes
in the TCAM must be sorted in order of decreasing prefix length. The
sorting requirement makes it difficult to update the routing table—
however, recent work [9] has proposed innovative algorithms for per-
forming TCAM updates simply and efficiently.

As mentioned earlier, the two main disadvantages of using TCAMs
have traditionally been the high cost to density ratio and the high
power consumption. Recent developments in TCAM technology
have effectively addressed the first issue—TCAM devices with high
capacity (up to 18Mbits) and search rates of over 100 Million
lookups/second [3], [8] are now coming to market with costs that are
competitive with alternative technologies (such as pipelined ASIC-
based routing engines).

The power consumption issue still remains somewhat unresolved.
The main component of power consumption in TCAMs is propor-
tional to the number of searched entries. A typical 18Mbit TCAM
device can consume up to 15 Watts of power when all the entries are
searched. Growth trends in the routing tables in the Internet core [2]
have prompted routing vendors to design routing engines capable of
scaling up to 1 million entries. A 18Mbit TCAM can store up to 512K
32 bit prefixes—this translates to at least 2 TCAM devices for IPv4
forwarding alone. Adding more TCAM devices for flow classification
and IPv6, one can see how TCAM power consumption on a linecard
can become a major cost overhead.

TCAM vendors today have started providing mechanisms that can
reduce power consumption by selectively addressing smaller portions
of the TCAM. Each portion (called a sub-table or database) is defined
as a set of TCAM blocks. A TCAM block is a contiguous, fixed-sized
chunk of TCAM entries, usually much smaller than the size of the
entire TCAM. For example, a 512K entry TCAM could be divided
into 64 blocks containing 8K entries each. The sub-tables can then
be defined as (possibly overlapping) subsets of the 64 blocks by us-
ing a 64-bit mask. When a search command is issued, the sub-table
ID is also specified along with the input—only the blocks in the spec-
ified sub-table are then searched. Currently, TCAMs typically sup-
port a small number of sub-tables (such as 8 sub-tables addressed by
a 3-bit ID), but the same mechanism could be used to support more
sub-tables. Typically, each sub-table is intended for use in a different
lookup/classification application (e.g., IPv4 lookup, IPv6 lookup, flow
classification, and so on).

In this paper, we exploit the mechanism described above to re-
duce power consumption for route lookup applications. Given that the
power consumption of a TCAM is linearly proportional to the num-
ber of searched entries, we use this number as a measure of the power
consumed. Clearly, if the TCAM is partitioned into � equal-sized
sub-tables, it is possible to reduce the maximum number of entries
searched per lookup operation to as low as 
� of the TCAM size.
However, this raises three important issues. First, we need to parti-
tion the TCAM into sub-tables. Second, given an input, we need to

select the right partition and search it. Finally, for a given partitioning
scheme, we need to compute the size of the largest partition over all
possible routing tables (worst-case bound) so that hardware designers
can allocate a power budget. We now examine how these issues can
be addressed by presenting two different architectures in the next two
sections.

III. THE BIT SELECTION ARCHITECTURE

In this section, we describe the bit selection architecture for TCAM-
based packet forwarding engines. The core idea here is to split the en-
tire routing table stored in the TCAM device into multiple sub-tables
or buckets, where each bucket is laid out over one or more TCAM
blocks. Each route lookup is now a two-stage operation where a fixed
set of bits in the input is used to hash to one of the buckets. The
selected bucket is then searched in the second stage. The hashing is
performed by some simple glue logic placed in front of the TCAM
device (which we refer to as the data TCAM). We restrict the hash
function here to be such that it simply uses the selected set of input
bits (called the hashing bits) as an index to the appropriate TCAM
bucket.

In the following subsections, we first describe the basic architecture
for the forwarding engine, followed by a data-independent bound on
the worst-case power consumption. This bound is dependent on the
size of the routing table and is proportional to the maximum number of
blocks searched for any lookup. We then describe some heuristics to
efficiently split a given routing table into buckets and how to map these
buckets onto TCAM blocks. Finally, we describe some experimental
results obtained by applying our heuristics on real routing tables. The
problem of updating the routing table is addressed in Section V.

A. Forwarding engine architecture

The forwarding engine design for the bit selection architecture is
based on a key observation made in a recent study [2] of routing ta-
bles in the Internet core. This study pointed out that a very small
percentage of the prefixes in the core routing tables (less than 2%
in our datasets) are either very short ( � 16 bits) or very long ( � 24
bits). We therefore developed an architecture where the very short and
very long prefixes are grouped into the minimum possible number of
TCAM blocks. These blocks are searched for every lookup. The re-
maining 98% of the prefixes that are 16 to 24 bits long are partitioned
into buckets, one of which is selected by hashing for every lookup.

The bit-selection architecture is shown in Figure 1. The TCAM
blocks containing the very short and very long prefixes are not shown
explicitly. The bit-selection logic in front of the TCAM is a set of
muxes that can be programmed to extract the hashing bits from the in-
coming packet header and use them to index to the appropriate TCAM
bucket. The set of hashing bits can be changed over time by repro-
gramming the muxes.

For the rest of this section, we make the following assumptions.
First, we only consider the set of 16 to 24 bit long prefixes (called
the split set) for partitioning. Second, it is possible that the routing
table will span multiple TCAM devices, which would then be attached
in parallel to the bit selection logic. However, each lookup would
still require searching a bucket in a single TCAM device. Thus, for
simplicity, we assume that there is only one TCAM device. Third,
we assume that the total number of buckets ������� is a power of
2. Then, the bit selection logic extracts a set of � hashing bits from
the packet header and selects a prefix bucket. This bucket, along with
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the TCAM blocks containing the very short and very long prefixes are
then searched.

The two main issues now are how to select these � hashing bits,
and how to allocate the different buckets among the various TCAM
blocks. (Recall that the bucket size may not be an integral multiple of
a TCAM block size.) The first issue leads to our final assumption—
we restrict ourselves to choosing the hashing bits from the first 16 bits,
which is the minimum length of a prefix in the split set. Otherwise, if
��� (say) of the hashing bits are in bit positions longer than the length
of a prefix, the prefix needs to be replicated in � �

�
buckets. The “best”

hash function (that is, set of hashing bits) is the one that minimizes the
size of the biggest resulting bucket.

B. Worst-case power consumption

We begin by analyzing the worst-case power consumption of the
bit-selection architecture. More specifically, given any routing table
containing � prefixes, each of length ��� , we would like to calculate
the size of the largest bucket generated by the best possible hash func-
tion that uses � ��� bits out of the first � bits for hashing ( � ����� ,
from our assumptions).

