TaBLA: A Client-Based Scheduling Algorithm for Web Proxy Clusters

Girija Narlikar

Lakshman Y. N.

Tin Kam Ho

{girija, ynl, tkh}@research.bell-labs.com
Bell Laboratories, Lucent technologies, 700 Mountain Ave, Murray Hill, NJ 07974

Abstract

As client populations in ISPs continue to rise, it
becomes mecessary for ISP prozy caches to efficiently
handle large numbers of web requests. In this paper,
we examine the performance of client-side load balanc-
ing schemes that help select a proxy from an array of
prozxies that are equidistant from the client. The cur-
rent most popular solutions include choosing a random
prozy based on either the URL requested, or the web
server from which the URL is requested. Based on an
analysis of proxy traces, we propose a new client-side
scheduling algorithm “TaBLA”. The algorithm creates
a redirection table that can be loaded into the clients’
browsers. Trace-driven simulations indicate that our
algorithm significantly improves average response time
and average slowdown compared to the purely random-
ized schemes.

1 Introduction

Caching web proxies play an important role in reduc-
ing latency and bandwidth usage in today’s networks.
The amount of sharing (and hence the increase in cache
hits) has been shown to increase with the number of
clients [25, 4, 11, 10, 7]. However, a single proxy host
has a finite amount of capacity, limiting the number of
clients that can be placed behind each proxy. Large
Internet Service Providers (ISPs) are therefore adding
several proxy hosts within their networks to provide
an acceptable quality of service to an ever-increasing
population of clients. Several vendors now offer prod-
ucts and services that supply hardware or software to
manage clusters of web proxies [14, 17, 1, 9]. A typical
solution includes Level-3/4 or Level-7 switches that in-
tercept requests from multiple clients and redirect them
to different proxies depending on the IP address of the
target web server (at Level-3/4), or the target URL (at
Level-7). The switches need to provide high redirection
throughput, fault tolerance in the face of switch failure,
and load balancing across multiple web proxies.

An alternate solution that avoids the high costs for
the proprietary hardware, software, installation and
management of the redirectors is to provide the redi-

rection mechanism in the client (web browser) itself,
which is the subject of study of this paper. Several
client-side strategies for selecting a web proxy have
been proposed earlier. The Cache Array Routing Pro-
tocol (CARP) from Microsoft [27, 23] applies a ran-
domizing hash function to each URL at the client to
determine which proxy from a set of equidistant prox-
ies to redirect the web request to. Each client uses the
same hash function, so requests for the same URL go
to the same proxy; this preserves cache hit rates even
though requests are distributed across multiple proxies.
Furthermore, the load on each proxy is reasonably bal-
anced due to the large number of URLSs requested from
each proxy. A drawback of the scheme is that requests
to the same web server get redirected through different
proxies. Typically, when a single client browses, she
requests multiple objects from the same server (for ex-
ample, images from one or more web pages) in quick
succession. Because of this, HT'TP 1.1 introduced per-
sistent connections with pipelining. This has been
shown to provide significant benefits in reducing the
user-perceived latency [18, 8] due to temporal locality
in the servers accessed by each client and reduction in
the number of packet round-trips between the server
and the client. In CARP, each URL is redirected to
a potentially different proxy. Therefore successive re-
quests for the same remote server may go through dif-
ferent proxies, thereby significantly reducing the bene-
fit of persistent connections.

A possible solution to the persistent connections
problem is to apply a randomizing hash function to the
target web server name (domain) instead of the target
URL. As shown in Section 5, this allows a significant
number of cache misses to take advantage of persistent
connections between the proxy and the remote server.
For example, in an experiment with an ISP proxy trace,
81% of the cache misses can take advantage of persis-
tent connections in a domain-level scheme, compared
to 44% in a URL-level scheme. However, randomizing
at a domain level also leads to load imbalance at high
load levels, because of a small number of very popular
domains. This trade-off between the two randomizing

schemes is shown in Figure 1. These results indicate
that a domain-level strategy with better load balancing
is required to obtain consistently low response times.

sv.cache.nlanr.net proxy managed by NLANR [19].

ISP NLANR
Proxy Type Lowest level Upper Level
Clients United States Asia and Pacific
Dates 1/16/99-2/10/99 | 11/11/99-12/26/99
requests | 1.88 million/day 1.28 million/day

— T T T T T T T
[$)
2 rand_dom ------
- rand_url ---&--
[}
E g
= L - 4
° 1 N
o P
c .
S o
a B &
2 0 -
o o
N . g

% gk

O 1 1 1 1 1 1 1 1

100 200 300 400 500 600 700 800
system load

Figure 1: The trade-off between randomizing either the
server name (“rand_dom”) or the URL (“rand_url”) when
choosing a consistent proxy for outgoing web requests.
“System load” represents the rate at which requests arrive
at the proxy (defined more precisely in Section 5).

In this paper, we propose a new client-side scheme
called TaBLA (Table-Based Load Assignment), which
is based on a static analysis of the recent history of
client request patterns obtained from proxy logs. We
use the analysis to identify web sites attracting high
traffic and file types with large mean sizes which are
then assigned to the individual proxy machines accord-
ing to a specific partitioning scheme. Each client is
provided a small table with this information; the client
(browser) looks up this table to determine which proxy
to hit for each URL. The table can change with every
round of static analysis of proxy logs.