Since a hash function uses � out of a candidate � bits, there are a
total of ��� �

�
possible hash functions. Given any prefix set of size � ,

we call the sum of the largest bucket sizes over all the ��� �
�

hash func-
tions to be MaxSum for the prefix set. Similarly, we define ZeroSum
to be the sum of the sizes of the buckets where all the hashing bits
have value zero (the all-zero buckets). We first show that among all
the prefix sets of size � that maximize MaxSum, there is one where
MaxSum is equal to ZeroSum. Next, we show that for any prefix set
of size � , ZeroSum is at most  �!� 
 � 
 � � ; the function  �!� 
 � 
 � �
is defined below. From this, we conclude that MaxSum can be at most �!� 
 � 
 � � , and thus there exists some hash function where the largest
bin has size at most "$#&%(' � ' �*)�,+ - � , which is the average size of the largest

bucket over all hash functions. This gives as a worst-case bound on
the power consumption.

Definitions. For any set of prefixes, we call the largest bucket created
by the best hash function the MaxBucket. The worst case bound on
the TCAM power consumption in the bit selection architecture for a
table of size � is computed by considering the set of � prefixes for
which MaxBucket is the largest. Since the hashing bits are selected

.
100K 178177 0.5M 644097 1M 1762305

(174K) (0.6M) (1.68M)
Upper Lower Upper Lower Upper Lower/1032
0.566 0.542 0.444 0.434 0.381 0.345/1034
0.281 0.252 0.163 0.153 0.117 0.092

TABLE I. Lower and upper bounds on the size of the largest bucket
for the Bit-Selection Scheme, � �5��� ; the sizes are relative to the
number of prefixes � . Note that the lower bounds are given only for
values of � where �76189 ��:<;!=?>@� � ; � for some A �B� , and are tight
bounds (i.e., the same as upper bounds). For other values of � (such
as 100K), we only provide the upper bounds, which are loose.

from the first � bits of each prefix ( � ����� in our case), we represent
a set of � prefixes as a set of � -bit weighted vectors, with a total
weight of � . The weight CED �GF � of an � -bit vector F is defined as the
number of prefixes in the prefix set that have the first � bits the same
as F . Let 89 be the maximum possible weight for a vector. Since we
focus on 16-24 bit prefixes, 89 � ��HI� ; this is the maximum number of
16-24 bit prefixes that share the first 16 bits, and are not completely
covered by some other 16-24 bit prefix. Next, let supp( F ) denote
the support (number of non-zero bits) of the vector F . The function �!� 
 � 
 � � is then defined as  �!� 
 � 
 � � �J89 :LK�M�NO� �QPSRUT�V�V # K )�

�
,

where WYXBZ	[ 
 �I\ � is a set consisting of the first �76189 vectors in order
of increasing support, each with weight 89 .

Finally, we define ] to be the set of all possible � � �
�

hash functions

that use � bit positions to split the input set into � � buckets.

Upper bound on power consumption. Recall that the worst case
power consumption of the TCAM is directly proportional to the size
of the largest bucket. The following theorem states an upper bound on
the size of the largest bucket for any input prefix set; the proof can be
found in Appendix I.

Theorem III.1: For all ^`_aZI[ 
 �I\ � 
 :<bcM�deCED �GF � �f� , there
exists some hash function g�hi] that splits the set ^ into buckets
such that the size of the largest bucket is at most "$#&%(' � ' �*)� + - � .

This bound is tight whenever �76189 �Y:<;G=j>k� � ; � for some value ofA �l� . In this case, for the set W , the largest bucket for every hash
function has the same size, so the bucket sizes for the average and the
best hash function coincide. However, for other values of �e6189 , the
upper bound given by the theorem is not tight. For example, adding
one more prefix will raise the weight of the largest buckets on average,
but may not affect the largest bucket for the best hash function.

We show the actual upper and lower bounds on the size of the
largest bucket relative to the size of the prefix set for selected values of� 
 � 
 and � in Table I. For example, for any set of 1 million 16-24 bit
prefixes ( � =1M), there exists a 3-bit hash function ( � =3) for which
the biggest bucket is guaranteed not to contain more than 0.381M pre-
fixes; this guarantees a power reduction of a factor by �	6?m nco�� � �jm ��� .
In contrast, an ideal hash function would generate � � �po equal-sized
buckets, reducing the power consumption by a factor of 8.

C. The Bit Selection Heuristics

In practice, we do not expect to find a real routing table that matches
the worst-case input described in Section III-B. However, as explained
earlier, the bound on the worst case input helps designers to determine
the power budget. Given such a power budget, and a routing table, it is
sufficient to ensure that the set of selected hashing bits produces a split



that does not exceed the power budget. We call such a split a satisfying
split. Note that it is possible that for the given routing table, a different
partitioning (with lower power consumption) exists but we only care
about keeping the power consumption below the power budget.

In this section, we describe three different heuristics for choosing
the set of hashing bits. We then show how these heuristics can be com-
bined to ensure that the power budget computed by Theorem III.1 can
be maintained. Note that this methodology can be repeatedly applied
to maintain the power budget when route updates occur.

Our first heuristic is the simplest (the simple heuristic) and requires
no computation. This is based on the following observation. For al-
most all the routing table traces that we have analyzed, the rightmost
� bits from the first 16 bits provide a satisfying split. However, this
may not be true for tables that we have not examined or for tables of
the future. Therefore, better schemes may be required if these hashing
bits do not yield a satisfying split.

The second heuristic requires the most computation—it uses a brute
force search to check all possible subsets of � bits from the first 16
bits and selects the first hashing set that satisfies the power budget.
Obviously, this method is guaranteed to find a satisfying split. Since
this method compares � 
���

�
possible sets of � bits, its running time is

maximum for � �po .
Finally, the third heuristic is a greedy algorithm that falls between

the brute force heuristic and the simple heuristic in terms of computa-
tion as well as accuracy. It may not find a satisfying split always, but
has a higher chance of succeeding than the simple heuristic. To select
� hashing bits, the greedy algorithm performs � iterations, selecting
1 hashing bit per iteration. Thus, the number of buckets (partitions of
the routing table) doubles in each iteration. The goal in each iteration
is to select a bit that minimizes the size of the biggest bucket produced
by the 2-way split in that iteration (see Figure 2 for details).

We now outline a scheme that combines each of the three heuristics
to minimize the running time of the bit-selection procedure. Let

�
be the lower bound on the worst-case size of the largest bucket (given
by Theorem III.1), and � be the size of the entire TCAM. In addition,
let � be the power consumption of the TCAM when all the entries
are searched. Then the worst-case power budget is given by ��� �
�����
	 ��� 
 � ��� , where [ ��	 � � provides a small additional margin
for slack (say, 5%). It is possible to maintain a power budget of ���
using the following steps.

1) Split the routing prefixes using the last � of their first 16 bits. If
this produces a satisfying split, stop.

2) Otherwise, apply the greedy heuristic to find a satisfying split
using � hashing bits. If this produces a satisfying split, stop.

3) Otherwise, apply the brute force heuristic to find a satisfying
split using � hashing bits.

We remind the reader that the algorithm described above must be ap-
plied whenever route updates change the prefix distribution in the rout-
ing table such that the size of the largest bucket exceeds

�
. For real

tables, the expectation is that such recomputations will not be neces-
sary very often. We explore the issue of recomputations in more detail
in Section V.

D. Experimental results

In this subsection, we present experimental results of applying the
bit selection heuristics described in Section III-C. We evaluated the
heuristics with respect to two metrics—the running time of the heuris-
tic, and the quality of the splits produced by the heuristics. For this
purpose, we applied the heuristics to multiple real core routing tables,

� 0����
;

bins =
�����

;
for � = 1 to

/
minmax = � ;
foreach bit ��� � ��!�"#"$"$!#� 4 �&%'�

bins � 0��)( �+* � !,( �-* 
 . ( � bins
�
;

max � 0 max (bins � );
if (minmax / max � ) then

min bit = � ;
minmax = max � ;

endif
endforeach� 00�21436587 9:5 ;

;
bins = bins <�= > ?@= A

endfor

Fig. 2. Greedy algorithm for selecting � hashing bits for a satisfying
split. B is the set of bits selected, and C is the set of all prefixes in
the routing table. Here DE�+* > denotes the subset of prefixes in set D that
have a value of A (A � [ or � ) in bit position

�
.

site location date table size

rrc04 Geneva 11/01/2001 109,600
oregon Oregon 05/01/2002 121,883

TABLE II. The two core routing tables used to test the bit selection
schemes.

and we present the results for 2 of those tables. Details of these rout-
ing tables are listed in Table II. The results of applying the algorithms
to the other core routing tables were similar.

Running Times. The running times for the brute force and the greedy
heuristics are shown in Figure 3.1 All the experiments were run on a
800 MHz PC and required less than 1MB of memory. We first con-
sider the running time of the brute force heuristic. For the real routing
tables, there were less than 12,000 unique combinations of the first 16
bits for the 16-24 bit prefixes. The running time for the brute force
algorithm was less than 16 seconds for selecting up to 10 hashing bits
(Figure 3(a)).

To explore the worst case running times for 1M prefixes, we gen-
erated a synthetic table that has approximately 1 million prefixes with
� 
�� unique combinations of the first 16 bits. This table was con-
structed by randomly picking the (non-zero) number of prefixes that
share each combination of the first 16 bits. In this case, the running
time can go as high as 80 seconds for selecting 8 hashing bits.

Looking at the numbers for the greedy heuristic, we find that for
real tables, it can run in as low as 0.05 seconds (up to 10 hashing bits)
and takes about 0.22 seconds for the worst case synthetic input (Fig-
ure 3(b)). This is an order of magnitude faster than the brute force
heuristic. However, if the routing updates do not require frequent re-
organizations of the routing tables, the brute force method might also
suffice.

Quality of Splits. We now explore the nature of the splits produced
by each of the three heuristics. Let � denote the number of 16-24 bit
prefixes in the table, and F�G K)H denote the maximum bucket size. The
ratio %I,JLK$M is a measure of the quality (evenness) of the split produced
by the hashing bits. In particular, it is the factor of reduction in the
portion of the TCAM that needs to be searched. Figure 4 shows a
plot of %I,JLK$M versus the number of hashing bits � . From the figure,


 Note that the simple heuristic is a static selection process.
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routing tables.
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we see that the ratio %I-J�K$M for the brute force and greedy schemes is
nearly 53 at � � � ; for the static scheme this ratio is around 49, while
this ratio for the best possible split (a completely even split) would be
� � � � � . The differences between the three bit selection heuristics
widens as more hashing bits are used. Since the synthetic table was
generated by selecting the number of prefixes for each combination of
the first 16 bits uniformly at random, it is easier to find good hashing
bits for it. Hence all the three bit selection schemes provide splits that
are close to ideal for the synthetic table. In contrast, real tables are
less uniform than the synthetic table yielding more uneven splits, and
therefore, lower power reduction ratios.

Laying out buckets on TCAM blocks. We now consider the prob-
lem of laying out the buckets (corresponding to a satisfying split) on
the TCAM blocks. First, the blocks containing the very long and very
short prefixes are placed in the TCAM at the beginning and the end,
respectively. This ensures that the longest prefix is selected in the
event of multiple matches. We now focus on the buckets containing
the 16-24 bit prefixes. Let the size of the largest bucket be F�G K�H , and
let the size of each TCAM block be D . Ideally, we would like at most� F)G K�H 6 D
� blocks be to searched when any address is looked up. How-
ever, it is possible to show that for any TCAM with capacity � and
block size D , there exists a possible split of � prefixes into buckets
(of maximum size F)G K�H ) such that every possible layout scheme will
have to lay out at least one bucket over � � F G K�H 6 D�� � � � TCAM blocks.

Our scheme lays out the buckets sequentially in any order in the
TCAM, ensuring that all the prefixes in one bucket are in contiguous

locations. It is possible to show that for this scheme, each bucket of
size F occupies no more than

� F�6 D
� �3� TCAM blocks. Consequently,
at most

� F G K�H 6 D��&� � TCAM blocks need to be searched during any
lookup. Thus, our layout scheme is optimal in the sense that it matches
the lower bound discussed in the previous paragraph.

The actual power savings ratio will be lower than the metric�e6 F@G K�H plotted in Figure 4. This is because the bucket layout scheme
may round up the number of searched blocks and the extra blocks
containing the long and short prefixes need to be searched for every
lookup. For example, consider the task of laying out a 512K-entry
prefix table into a 512K-entry TCAM with 64 8K blocks. Suppose
that the very short ( � 16-bit) and very long ( � 24-bit) prefixes fit into
2 blocks, while the biggest bucket contains 12K 16-24 bit prefixes.
The metric �76 F)G K�H has the value H?� � � 6?� � ��� � �jm ��� . However,
our layout scheme guarantees that the maximum number of blocks
searched during a lookup would be � � � � � 6co ��� �3� � � � � H , which
reduces power consumption by a factor of � � 6cH �L� �jm o . For a TCAM
with a maximum power rating of 15 Watts, this results in a power bud-
get of under 1.2 Watts, which is in the same ballpark as the SRAM-
based ASIC designs [3].