To derive and validate the TaBLA scheme we study
workloads from two different web proxies; Section 2
presents our main observations, which include invari-
ants in the volume directed to popular domains, and
the average file sizes of large mime types. Based on the
analyzed data we create look-up tables that a client
would use (Section 3). We use trace-driven simula-
tion (Section 4) to evaluate the performance of TaBLA,
and compare it to other client-based randomizing redi-
rection strategies (Section 5). The results show that
TaBLA improves average response times by up to fac-
tors of 3, and the average slowdown (“stretch”) per-
ceived at the proxy by up to a factor of 12. Related
work is described in Section 6, and we conclude in Sec-
tion 7.

2 Workload Characterization

We examined the traces from two proxies (see Ta-
ble 2): a proxy from a major national ISP, and the

Figure 2: Details about the proxy traces we studied.

2.1 Load prediction

We first measured the load of traffic targeted to each
remote web site; the target web site (also referred to
here as the “domain”) is defined as the symbolic name
that is part of the URL recorded in the logs'. We de-
fine the load as a combination of the number of requests
and bytes transferred for each request. For a domain
with r requests and b bytes, the load is computed as
r+b/4000. This definition of load was determined from
the system parameters, and is explained in Section 4.
Figure 3 shows the load targeted to the remote web
sites sorted in decreasing order of load, over the entire
period of the trace. The top few domains each account
for a moderate fraction of the load. For example, the
top 1000 domains account for 55% of the total load
in the ISP logs and 51% for the NLANR logs. How-
ever, the important observation is that the remaining
domains each individually contribute to around 0.01%
of load or less. Therefore, a random assignment of
these light domains to proxies should result in a well-
balanced load. In contrast, a naive or random assign-
ment of the popular domains can result in a significant
load imbalance (see Section 5). We therefore chose to
examine the popular domains more closely.

10 T T

0.1
0.01

0.001 [Load directed
towards

0.0001 { heavy domains

percentage of load

1le-05 F

1e-06 I I i I I
10 100 1000 10000100000

domains

Figure 3: Plot of total load over the entire period for
each domain in the trace for both data sets.

1For example, “www.foo.bar.com” is the “domain” for the
URL “http://www.foo.bar.com/index.html”.

Data reduction and normalization. The top 1159
sites with highest load in ISP trace (0.7% of all sites)
and the top 1079 sites in NLANR trace (0.28% of all
sites) were labeled as heavy domains?. The per-
domain load was computed as a timeseries with totals
on an hourly as well as a daily basis. The series for
each domain was normalized with respect to the total
load for that domain.

Analysis of daily totals by sites. A cluster analysis
for the NLANR data was performed on the 1079 heavy
domains sites, using the k-means procedure with Eu-
clidean distance. This is a widely used unsupervised
learning procedure for discovering natural groupings
in a dataset [3, 26]. The domains were grouped into
20 clusters (see Figure 4). For many sites the access
patterns are nonstationary. They experienced a sharp
burst a few times during the month, but negligible load
at other times. Prediction of traffic for these sites is
difficult.

In contrast, the two largest clusters (clusters 1 and
2 in Figure 4) do not contain very sharp bursts, and
are potential targets for strategic load prediction. The
maximum normalized daily load (the peak height) is a
good discriminator for identifying such sites with stable
traffic. Analysis of the 1159 heavy domains in the ISP
data shows similar characteristics. We did not detect
any stable, intra-day complementary patterns between
pairs of domains which would have allowed packing the
domains together.

Figure 5 shows the plots of total load (at each site)
for the month versus the maximum normalized daily
load. These plots show that accesses to the sites hav-
ing highly concentrated (unpredictable) traffic do not
contribute heavily to the total load through the respec-
tive proxies. The bulk of the traffic was from those sites
having less than 20% of their total load occurring in one
day (maximum normalized daily load < 0.2); this traf-
fic can be reasonably predicted in our load balancing
strategy.

2.2 Analysis of file types and sizes

We decided to study if the less common, but very
large files are predominantly of different mime types
than the typical text and images. We attempted
to guess the file types by the suffixes of the URLs.
As expected from a heavy tailed distribution of file
sizes [4, 6], the most popular file types are typically not
large (with mean and median in the 2-12 KB range).
To look for those file types that deserve special treat-
ment due to their large sizes, we found those with an

2The heavy domains were selected by applying a simple filters
with low cut-offs for the total byte traffic and number of requests
on the set of all domains.

log(total load
g‘.n m) ~
log(total load

g(tn og ~

FN
I

0.2 0.4 . 0.6 0.8
max normalized daily load

(b) NLANR

0.2 04 0.6
max normalized daily load

(a) ISP

Figure 5: Plot of period total load (log scale) vs. max-
imum normalized daily load for (a) ISP data and (b)
NLANR data.

average of at least 10 requests per day, and with a me-
dian file size of 20 KB or above. We call these file
types the heavy types; examples of heavy file types
include .mp3, .dll, .zip, .exe, .mpg, etc. Such a list
of heavy types is used in our scheduling algorithm to
detect and separate requests that are likely to incur a
large response (Section 3).

In summary, we drew the following conclusions from
our study of the web traces.
1. A fine-grained prediction of load beyond well-known
daily variations is difficult. However, at an aggregate
level, such as over a day, the load directed at most
heavy domains does not show significant variation, and
can be reasonably predicted. The remaining domains
do not individually contribute significant load.
2. File types (as derived from the URL) for large files
are fairly consistent across days. This gives us a rea-
sonable chance of predicting if an outgoing request will
return a response significantly larger than the average
file size.