E. Discussion

The bit selection architecture provides a straightforward technique
for reducing the power consumption of data TCAMs. In particular, the
additional hardware required for bit extraction and hashing is a set of
simple muxes and can be very cost effective. However, the technique
has some drawbacks. First, the worst-case power consumption guar-
anteed by this method is fairly high. In practice (i.e., for real tables),
we saw that our heuristics provide significantly lower power consump-
tion. For example, for a table with � =1M prefixes, the worst-case
analysis guarantees a power reduction ratio �e6 F�G K)H �
�jm � � using
3 hashing bits (from Table I), while our experimental results indicate
power reduction ratios over 7.5 (from Figure 4). However, for a hard-
ware designer who allocates a power budget, the worst-case power
requirement is required to provide a guaranteed-not-to-exceed power
budget. Thus, for the bit selection architecture, the designer would
be forced to design for a much higher worst-case power consumption
than will ever be seen in practice.

Second, the method of bit-selection described here assumes that the
bulk of the prefixes lie in the 16-24 bit range2. This assumption may
not hold in the future. In particular, the number of long ( � 24-bit)
prefixes may increase rapidly in the future [2]. In the next section,
we present tree-based algorithms that do not make any assumptions
regarding the distribution of prefixes to be split and provide tighter
bounds on worst-case power consumption at the cost of some addi-
tional hardware.

IV. TRIE-BASED TABLE PARTITIONING

We now present two schemes that use a routing tree (trie) data struc-
ture for partitioning the routing table into TCAM buckets. Both these
schemes eliminate the two main drawbacks of the bit-selection archi-
tecture that we discussed in Section III-E. In other words, the trie-
based schemes do not assume that the bulk of the prefixes lie in the
16-24 bit range, and provide bounds on the worst-case power budget
that are matched in practice. Since it is no longer assumed that most
prefixes lie in the 16-24 bit range, the trie-based schemes are able to


For example, the upper bounds on power consumption from Table I would
increase if these assumptions are violated.
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Fig. 5. Forwarding engine architecture for the trie-based power reduc-
tion schemes.

partition the entire routing table, instead of concentrating only on the
16-24 bit prefixes.

As mentioned earlier, the main difference between the bit-selection
architecture and the trie-based architecture is that the latter uses a pre-
fix trie in the first stage lookup process instead of hashing on a set of
input bits. This requires some additional hardware, as shown in Fig-
ure 5. Each input is first matched with respect to an initial, small-sized
TCAM (containing the trie) that indexes into an associated SRAM. We
call these the index TCAM, and the index SRAM, respectively. The in-
dex SRAM contains the ID of the TCAM bucket (obtained as a result
of the partitioning) that should be searched in the second stage lookup.
Obviously, this lookup process requires the entire index TCAM to be
searched every time. However, we shall show that the index TCAM is
typically very small in size compared to the data TCAM, and does not
contribute significantly to the power budget. As with the bit-selection
architecture, a large routing table can be laid out across multiple data
TCAMs connected in parallel. Each address lookup then involves
searching exactly one bucket in one of these data TCAMs. For sim-
plicity, we shall assume that there is only one data TCAM—our results
apply equally well when there are multiple data TCAMs.

The forwarding architecture described above raises two important
issues. First, we must show how the trie in the index TCAM is con-
structed, and second, we must calculate the upper bounds on the size
of the index TCAM (since this is a component of the power budget).
We address both these issues in the next few subsections where we
present the two trie-based partitioning schemes. Finally, we note that
the second partitioning scheme provides a better (or lower) bound on
the worst case bucket sizes of the data TCAM at the expense of a
larger index TCAM.

A. Overview of Routing Tries

The partitioning schemes that we present here both work in two
steps. First a binary routing trie (often called a 1-bit trie [10]) is con-
structed using the routing table. In the second step, subtrees or col-
lections of subtrees of the 1-bit trie are successively carved out and
mapped to individual TCAM buckets. We call this the partitioning
step. The two partitioning schemes essentially differ in their partition-
ing step.

Before we present the actual schemes, we first present an overview
of 1-bit tries and some of their important properties that we utilize.
A 1-bit trie is used for performing longest prefix matches. It consists
of a collection of nodes, where a routing prefix of length � is stored
at a node in level � of the trie. When presented with an input, the
lookup process starts from the root, scans the input from left to right
and descends the left (right) branch when the next bit in the input is 0
(1) until a leaf node is reached. This traces a path from the root node
to the longest prefix that matches the input. For any node 	 , the prefix
denoted by the path from the root to 	 is called the prefix of 	 , and the
number of routing table prefixes in the subtree rooted at 	 is called the
count of 	 .
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Fig. 6. (a) An example routing table, and (b) the corresponding 1-
bit trie built from it. The prefixes of only the black nodes are in the
routing table. A “ � ” in the prefixes denotes the start of don’t-care bits.

Every node in the 1-bit trie must have a non-zero count, i.e., a node
appears in the trie only if the subtree rooted at that node contains at
least one prefix. Therefore, the prefix of a leaf node must be in the
routing table. In contrast, the prefix of an intermediate node may not
be in the routing table. For any node � , the prefix of the lowest com-
mon ancestor of � (including � itself) that is in the routing table is
called the covering prefix of � . The covering prefix of a node is nil if
there are no nodes in the path to the root whose prefix is in the rout-
ing table. Figure 6 presents an example 1-bit trie built from a routing
table.

B. Splitting into subtrees

We now describe the first of the two trie-based partitioning al-
gorithms, called subtree-split (see Figure 7). This algorithm takes
as input a parameter

�
that denotes the maximum size of a TCAM

bucket (in terms of number of prefixes). The output is a set of
� h 
�� % � � 
 �


 %� ��� TCAM buckets, each with a size in the range
�� � 6 � � 
 � � , and an index TCAM of size � . During the partitioning
step, the entire trie is traversed in post order looking for a carving
node. A carving node is a node 	 whose count is at least

� � 6 � � and
whose parent exists and has a count greater than

�
. Every time a carv-

ing node 	 is encountered, the entire subtree rooted at 	 is carved out
and placed in a separate TCAM bucket. Next, the prefix of 	 is placed
in the index TCAM, and the covering prefix of 	 is added to the TCAM
bucket (we explain why in the next paragraph). Finally, the counts of
all the ancestors of 	 are decreased by the count of 	 . In other words,
once the subtree rooted at 	 is carved out, the state of the rest of the
tree is updated to reflect that. When there are no more carving nodes
left in the trie, the remaining prefixes (if any) are put in a new TCAM
bucket with an index entry of � in the index TCAM. Note that the size
of this last TCAM bucket is in the range


 � 
 � � .
Figure 8 shows how subtrees are carved out of the 1-bit trie from

Figure 6. Note that the index (root) for a carved subtree need not hold
a prefix from the routing table. Hence the index TCAM may include
prefixes not in the original routing table. They simply serve as pointers
to the buckets in the data TCAM that contains the corresponding rout-
ing table prefixes. Therefore an input address that matches an entry in
the index TCAM may have no matching prefix in the corresponding
subtree. The addition of the covering prefix to a bucket ensures that a
correct result is returned in this case. For example, for the partitioning
in Figure 8, the input address [j��[��c���c��� matches [���[�� in the index



subtree-split( � ):
while (there is a next node in post order)� = next node in post order;

if (count(� ) ��� �����	� and
(count(parent(� )) /
� ) then

carve out subtree rooted at �
put subtree in new TCAM bucket ��

put prefix(� ) in index TCAM��
 0 ��
 1 �	� ��
 ��� �
foreach node 
 along path from root to �

count( 
 ) = count( 
 )
%

count(� )
if (count( 
 ) == 0) then remove 
 endif

endforeach
endif

endwhile

Fig. 7. Algorithm subtree-split for carving the 1-bit trie into buckets
of size in the range


�� � 6 � � 
 � � . Here count(� ) is the number of prefixes
remaining under node � , prefix(� ) is the prefix of node � , parent(� ) is
the parent node of � in the 1-bit trie, and cp(� ) is the covering prefix
of node � .

TCAM, but has no matching prefix in the corresponding subtree. The
covering prefix [�� is the correct longest matching prefix for this input.

Since we perform a post order traversal of the trie, the subtree in-
dices must be added to the index TCAM in the order that the cor-
responding subtrees were carved out. In other words, the first sub-
tree index must have the highest priority (lowest address) in the index
TCAM, while the last subtree index must have the lowest priority. Fi-
nally, each bucket can be laid out in the data TCAM as described in
Section III-C.

The following properties can be proved for algorithm subtree-split
when applied with parameter

�
to a table with � prefixes; the proofs

have been omitted due to lack of space.
Theorem IV.1: The size of each bucket created lies in the range
�� � 6 � � 
 � � , except for the last bucket, whose size is in the range


 � 
 � � .
In addition, at most one covering prefix is added to each bucket.

Theorem IV.2: The total number of buckets created is in the range
�� % � � 
 �

 %� ��� . Each bucket results in one entry in the index TCAM and

one entry in the index SRAM.
Theorem IV.3: The index and data TCAMs populated according to

the subtree-split algorithm always return the longest matching prefix
for each input address.

Finally, to split � prefixes into � buckets, subtree-split is run with
parameter

� � � �I�76 ��� . Since the maximum bucket size (including
the covering prefix) is

� �p� , we have:
Theorem IV.4: Using subtree-split in a TCAM with � buckets, dur-

ing any lookup at most � � � �I�76 ���&�B� prefixes are searched from
the index and the data TCAMs.

Complexity. The post-order traversal for the 1-bit trie implies that
each node in the trie is encountered at most once during the traversal.
For a routing table with � prefixes, the number of nodes in the corre-
sponding 1-bit trie is � �!� � . Therefore, the complexity for this part of
the algorithm is � �!� � . Every time a subtree is carved out, we need to
traverse the 1-bit trie all the way to the root. The number of subtrees
carved out is � �!�e6 � � (from Theorem IV.2). If � is the maximum
prefix length, (hence, maximum trie depth), this gives us a complexity
of � �!� � 6 � � . Finally, the total work for laying out the routing table
in the TCAM buckets is � �!� � (each routing table prefix is looked at
once). Thus the total complexity of the algorithm is � �!� � � � 6 � � .
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Fig. 8. (a), (b), (c), (d) : four iterations of the subtree-split algorithm
(with parameter

�
set to 4) applied to the 1-bit trie from Figure 6.

The number at each node � denotes the current value of count( � ).
The arrows show the path along which count ( � ) is updated in each
iteration, while the dashed outline denotes the subtree that is carved.
The table in (e) shows the five resulting buckets. Bucket sizes vary
between

� 6 � and
�

prefixes. The covering prefix of each bucket, if not
already in the bucket, is finally added to it.

C. Post-order splitting

The drawback with algorithm subtree-split is that the smallest and
largest bucket sizes vary by as much as a factor of 2. In this section,
we introduce another trie splitting algorithm called postorder-split that
remedies this. Once again, let � be the total size of a routing table,
and

�
be the desired size of a TCAM bucket. The algorithm postorder-

split partitions the routing table into buckets that each contain exactly�
prefixes (except possibly the last bucket). Such an even partition-

ing comes at the extra cost of a larger number of entries in the index
TCAM.

The main steps in the postorder-split algorithm are similar to that in
the subtree-split algorithm. It first constructs a 1-bit trie from the rout-
ing table and then traverses the trie in post-order, carving out subtrees
to put in TCAM buckets. However, it is possible that the entire trie
does not contain

� % � � subtrees with exactly
�

prefixes each. Since each
resulting TCAM bucket must be of size

�
, a bucket here is constructed

from a collection of subtrees which together contain exactly
�

prefixes,
rather than a single subtree (as in the case of algorithm subtree-split).



postorder-split( � ):� = 0;
while (there is a next node in post order)� = next node in post order

carve-exact (� ! � ! � )� 0 ��� �
endwhile

carve-exact (� !-(E! � ):
if (count(� ) ==

(
) or

(count(� ) � (
and

count (parent(� )) / (
) then

carve out subtree rooted at �
put subtree in TCAM bucket ��
 ;
put prefix(� ) in index TCAM ( �������
	 ; )��
 ; 0 ��
 ; 1 �	� � 
 � � �
foreach node 
 along path from root to �

count( 
 ) = count( 
 )
%

count(� )
if (count( 
 ) == 0) then remove 
 endif

endforeach
if (count(� ) � (

) then
	 = count(� )� = next node in post order
carve-exact( � !@(�% 	 ! � )

endif
endif

Fig. 9. Algorithm postorder-split for carving the 1-bit trie into buckets
of size

�
. Here, count(� ) is the number of prefixes remaining under

node � , prefix(� ) is the prefix of node � , parent(� ) is the parent node
of � in the 1-bit trie, and cp(� ) is the covering prefix of node � . Here� ��
���� ; is the set of entries in the index TCAM that point to the bucket� � ; in the data TCAM.

Consequently, the corresponding entry in the index TCAM has mul-
tiple indices that point to the same TCAM bucket in the data TCAM.
Each such index is the root of one of the subtrees that constitutes the
TCAM bucket.