3 A Table-Driven Proxy Selection
Scheme

We now present details of TaBLA which are based on
the analysis from the previous section. For both logs,
we pick 500 of the heavy domains that show the least
variability (smallest normalized daily maximums), as
described in Section 2.1. From now on we refer to these
500 domains as the heavy domains. The heavy types
and the heavy domains are assigned to the individual
proxy machines with the aim of separating out the big
requests as well as balancing the overall load.

If there are P proxies and the heavy types account
for fraction 1/h of the total load, then we assign Px1/h
of the proxies to exclusively serve heavy file types. The
heavy domains are sorted in increasing order of their
average file sizes; we then split this list into Px(1—1/h)

cluster 1 ot 20 size 418

0.25

cluster 3 ot 20 size 90

cluster 4 ot 20 size 43 cluster 5 ot 20 size 31

0.2
0.15

normalized daily load
o
=
normalized daily |
normalized daily load

N. "
0 5 10 15 20 25 30 5 10 15 20 25 30
day day

ks 8 05
= 2 %5
= 2035
° - 03
3 3 025
I 1 298
T A i\ i A T 01
E St Wt | E 00z |
g g 0

0 N
0 5 10 15 20 25 30 0 5 10 15 20 25 30
day day

Figure 4: 5 of the 20 clusters formed by normalized daily totals for the NLANR data. The cluster size is the number of
domains that fall within that cluster; the remaining 15 clusters each have at most 30 domains. Only clusters 1 and 2 contain

domains with low variability in load (measured as maximum normalized daily load); these are selected by TaBLA as heavy

domains.

partitions of equal load, and assign one partition to
each of the remaining proxies®. We assume that all
proxy machines have identical capacities; otherwise,
the load can be spread in proportion to their capaci-
ties and the scheme works with no significant variation.
The motivation for separating heavy types and sorting
heavy domains by size is to reduce the variance in re-
quest sizes arriving at each proxy; large variances can
affect the slowdown of tasks in the request queue?.

Each client has a table encoding this assignment of
the heavy types and heavy domains to individual prox-
ies. When a client needs to access a web resource, it
consults the table. If the resource type is a heavy type,
it goes to the proxy responsible for that heavy type;
else, if it belongs to a heavy domain, it asks the proxy
responsible for that domain for the resource; else, it
applies a simple hash function on the domain part of
the URL to compute the identity of a proxy from which
to seek the desired resource.

Our traces showed significant load variations from
day to day, especially between weekends and mid-week.
However, the total load pattern from week to week was
highly consistent. Therefore, in our experiments the
tables were computed once from a week’s worth of logs
to be used for the next day. Considering periods longer
than a week yielded no additional accuracy in load pre-
diction. Experiments with a variety of different 7-day
periods for load prediction yielded results consistent
with those reported in the paper. The choice of the
prediction period (one week for our traces) and the
frequency of table updates (once a day for our traces)
may vary for different trace data. They are both pa-
rameters fed to the TaBLA algorithm that are derived
from the data itself. After each round of static analy-
sis of logs from all the proxies, the updated tables are

3Here the load for heavy domains is computed after excluding
the requests that are of heavy types.

4The effect of task size variance on the slowdown depends on
the scheduling policy at the request queue. For example, with a
FCFS policy, slowdown is proportional to variance [16].

placed in a specific path on each proxy.

Table distribution. A key issue here is how to dis-
tribute the tables to the clients. The simplest way
(one that does not require large modifications to ex-
isting client software and other web infrastructure) is
to use the automatic proxy configuration facility sup-
ported by the major web browsers such as Netscape[20]
Our tables can be encoded within a standard function
in a JavaScript file. When a browser starts up, it ob-
tains the latest version of the table by downloading the
JavaScript file (with a direct connection to any of the
proxies). For all subsequent requests, the browser exe-
cutes the FindProxyForURL function in the JavaScript
file to determine which proxy it should contact. A time-
to-live field can be attached to the JavaScript file and
the functions in the JavaScript file can directly obtain
the latest table if the current table is stale. In an ISP
context where the service provider typically provides
clients with all the software needed to connect (includ-
ing a fully configured browser), this should not present
a logistical problem. More dynamic update scenarios
are possible if the browser and proxies can understand
a header field indicating when the last table update
took place.

Dynamic Issues. Another issue is non-availability of
one or more proxies. This can be because of a proxy
machine failing or getting swamped by a “hot spot”—
an unexpected deluge of requests to a group of web
pages. Since our tables are constructed based on re-
cent history, and we have deliberately avoided any ac-
tive collusion among the proxies, it is not possible to
predict transient hot spots. When a client fails to get
a response from a proxy for a time-out period, it at-
tempts to get the same resource from another randomly
chosen proxy; it tries to revert to the table-based pol-
icy for the troubled proxy after a specified amount of
time. If the service delay is indeed caused by a hot
spot or proxy failure, this has the effect of spreading
out the responsibility for serving that proxy’s traffic

throughout the proxy bank. The advantage of the ta-
ble based scheme will be diminished during hot spots
or proxy outages. If an entirely new domain becomes
highly popular and stays that way for an extended pe-
riod of time, its presence will be captured during the
log analysis and the subsequent table updates will re-
flect it.

4 Experimental Setup

The client-side scheduling algorithms that we evalu-
ated were: applying a randomizing hash function to the
requested URL (called Rand,,;), applying a random-
izing hash function to the domain from the requested
URL (called Randg,,), and TaBLA (as described in
Section 3). All clients share the same randomizing
hash function, so all requests to a URL (in Rand;)
or all requests to a domain (in Randg,m or TaBLA)
map to the same proxy. This reduces the storage re-
quirement for each proxy cache and maintains good hit
rates. Rand,,; is identical to CARP [27] except that
we use a different randomizing function. We developed
a trace-driven simulator to study the performance of
the different scheduling algorithms. A network simu-
lator was necessary to avoid replaying the proxy logs
on a real network (many pages are not accessible in
such a replay). We also chose to simulate the proxy
instead of using a real proxy implementation for two
reasons: (a) a simulator allows us to study the effects
of various system parameters on the relative perfor-
mance of the scheduling schemes, and, (b) we can more
easily modify scheduling policies for the pending web
requests at the proxy. We only measure response times
at the proxy, that is, the difference between the time it
takes for a request to arrive at a proxy, and the time
the proxy finishes serving the request. All default val-
ues were measured on a 400 MHz Pentium PC. We did
not implement dynamic handling of hot spots in our
simulation.
4.1 Network model

The network model implemented is a simple one,
similar to previous work [21]: each request of size z
bytes that results in a cache miss at the proxy takes a
round-trip time L to set up a connection to the remote
server (if necessary), followed by time L, + z/b; here
b is the bandwidth available between the proxy and
the server. We assume that all connections between
a proxy and the server get an equal share of a com-
mon link of bandwidth B, that connects the proxy to
the Internet, but each individual connection can only
use a maximum bandwidth B, (see Figure 6). Simi-
larly, all clients share a common link of bandwidth B,
to the proxy. If a request from a client for an object
from a server S arrives at the proxy when a persistent

connection to S is currently alive, it does not incur
the additional Ly round-trip delay to set up a connec-
tion. If the request arrives while a connection to S is
being established for an earlier request, it must wait
for the connection to be opened before the proxy can
start receiving data from S for either request. The
default parameter settings used are B, = 12MB/s5,
L, = 0.1sec, and B, = 150KB/s for all remote servers.
We do not expect a real network to behave in such a
uniform, time-invariant manner. However, we are only
interested in studying the high-level effects of the dif-
ferent scheduling policies averaged over a large number
of web requests; for such a study we believe a coarse-
grained network model is sufficient.

We assume that a remote server keeps a persistent
TCP connection open to a proxy for at most 10 min-
utes, and closes the connection before this period if no
request has been sent by the proxy for the last 30 sec-
onds. Deciding when to close a persistent connection
at the server remains a difficult problem. We have not
seen definitive solutions, and different servers adopt dif-
ferent timeout periods. Our parameters are in ranges
deemed reasonable by several researchers (e.g., [8]).

) Bp Bp
Clients \ Proxy

Figure 6: Link bandwidths in the network model for the
network connecting the clients, each proxy, and the remote
servers (S1,52, S3 in this figure).

4.2 Proxy model

There are two network queues at each proxy host:
the server queue for requests with replies pend-
ing from servers and the client queue for replies
to be (or being) sent to the client. The requests in
the server queue continuously share bandwidth as de-
scribed above, while replies in the client queue share
bandwidth depending on the request scheduling policy
employed at the proxy CPU. We assume that the CPU
writes replies to the network buffers at a throughput
equal to the bandwidth B, of the shared link to the
clients. The proxy CPU requires a time of 150us to
establish a new TCP connection to either the client or
the server (as measured on a 400 MHz Pentium Linux
PC). The size Spyur of the network buffer is set to 64KB
(the Linux default).

5Essentially the maximum throughput of a 100Mbits/s Eth-
ernet link.

The scheduling policies for servicing the client queue
studied here are first-come-first-serve (FCFS), round
robin (RR), shortest-processing-time-first (SPT), and
shortest-remaining-processing-time-first (SRPT). Pro-
cessing time is assumed to be proportional to the size
of the remaining reply. Both RR and SRPT use a time
quantum equal to the time required to fill one network
buffer (of size Spur = 64KB). Thus, RR approximates
a multithreaded server with an unlimited number of
threads®. There is no limit on the length of either net-
work queue. The sequence of events for a web request
at the proxy is shown in Figure 7. Priority is given by
the CPU to incoming requests over replies to clients.

l request arrives from client

[add to request queue]

l CPU becomes free

[open client-proxy connection]

write first S, ¢ bytes
to network

no — yes
write complete?)— < done >

requests to remote server (miss)

T
|
server queue !

requests from clients

%—ﬂ request queue

SHIAY3S

o» I

E ! !

i I reads from memory (hit) replies from server

o : reply (in progresf)
replies from complete |
proxy to clielhts PROXY |

Figure 7: (a) Sequence of events at the web proxy. Actions
that may result in delays due to system load are outlined in
bold. (b) Flow of requests and replies between the queues.

61t also simulates a more realistic event-driven proxy with a
small number of threads writing pending replies to the clients in
a round robin manner.

All experiments assume that we have a bank of 10
proxies to choose between for any web request; the
proxies do not communicate with each other. We as-
sume for simplicity that all request hits are served out
of the main memory of the proxy (and not the disk).
Because our experiments look at total footprints of un-
der 2 GB per proxy, this is a reasonable assumption for
typical high-performance proxies. The simulation run
begins with a cold cache; the first request to every ob-
ject (URL) is assumed to be a miss, while subsequent
requests are hits.