The algorithm postorder-split is shown in Figure 9. The outer loop
(procedure postorder-split) traverses the 1-bit trie in post-order and
successively carves out subtree collections that together contain ex-
actly

�
prefixes. The inner loop (procedure carve-exact) performs the

actual carving—if a node 	 is encountered such that the count of 	 is�
, a new TCAM bucket is created, the prefix of 	 is put in the index

TCAM and the covering prefix of 	 is put in the TCAM bucket. How-
ever, if the count of 	 is � such that � � � and the count of 	 ’s parent
is � � , then a recursive carving procedure is performed. Let the node
next to 	 in post-order traversal be � . Then, the subtree rooted at �
is traversed in post-order, and the algorithm attempts to carve out a
subtree of size

� 	�� from it. In addition, the � entries are put into the
current TCAM bucket (a new one is created if necessary), and the pre-
fix of 	 is added to the index TCAM and made to point to the current
TCAM bucket. The covering prefix of 	 is also added to the current
TCAM bucket. Finally, when no more subtrees can be carved out in
this fashion, the remaining prefixes, if any (they must be less than

�
in number), are put in a new TCAM bucket and a � entry in the index
TCAM points to the last bucket. Figure 10 shows a sample execution
of the algorithm.

Note that this algorithm may add more than one index (and cov-
ering) prefix per TCAM bucket. The number of prefixes added to
the index TCAM for any given TCAM bucket is equal to the num-
ber of times the carve-exact procedure is called recursively to create
that bucket. It is possible to show that each time carve-exact is called
for this bucket, we descend one level down in the 1-bit trie (except,
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Fig. 10. (a), (b), (c): three iterations of the postorder-split algorithm
(with parameter

�
set to 4) applied to the 1-bit trie from Figure 6. The

number at each node � denotes the current value of count( � ). The
arrows show the path traced to the root in each iteration for decre-
menting count. The dashed outlines denote the set of subtrees carved
out. (d) the three resulting buckets. Each bucket has

� � �
prefixes.

The covering prefixes of each bucket that are not in the bucket are
finally added to the bucket in the data TCAM.

possibly, for the last invocation of carve-exact). Therefore, the maxi-
mum number of times we can call the carve-exact procedure is � � � ,
where � is the maximum prefix length in the routing table. In other
words, the algorithm postorder-split adds at most � �i� entries to
the index TCAM and � covering prefixes to the bucket in the data
TCAM.

The following properties can be proved about algorithm postorder-
split when applied with parameter

�
to a table with � prefixes of max-

imum length � bits.
Theorem IV.5: The size of each bucket created by the postorder-

split algorithm is
�
, except for the last bucket, whose size is in the

range

 � 
 � � . At most � covering prefixes are added to each bucket.

Theorem IV.6: The number of buckets created by postorder-split is
exactly

� % � � . Each bucket contributes at most � � � entries to both
the index TCAM and the index SRAM.

Theorem IV.7: The index and data TCAMs populated according to
the postorder-split algorithm always return the longest matching pre-
fix for each input address.

To split � prefixes of maximum length � into � buckets,
postorder-split is run with parameter

� � � �76 ��� . Therefore, the
following bound holds.

Theorem IV.8: Using postorder-split in a TCAM with � buckets,
during any lookup at most � � �Y� ��� � � �76 ����� � prefixes are
searched from the index and the data TCAMs.

Complexity. The complexity analysis of the postorder-split algo-
rithm is similar to that of the subtree-split algorithm, and it is possible
to show that the total running time of the algorithm is � �!��� � � 6 � � ,
where � is the maximum prefix length.
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D. Experimental results

In this section, we present some results of applying algorithms
subtree-split and postorder-split to the routing tables listed in Table II.
Instead of the input parameter

�
which limits the size of each result-

ing bucket, we implemented the algorithms to take as input the total
number of buckets � .

The time taken to partition the routing table into � buckets is shown
in Figure 11. This includes the time required to build a 1-bit trie from
the routing table entries. Both algorithms complete within one second
for the routing tables from Table II. Approximately one third of the
running time is spent in building the 1-bit trie in each case. Further,
the running time does not increase significantly for larger numbers of
buckets. Algorithm subtree-split is marginally faster than postorder-
split, since it finds only one subtree in the 1-bit trie to carve out in
each iteration (to create a bucket).

The reduction in power consumption using algorithms subtree-split
and postorder-split is shown in Figure 12. The figure plots the ratio
of the total number of routing table prefixes to the maximum num-
ber of prefixes searched during the lookup process. This maximum
is computed as the sum of the total number of entries in the index
TCAM (since it is always searched in full) and the number of en-
tries in the largest bucket in the data TCAM (since only one such
bucket is searched for every lookup). When the total number of buck-
ets � in the TCAM is small (this is often a limitation on commercially
available TCAMs), postorder-split performs better since it generates
a more even split into buckets. However, as � grows beyond 64, the
size of the index TCAM begins to dominate in the case postorder-
split, which may add up to � =32 entries in the index TCAM for each
bucket. In contrast, although subtree-split provides a less even split,

it only adds one entry to the index TCAM for each bucket, and the
index TCAM remains small as � increases. It is also interesting to
note that for both the algorithms, this trade-off implies that there is
an optimal number of buckets for which the worst-case power reduc-
tion factor is highest: � �c� buckets for subtree-split and � �76 � for
postorder-split.

All three methods described in this paper are successful in reducing
power consumption in practice. For example, for the rrc routing table,
if the data TCAM is limited to have 8 buckets, bit selection using the
exhaustive and greedy algorithms reduces the power consumption by
factors of 7.58 and 7.55, respectively. The subtree-split and postorder-
split algorithms result in power reduction factors of 6.09 and 7.95, re-
spectively (including the power consumed by the index TCAM). Thus,
in practice, a data TCAM that consumes a maximum of 15 watts needs
less than 2.5 watts using any of these algorithms. Similarly, if the data
TCAM supports 64 buckets, the power consumption can be reduced
to less than 0.5 watts.

However, if a worst case power budget is required while designing
the forwarding engine, the trie-based algorithms are better than the
bit selection schemes. As an example, consider a data TCAM that
can support 8 buckets, and an IPv4 routing table with 1 million en-
tries (here � �in�� ). Algorithm postorder-split can guarantee a split
of the routing table into buckets, such that each bucket has exactly��[ � 6Io � � ��H 
 [c[�[ entries. Adding in up to 32 covering prefixes for
the bucket, and an index TCAM with up to o�� n � � ��Hc� entries, a
maximum of only 125,288 prefixes need to be searched during each
lookup, resulting in power reduction by a factor of ��[ � 6j� ��H 
 �Io�o �
�?m ��o ; this reduced power budget is independent of the distribution of
prefixes in the routing table. In contrast, bit selection can guarantee
a power reduction factor of only ��6jm n�oj� � �jm ��� , assuming most pre-
fixes are 16-24 bits long. Thus, with a 15 watt 1M-entry data TCAM,
postorder-split would result in a power budget of under 2 watts, while
bit-selection can only guarantee a power budget of around 5.7 watts.