The definition of load defined in Section 2 is based
on the above system parameters. If, as an approxima-
tion, we assume each request is a cache miss, then the
proxy spends 300us to open connections to the client
and remote server, and writes the reply at the rate of
12MB/sec. Thus writing 3774.6 bytes of data require
the same amount of time as one request. Therefore, we
assign a load of r + b/3774.6 to r requests that add up
to b bytes.

4.3 Workload and table generation

The NLANR and ISP traces that we had access to
are from single proxy hosts, respectively containing on
average 15 and 22 requests per second. This traffic
load is insufficient to stress one or multiple proxies. To
simulate higher loads, we shrank the time scale by suc-
cessively larger factors. We also accordingly shrink the
30-second and 10-minute windows over which a persis-
tent connection may be left open, to avoid exaggerating
the benefit of persistence at higher loads.

We ran the load prediction scheme described in Sec-
tion 3 on both traces from an arbitrary choice of seven
consecutive days; the resulting redirection table was
used to route traffic for the eighth day. The table was
not dynamically updated while the eighth day’s traces
were being simulated.

We measure the average response times for requests
once they arrive at the proxy. We also measure the
average stretch factor, which is the ratio of the ac-
tual response time for a request divided by the time it
would have taken in the absence of any load on the sys-
tem. Stretch is a metric independent of file size. Since
clients typically do not like to wait long for small re-
quests (like a typical html document along with small
embedded images), but are willing to wait longer for
larger downloads, we expect that a low stretch factor
is an appropriate indicator of a good scheduling algo-
rithm.

5 Experimental Results

For the ISP logs, we dedicate 1 out of the 10 sim-
ulated proxies to exclusively handle requests for the
heavy types. According to our prediction, the top 46

largest files types contribute around 10% of the total
load; these were therefore selected as the heavy types.
The NLANR logs contained a higher number of files of
the heavy types, and so we dedicated 2 proxies to han-
dle load from the 72 largest file types; these accounted
for around 20% of the total load in the previous week’s
logs.

5.1 Variation of performance with load

Here the system load is the factor by which the
original trace is speeded up. For example, the ISP logs
contain on average 21.76 requests/sec, and a speedup of
500 results in an average of 10,800 requests/sec directed
to the 10 proxies together.

Figure 8 shows the relative performance of the three
schemes, namely, Rand,,;, Randgy,, and TaBLA, for
both the proxy logs. The scheduling policy at the proxy
for sending back replies to clients is FCFS. For both
logs, under extremely low or extremely high system
load, all three schemes exhibit similar performance.
However, as expected, Rand,,; suffers from a slightly
higher response time even at low system loads because
fewer of the cache misses take advantage of persistent
connections. As the system load increases, the imbal-
ance in the load assigned to each proxy by Randgom,
begins to play a major role in the overall performance
of the system. TaBLA outperforms both the random-
ized schemes.

With the FCFS scheduling policy at the proxy, the
stretch factor is significantly affected by variance of file
sizes [16]. TaBLA successfully partitions files by size
(see Figure 12), resulting in lower variation in the sizes
of replies at each proxy. Therefore it achieves a lower
stretch when the system is loaded. However, our pre-
diction schemes for load partitioning are not as close
to ideal as Rand,,;; therefore, at extremely high sys-
tem loads, even this slight imbalance causes the per-
formance of TaBLA to approach that of Rand,;.

In practice, when a proxy sends back replies to
clients, the replies get interleaved, instead of being sent
out in strict FCFS order. For example, when multiple
processes attempt to write to sockets in Linux, the pro-
cesses get scheduled in a round robin (RR) order, with
each process writing data equal to the size of the socket
buffer (64KB). We therefore also simulated this RR
policy for scheduling of replies to clients at the proxies.
(The buffer size assumed was 64KB.) The results are
shown in Figure 9. The RR policy significantly reduces
the observed stretch for the Rand,,,; and Rand,,, poli-
cies, because a large number of small replies no longer
get queued up behind a few large replies. This policy
improves the TaBLA scheme to a lesser extent, because
TaBLA already reduces the variance in file sizes that

arrive at each proxy. For the ISP logs, TaBLA still re-
sults in up to a factor of 3 reduction in response time
compared to Rand,,;, and up to a factor of 12 reduc-
tion in average stretch. For the NLANR logs, the per-
formance improvements due to TaBLA are reduced to
around 20% in response time, and 30% in stretch com-
pared to Rand,,;. TaBLA shows lower improvement
over Rand,,; for the NLANR logs because its predic-
tion of load is less accurate compared to the ISP logs.

5.2 Sources of improvements due to
TaBLA

Recall that our scheme TaBLA uses two different
optimizations: ordering of requests to proxies by file
size, and balancing of load due to the most popular
domains. We first demonstrate the combined effects of
these optimizations across file sizes and cache hits or
misses, and then attempt to separate out the perfor-
mance benefits due to both optimizations.

Table 10 shows a breakdown of response times and
stretch factors for files of different sizes, for both cache
hits and cache misses, at a system load (speedup) of
350 for the ISP logs. Stretch factors of less than 1
arise due to persistent connections; the service time
(under no load) for each job is computed assuming that
a new connection must be opened to the server. The re-
sults show that TaBLA significantly reduces both the
response times and stretch factors of cache hits; this
improvement is due to a good balance of load and re-
duced variability in request sizes that are directed at
each proxy. For cache misses, the network delay domi-
nates the total response time; however, due to a better
use of persistent connections, TaBLA results in lower
response times for cache misses compared to Rand,,;.
In TaBLA at most p — 1 domains get split across the
p proxies while partitioning the expected load. Conse-
quently, for the dataset in Table 10, TaBLA gets 0.8%
fewer connection hits than Randgom,.

Figure 11 shows the performance benefits when only
load balancing is applied at the domain level, using RR,
scheduling at the proxy. Here domains are not ordered
by average request size, and large file types are not
separated out. We see that the majority of improve-
ment over Rand gy, is due to the prediction and balanc-
ing of load, particularly as the system load increases.
Because large files cause a bigger disruption with the
FCFS policy at the proxy (compared to RR), the size-
based separation contributes a bigger improvement to
TaBLA for FCFS7.

Figure 12(a) compares the load directed to the 10
proxies by each of the three schemes over the entire
day’s ISP logs (NLANR data looks similar). Although

"Results for FCFS not shown due to space constraints.

10 T T T T K T d d T T T 10 T T T T 10000
d dom ---x--- X [rand_dom --->--- XX rand_dom ------
e raparﬂi:)urn A o 10000 F rand_url ---&-- Z . e rand_url ---&-- 7
= ‘ ’ = - = TaBLA —8— , = 1000 k-
A £ 1000 A % 2
2 4 2 2 g
S ‘a g 1f 1 @ 100
@ 5 100 2 S
o a s g
=] 10 % = 10
1 | | | | | 01 1 l | | | | 1
100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800
system load system load system load system load
(a) Response time (b) Stretch (c) Response time (d) Stretch
ISP (FCFS) ISP (FCFS) NLANR (FCFS) NLANR (FCFS)

Figure 8: Performance of the three client-side scheduling schemes for both NLANR, and ISP proxy logs. The FCFS algorithm
was used at the proxy to schedule replies to clients. Metrics for comparison are the average response time and the stretch
factor.

10 T T T T T T T T T T T T

o d dom ---3-- . rand_dom ------ % 9
& rarnam ounr1| A - 10000 £ “rand_url --a- 4§ rand_dom 1000
] TaBLA —5— X 7 TaBLA —8—-% ® -
E T S 1000 | X £ g
© 4 2 X ox o LF @ 100
7] D g 7] k7]
5 o 100 {85 &
8 s 8 s 10
= 10 4 = [
E’ E E’ boA - 1 —
© 1 Il Il Il Il Il ® 01 1 1 - Il Il Il L L 1 1 1 1 1 1

100 200 300 400 500 600 100 200 300 400 500 600 100 200 300 400 500 600 700 800 100 200 300 400 500 600 700 800

system load system load system load system load
(a) Response time (b) Stretch (c) Response time (d) Stretch
ISP (RR) ISP (RR) NLANR (RR) NLANR (RR)

Figure 9: Performance of the three client-side scheduling schemes for both NLANR and ISP proxy logs. The RR algorithm
was used at the proxy to schedule replies to clients. Metrics for comparison are the average response time and the stretch
factor.

File Cache hits Cache misses All requests
size (B) #reqs | resp.T | stretch #reqs [resp.T | stretch [conn-hits || resp.T | stretch
(a) Rand,,; + RR

< 500 572908 0.026 | 169.048 212953 0.207 1.029 94547 0.075 | 123.518
0.5K-8K 331831 0.027 89.766 429985 0.220 0.997 206468 0.136 39.664
8K-128K 126261 0.046 25.653 200352 0.355 1.050 67308 0.236 10.561
128K-2M 882 0.305 6.947 2246 2.821 1.077 309 2.112 2.732

> 2M 80 1.446 5.945 130 | 27.483 1.054 5 17.688 0.633

b) TaBLA + RR
<500 || 578485 | 0.006 | 40.670 || 207376 | 0.137 | 0.683 161027 || 0.041 | 30.120
0.5K-8K || 336855 | 0.008 | 25.135 || 424961 | 0.152 | 0.688 364370 || 0.089 | 11.499
8K-128K || 128335 | 0.011 7.320 || 198278 | 0.282 | 0.821 147836 || 0.175 3.375
128K-2M 918 | 0.093 2.800 2210 | 2.687 | 1.011 597 || 1.926 1.536
> oM 81 | 0.704 2.505 131 | 26.849 | 1.015 8 || 16.860 1.584

Figure 10: Breakdown of average response times and stretch factors by file size and cache hit status using RR with (a)
Rand,»; and (b) TaBLA at the clients for the ISP trace. Here “conn-hits” is the number of cache misses that took advantage
of an existing, open (persistent) connection to the remote server.

lo T T T T T T T T T T

c Hidom) F--x-- i

< rand_dom ---x--- o rand_dom ---x---) 24 'fap:n(g&rng e
S 8¢t % rand_url ---a-- | X 100 ¢ rand url ---a-- E 8 20 F 4omesiza —o -
B TaBLA —5— 3 TaBLA —5— S A X
X T N > 16 | A s _
k| s 5 o S S
2 = 10 4 S
% s Fohope =BTk e
2 @ d £
o IS 3

1 T S R N SR S N ©

1 2 3 45 6 7 8 910
proxy id proxy id proxy id
(a) (b) (c)

Figure 12: (a) Total daily load, (b) mean file size and (c) coefficient of variation (= v/variance/mean) of file sizes directed

to each proxy by the three client-size schemes, for ISP data.