V. ROUTE TABLE UPDATES

In this section, we briefly explore the performance of the bit se-
lection and the trie-based architectures in the face of routing table
updates (route additions and withdrawals). Adding routes (prefixes)
may cause a bucket in the data TCAM to overflow, requiring a repar-
titioning of the prefixes into buckets and rewriting the entire table in
the data TCAM. Therefore, the number of repartitions should be min-
imized. We applied real-life updates traces (each with a few million
route updates) collected at the same times and sites as the routing ta-
bles in Table II. The heuristics to avoid frequent repartitions for each
architecture are described below.

For the bit selection architecture, we started by applying the brute
force heuristic on the initial table, and noted the size FEG K)H of the
largest bucket. Using a fixed threshold � , we recomputed the hash-
ing bits every time the largest bucket size exceeded F��	��
���
�� ����� �
� ��� F@G K�H . The hashing bits were recomputed using the static (last
few bits) heuristic, followed by the greedy heuristic if the threshold
was not met. If the greedy heuristic also failed to bring the maximum
bucket size under F �	��
���
�� we applied the brute force heuristic, and
updated the values of F)G K�H and F�����
���
�� . The number of times each
heuristic was applied is listed in Table III; the “static” column repre-
sents the total number of recomputations required over the course of
the updates.

A similar threshold-based strategy was applied to the trie-based ar-
chitecture; as before, we assume buckets need to be recomputed each



rrc4 oregon
#updates 3,412,540 3,614,740
init size 107,195 119,226
final size 103,873 113,436

buckets thresh static greedy brute static greedy brute
8 1 2 1 1 15 14 9
8 5 0 0 0 3 2 1
8 10 0 0 0 1 0 0
64 1 12 12 12 13 12 11
64 5 6 5 2 7 5 3
64 10 2 1 0 3 2 1

TABLE III. Number of times each heuristic is reapplied during the
course of route table updates. “buckets’ are the number of buckets
created: 3 (or 6) hashing bits create 8 (or 64) buckets. “thresh” is
the threshold � (in percent) by which the size of the maximum bucket
is allowed to grow before the bits are recomputed. “init” and “final”
denote the number of 16-24 bit prefixes before and after the updates
are applied.

time any bucket overflows. The results are shown in Table IV. The
update traces contain occasional floods of up to a few thousand route
additions in a single second, where the new routes are very close to
each other in the routing trie (they are often subsequently withdrawn).
Although rare, these floods often cause a single bucket in the trie-
based architecture to repeatedly overflow, since prefixes close together
in the routing trie are placed in the same bucket in the trie-based par-
titioning algorithms. In contrast, the bit selection scheme spreads out
nearby prefixes across multiple buckets (since it selects a subset of
prefix bits for indexing to TCAM buckets) and therefore requires far
fewer repartitions. For the subtree-split and postorder-split algorithms
we used bucket sizes of

� �c�e6 ��� and
� �76 ��� , respectively, for �

prefixes and � buckets; therefore subtree-split required significantly
fewer recomputations than postorder-split.

rrc4 oregon
buckets thresh sub- post- post- sub- post- post-

tree order opt tree order opt
8 1 0 58 3 (.07) 3 74 2 (.07)
8 5 0 17 2 (.05) 1 14 1 (.04)
8 10 0 0 0 (.01) 0 6 1 (.03)
64 1 41 1957 236 (.48) 14 1042 84 (.56)
64 5 24 1019 152 (.44) 12 533 40 (.45)
64 10 20 649 109 (.37) 11 172 11 (.32)

TABLE IV. Number of times the buckets are recomputed when the
update traces from Table III are applied to the trie-based architec-
tures. “post-opt” uses the postorder split algorithm but is optimized
for updates. The numbers in parentheses () denote the average addi-
tional TCAM writes per update (in addition to the minimum one data
TCAM write) for transferring prefixes across neighboring buckets in
the optimized scheme.

The postorder-split algorithm partitions prefixes after arranging
them in order of postorder traversal. Hence transferring prefixes be-
tween neighboring buckets is straightforward. Such a local transfer re-
quires a small number of writes to the data and index TCAMs. There-
fore, one way to mitigate the problem of frequent repartitions using the
postorder-split algorithm is to simply transfer some prefixes from the
overflowing bucket to one of its neighbors, and recompute the entire
partitioning only when both the neighboring buckets become full. On
a recomputation, we also set the size of the overflowed bucket to zero,
so that it can absorb a larger number of subsequent prefix additions.3

�

We assume that future additions will hit the same TCAM bucket which is

This solution, shown as “post-opt” in Table IV, reduces the number of
recomputations. Transfers between neighboring buckets in the event
of bucket overflows result in some additional TCAM writes; the num-
bers in parenthesis in Table IV denote the average TCAM writes per
route update due to such transfers. For example, with 8 buckets and a
1% recomputation threshold in the optimized postorder-split scheme,
each route update results in 1.07 TCAM writes instead of 1 TCAM
write required by the other schemes.

Floods of a very large number of route updates are probably due to
reboots of neighboring routers or BGP misconfigurations [6], but they
do appear to occur every few days in real-life traces. The bit selection
architecture has a natural advantage compared to trie-based schemes
in the face of such events. But overall, both architectures in practice
require a limited number of recomputations in the face of millions of
route updates.

VI. RELATED WORK4

One of the earliest works to introduce ternary CAMs was by Wade
and Sodini [12]—later, the authors proposed using TCAMs in a hard-
ware search engine called a Database Accelerator [13]. The use of
TCAMs for routing table lookups was first proposed by McAuley and
Francis [7]; they also described the problem of updating TCAM-based
routing tables that are sorted with respect to prefix lengths. Two so-
lutions for this problem of updating TCAM-based routing tables have
been proposed more recently [9]. Kobayashi et al. suggested associ-
ating each TCAM entry with a priority [4], and additional hardware
was used to output the entry with the highest priority in case of multi-
ple matches. This eliminated the sorting requirement but added extra
latency to lookup operations.

The problem of high cost and power consumption in TCAMs was
studied by Liu [5]. The author used a combination of pruning tech-
niques (to eliminate redundant prefixes) and logic minimization al-
gorithms to reduce the size of TCAM-based routing tables—in turn,
this reduces the cost and power consumption of these devices. Fi-
nally a method was proposed for multi-field packet classification us-
ing TCAMs, where a pre-processing step is used to reduce the size of
the TCAM [11].