T T
rand_dom --x-- i
10000 rand_url -4 - X
load-bal —e- X~ -
TaBLA —&-- 57]

1000 ¢

100

avg. stretch

0E j"/,,» o

avg. response time (sec)

1
100 200 300 400 500 600 100

system load

200 300 400 500
system load

(b) Stretch

600

(a) Response time

Figure 11: Performance of simply balancing the load (la-
belled “load-bal”) at the domain level across proxies for
the ISP data, compared to the performance of Randgom
and TaBLA.

this only shows loads at an aggregate level, we see that
TaBLA and Rand,,; both balance the load better than
Randgom,. Figure 12(b,c) shows how successful TaBLA
was in separating requests by sizes for the ISP data;
the NLANR results look similar.

5.3 Size-based scheduling at proxies

An alternate way to tackle the queueing of small re-
quests behind larger requests is to reorder the replies
at the proxy based on the sizes of the replies. We
tried the Shortest-Processing-Time-first (SPT) and the
Shortest-Remaining-Processing-Time-first (SRPT) at
the proxy for sending replies to clients [16]. In SPT, the
smallest pending reply is written to completion over
the network. For SRPT we preempt the sending of
replies after a buffer-size (64KB) worth of data is writ-
ten, and select the reply with the smallest remaining
size next. We found no improvement to any of the
client-side schemes due to these proxy-based policies;
RR remains the best scheduling policy at the proxy for

all the client-side schemes.
5.4 Effect of a faster network

We experimented with higher bandwidth (an or-
der of magnitude higher) links in the system. We set
By, to 1Gbits/s (128MB/s), while B, was increased to
1.5MB/s; the latencies and other overheads were kept
unchanged. The definition of load due to requests had
to be changed to reflect a lower weight for the num-
ber of bytes transferred compared to the number of
requests. The results are shown in Figure 13. TaBLA
on the NLANR logs now shows a bigger improvement
over Rand,,; compared to Figure 9, because a faster
network can better handle a load imbalance due to un-
predicted, large-sized requests. Further, the advantage
of persistent connections is more pronounced because
the network latency was not changed. NLANR logs in-
curred more cache misses, and therefore a bigger per-
centage of requests benefit from persistent connections
(compared to the ISP logs). For both traces, with a
faster network, TaBLA improves the response time over
Rand,,; by up to a factor of 2, and the stretch factor
by up to a factor of 5.

6 Related Work

A number of client-based strategies for proxy se-
lection have been proposed before. For example,
CARP [27, 23] and a scheme by Karger et al [15] in-
volve hashing the target URL, similar to the Rand,;
scheme with which we compare TaBLA. Pai et al [22]
proposed using a front-end redirector to provide load
balance and locality of reference for web server clus-
ters; this work was subsequently extended to handle
persistent http connections [2]. We have attempted to
do away with front end machines/switches in our ap-
proach; also, the concerns at a cluster of proxies are
somewhat different.

Several systems have been proposed for distributed
or hierarchical web caching [7, 10, 5, 12]. They re-

T T T
rand_dom ---%---
rand-url(url) ---&---
TaBLA —ED—X,X'

T T T T
10000 fand_dom --x-- xR
rand_url -a- x>
TaBLA ﬂ;,x')
B IS

1000 F

100

avg. stretch

0.1

avg. response time (sec)

avg. response time (sec)

T T T T T
rand_dom ---x---

1000 Fand_url --a-

TaBLA —8x

100

avg. stretch

10

014 At w K

1 e

L L
1
1000 1400 1800 200

system load

(a) ISP (RR)

200 600 600 1000 1400 1800

system load

(b) ISP (RR)

Il Il
1000 1400 1800 2200 2600
system load

(c) NLANR (RR)

1000 1400 1800 2200 2600
system load

(d) NLANR (RR)

Figure 13: Performance of the three client-side scheduling schemes for both NLANR and ISP proxy logs, at higher network
bandwidths. The RR algorithm was used at the proxy to schedule replies to clients. Metrics for comparison are the average

response time and the stretch factor.

quire moderate to large amounts of communication be-
tween proxies to share content, which is not required
in our client-side scheme. Round-robin DNS is com-
monly used to distribute load across web servers. A
similar scheme could be applied to web proxies, but
that would result in different proxies serving the same
web pages. This would reduce the hit rates and dis-
tribute content across all the proxies, which we avoid in
TaBLA. Server-side mechanisms such as reverse prox-
ies or DNS-based redirection are complementary to the
client-side schemes described here.

Our size-based scheduling scheme is similar to the
SITA-E policy proposed by Harchol-Balter et al [13].
SITA-E was specifically designed for non-preemptive
distributed server systems where the task size distribu-
tion is heavy tailed; it significantly outperformed other
more common scheduling schemes. However, we do not
see as large a gain because in our case large requests
are prevented from blocking small ones for a too long
due to task preemption at the proxy.

7 Conclusions and Discussion

Based on analysis of recent traces from two different
web proxies, we have proposed a new client-side table-
based scheduling algorithm to redirect web requests to
a cluster of web proxies. Our simulations demonstrate
that the scheme provides significant improvement over
pure randomizing hash-based schemes, which apply a
consistent hash function to the web URL or domain
name to determine the target proxy.

A weakness of our experimental methodology was
the unavailability of proxy traces for sufficiently heavy
web traffic. Shrinking the timescale was our solution.
We could also scale up the size of the set of files re-
quested according to the increasing load. However,
this approach, which is used by workload generators
like SpecWeb [24], involves adding synthetic requests

to the real workload. Validating our scheme on origi-
nally heavy traffic is a subject of future work. Also, we
did not study the effect of cache misses due to domains
being reassigned to different proxies when the redirec-
tion table is updated. Our workload analysis indicates
that the table need not be recomputed often, thereby
mitigating the effect of the initial cache misses when a
new table is installed.

Our scheme can replace the currently popular redi-
recting switches that need to be installed into an ISP
network. These switches rely on proprietary hardware
and software to provide load balancing and fault tol-
erance. Our scheme requires client-side adaptations to
proxy failures or hot spots; this may result in slower
response times during such conditions compared to the
redirectors. However, we contend that the switches
themselves add cost and complexity to the network,
and are additional points of failure that can affect a
large number of clients.

References

[1] Alteon Web Systems. Web OS Traffic Control
Software. http://www.alteonwebsystems.com/.
[2] M. Aron, P. Druschel, and W. Zwaenepoel. Ef-
ficient support for p-http in cluster-based web
servers. In Proc. USENIX Annual Technical Con-
ference, June 1999.
[3] G. Ball and D. Hall. A clustering technique for
summarizing multivariate data. Behaviorial Sci-
ences, 12(2):153-155, March 1967.
[4] L. Breslau, P. Cao, L. Fan, G. Phillips, and
S. Shenker. Web caching and Zipf-like distribu-
tions: Evidence and implications. In Proc. INFO-
COM, March 1999.

[5] A. Chankhunthod, P. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical Inter-
net object cache. In Proc. Useniz Technical Con-
ference, San Diego, CA, January 1996.

[6] C.Cunha, A. Bestavros, and M. Crovella. Charac-
teristics of WWW client-based traces. Tech. Rept.
1995-010, Boston University, 1995.

[7] L. Fan, P. Cao, J. Almeida, and A. Broder. Sum-
mary cache: A scalable wide-area Web cache shar-
ing protocol. In Proc. SIGCOMM, pages 254-265,
September 1998.

[8] A. Feldmann, R. Caceres, F. Douglis, G. Glass,
and M. Rabinovich. Performance of Web proxy
caching in heterogeneous bandwidth environ-

ments. In Proceedings of the INFOCOM ’99,
March 1999.
[9] Foundry Networks. Serveriron switches.

http://www.foundrynet.com/.

[10] S. Gadde, M. Rabinovich, and J. Chase. Reduce,
reuse, recycle: An approach to building large in-
ternet caches. In 6th Workshop on Hot Topics in
Operating Systems, Cape Cod, MA, May 1997.

[11] S. D. Gribble and E. A. Brewer. System design is-
sues for Internet middleware services: Deductions
from a large client trace. In Proc. Usenix Symp.
Internet Technologies and Systems (USITS), Mon-
terey, CA, December 1997.

[12] C. Grimm, H. Pralle, and J.-S. Vockler. Load and
traffic balancing in large scale cache meshes. In
Proc. Intl. WWW Caching Workshop, June 1998.

[13] M. Harchol-Balter, M. E. Crovella, and C. D.
Murta. On choosing a task assignment policy for
a distributed server system. IEEE J. Parallel and
Dist. Computing, 59:204-228, 1999.

[14] Inktomi Corporation. Traffic ~ Server.

http://www.inktomi. com/.

[15] D. Karger, A. Sherman, A. Berkheimer,
B. Bogstad, R. Dhanidina, K. Iwamoto, B. Kim,
L. Matkins, and Y. Yerushalmi. Web caching with
consistent hashing. Computer Networks and ISDN
Systems, 31(11-16):1203-1213, May 1999.

[16] L. Kleinrock. Queuing Systems, volume II: Com-
puter Applications. Wiley, 1976.

[17] Lucent Technologies. IPWorX Web Performance
Solutions. http://www.lucent.com/.

[18] J. C. Mogul and V. N. Padmanabhan. Improv-
ing WWW latency. In Intl. WWW Conference,
October 1994.

[19] National Labora-
tory for Applied Network Research (NLANR). A
distributed testbed for national information pro-
visioning. http://ircache.nlanr.net/Cache/.

[20] Netscape Communications. Automatic proxy con-
figurations. http://home.netscape.com/.

[21] V. N. Padmanabhan and J. C. Mogul. Using pre-
dictive prefetching to improve world wide web la-
tency. ACM SIGCOMM Computer Communica-
tion Review, 26(3), July 1996.

[22] V.S. Pai, M. Aron, G. Banga, M. Svendsen, P. Dr-
uschel, W. Zwaenepoel, and E. Nahum. Locality-
aware request distribution in cluster-based net-
work servers. In Proc. ASPLOS, October 1998.

[23] K. W. Ross. Hash routing for collections of shared
web caches. IEEE Network, pages 37-44, Novem-
ber 1997.

[24] Standard Performance Evaluation Corporation.
Specweb99 release 1.01, November 1999.

[25] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Beyond
hierarchies: Design considerations for distributed
caching on the internet. In Proc. ICDCS, Austin,
TX, May 1999.

[26] S. Theodoridis and K. Koutroumbas.
Recognition. Academic Press, 1998.

Pattern

[27] V. Valloppillil and K. W. Ross. Cache array rout-
ing protocol v1.0. Internet draft, February 1998.