VII. SUMMARY AND DISCUSSION

We presented two alternatives for building low-power TCAM-
based forwarding engines: the bit-selection architecture and the trie-
based architecture. Both architectures rely on partitioning the route
lookup table into small portions, so that only one portion needs to be
searched for each lookup. For each architecture, we provide schemes
for finding a good partitioning, based on the contents of the routing
table. These partitioning schemes are fast and effective: they generate
good (close to equal-sized) partitions in practice for real-life routing
tables, and require infrequent repartitioning in the face of real-life up-
dates. However, the trie-based schemes provide better worst-case up-
per bounds on power consumption, independent of the table contents.
This can be an important advantage for hardware designers who need
to fix a maximum power budget for a given table size, independent of
the table contents.

mostly the case, at least in the short term.
�

There has been a significant amount of research on lookup algorithms for
software or ASIC-based forwarding engines; we omit those references here
due to lack of space.



Alternate ways to design the first stage of the two-stage lookup ar-
chitecture are possible, but beyond the scope of this paper. For exam-
ple, a trie-based search in SRAM could be used to select a bucket in
the data TCAM. The two-stage lookup architectures can also be gen-
eralized to multiple stages. For example, in the trie-based partitioning
schemes, a three-stage lookup can be implemented by using two in-
dex TCAMs: the first index TCAM can select a bucket to search in
the second index TCAM. However, the bulk of the power savings are
achieved with a two-stage architecture, and additional stages provide
only incremental savings beyond that. Finally, the complexity of the
trie-based lookup architecture can be reduced by using a bucket in the
data TCAM to act as the index TCAM; however, this would reduce
the throughput of the lookup process by half, since the data TCAM
must be accessed twice for each lookup.
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APPENDIX I
ANALYSIS OF WORST CASE POWER CONSUMPTION

To develop the proof for Theorem III.1, we first introduce some
additional notation. For a set ^ of vectors, we define CED �G^ � �: bcM�d CED �GF � . We now define a bucket vector

�
to be an assign-

ment of a bucket (from Z	[ 
 �I\ � ) for each hash function g3h ] . The
entry

� � hOZ	[ 
 �	\ � denotes the bucket assigned to g ; the bucket vec-
tor
�

has � ]�� � � � �
�

such entries. Given a bucket vector
�

and a
set ^ of weighted vectors (prefixes), we define � �G^ 
 � 
 g � to be the
total weight of the elements in ^ that are mapped into bucket

� �

by the hash function g . Let � �G^ 
 � � � : � M�� � �G^ 
 � 
 g � ; then8� �G^ � ���	��

� � �G^ 
 � � is MaxSum, the sum of the sizes of the
largest buckets over all hash functions g h ] .

Lemma I.1: There exists ^ _ Z	[ 
 �	\ � such that CED �G^ � � � , ^
maximizes 8� �G^ � and the largest bucket is the all-zero bucket for everyg h ] .

Proof: We first define an operation � �G^ 
 � 
 � � ���G^ � 
 � � � such
that ^ � is obtained from ^ by setting the

�
th bit position to 0 for allF�hY^ , with one exception: if there are two inputs (called a pair)

in ^ which are identical on all positions except the
�
th, we set the�

th bit position in the input with greater weight to 0, while the
�
th bit

position in the other input is set to 1. Similarly,
� � is such that for anyg3h3] ,

� �� is obtained from
� � by setting to 0 the location (in

� � )
corresponding to the

�
th bit position in the input. Note that if g does

not use the
�
th bit in the input as a hashing bit,

� � � � �� .
The operation � has the following properties:
1) CED �G^ ��� CED �G^ � � .
2) �Qg h ] ,

� �� is 0 on the position corresponding to the
�
th input

bit.
3) �Qg h ] , � �G^ � 
 � � 
 g � ��� �G^ 
 � 
 g � .

The first two are immediate from the definition. For the third, observe
that any F h ^ which is sent to

� � is sent to
� �� afterwards unless it

belongs to a pair. If one of a paired input is mapped to
� � by g , then

there must be one that is mapped to
� �� by g , and the paired input with

the larger weight gets a 0 in that position.
Let ^ � be some input set of vectors maximizing the sum of the sizes

of the largest buckets subject to the constraint that CED �G^ � � � � , and
let
� �

be the corresponding vector of largest buckets for ^ � . We now
construct sequences ^ � 
 m�m�m 
 ^ � and

� � 
 m�m*m 
 � � such that for � � h
 � 
 � � 
 �G^ ; 
 � ; � ��� �G^ ; P 
 
 � ; P 
 
 � � . We then have CED �G^ � � �<�
(by the first property), � gBhp] 
 � �� is the all-zeroes bucket (by the
second property), and � �G^ � 
 � � 
 g � ��� �G^ � 
 � � 
 g � (by repeated
application of the third property). Thus � �G^ � 
 � � � � � �G^ � 
 � � � .

Let ��� � � �G^ � 
 � � � be the maximum value obtained by � over
all sets with � vectors. We now know that

� � � � �G^ � 
 � � � ��� �G^ � 
 � � � � 8� �G^ � � ��� �
where the last inequality follows from the maximality of � � . Thus the
input ^ � makes � as large as possible. At the same time, it makes
the all-zero buckets the largest bucket for every hash function; other-
wise, replacing the all-zero bucket with another bucket in

� � would
increase the value of � �G^ � 
 � � � .

Lemma I.2: For all ^ _ ZI[ 
 �I\ � 
 CED �G^ � � � , 8� �G^ � is at most �!� 
 � 
 � � � 89 : K�M�N � �QPSRUT�V�V # K )�
�
, where W X Z	[ 
 �I\ � is a set

consisting of the first �76189 vectors in order of increasing support, each
with weight 89 .

Proof: From lemma I.1, �	��
 d 8� �G^ � ���	��
 d � �G^ 
 ��� � ,
where

���
is the bucket vector that assigns the all-zeroes bucket

to every g5h`] . Thus, it suffices to show an upper bound on
�	��
 d � �G^ 
 � � � .

Each vector FLhl^ contributes CED �GF � to the all-zero bucket for
every hash function that uses the hashing bits on which F is zero. Thus,
each input F contributes precisely CED �GF �L� ���QPSRUT�V�V # b )�

�
to � �G^ 
 ��� � .

This is a decreasing function of ���
��� �GF � which implies that � �G^ 
 � � �
is maximized when ^�� W and each F h ^ has CED �GF ��� 89 .

Finally, Theorem III.1 follows from this lemma and the fact that at
least one hash function must have at most the average number of input
vectors in the target bucket.


