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ABSTRACT

In this paper, we examine algorithms and data structures
for the longest prefix match operation required for routing
IP packets. Previous work, aimed at hardware implemen-
tations, has focused on quantifying worst case lookup time
and memory usage. With the advent of fast programmable
platforms, whether network processor or PC-based, metrics
which look instead at average case behavior and memory
cache performance become more important. To address this,
we consider a family of data structures capturing the impor-
tant techniques used in known fast IP lookup schemes. For
these data structures, we construct a model which, given an
input trace, estimates cache miss rates and predicts aver-
age case lookup performance. This model is validated us-
ing traces with varying characteristics. Using the model,
we then choose the best data structure from this family for
particular hardware platforms and input traces; we find that
the optimal data structure differs in different settings. The
model can also be used to select the appropriate hardware
configurations for future lookup engines. The lookup per-
formance of the selected data structures is competitive with
the fastest available software implementations.

1. INTRODUCTION

Routing of IP packets requires fast operation of a tight inner
loop: for each packet, extract its destination IP address,
look this address up in a table, and take an appropriate
action (eg, send the packet out along a given link) based on
the result. Obviously, the number of possible destinations
in the Internet is too large to permit this simple approach
to work in practice; instead, the tables are described in a
compact way by aggregating individual IP addresses into
larger groups for which the same actions should be taken.

This is done by storing routing table entries in classless-
interdomain routing (CIDR) format; each entry consists of
an (address, length) pair and represents all addresses which
match address in the first length bits of their binary repre-
sentations. For example, 204.178.0.0/16 represents all ad-

dresses of the form 204.178.*.*. To make it possible to ef-
ficiently subdivide these networks, it is permissible to have
more than one entry which covers a given address. If more
than one entry contains a given address, then the action cor-
responding to the most specific entry (i.e., the one with the
longest prefix) containing that address should be used. Here,
if the routing table consists of 204.0.0.0/8 and 204.178.0.0/16,
then 204.178.1.1 matches the latter entry, while 204.179.1.1
matches the former.

This key operation, longest prefic match, is often imple-
mented directly in hardware on high-speed routers for per-
formance reasons, since it must be performed on each packet.
The emphasis on hardware implementations has guided much
of the work in this area. The algorithms used are simple,
with well-understood worst-case behavior, because of the
complexity of implementing them in hardware. Similarly,
total memory usage is a key design criteria on hardware de-
vices with fixed amounts of memory.

However, recent improvements in PC hardware and algo-
rithms make it possible to scale to speeds of a few mil-
lion packets per second on conventional hardware. This al-
lows for improved performance of software which depends
on longest prefix match to analyze packet data (for exam-
ple, the clustering algorithm used in [11]). In addition, chip
manufacturers like Intel [9] and C-Port/Motorola [3] are pro-
ducing network processors aimed at allowing rapid develop-
ment of high performance network applications, including
both edge and core routers. The Intel IXP1200 configura-
tion, for example, consists of six microengines (small CPUs),
up to 8MB of SRAM, and up to 256MB of SDRAM, and
supports multiple context threads per microengine. In such
settings, fast lookup code, optimized for the specific system
environments available to these devices, will enable higher
performance solutions.

On such platforms, new design decisions are possible: Pro-
gramming, even for non-PC network processors, is much
easier than hardware design, allowing a wider space of al-
gorithms to be used. Total memory usage is less of a con-
straint, since more memory can be added cheaply, but the
behavior of the memory hierarchy becomes important. Fi-
nally, worst-case behavior becomes less of a concern; com-
plex buffering is not required to allow some packets to be
processed more quickly than others. Instead, we can evalu-
ate algorithms based on their average-case performance on
realistic inputs, and search for ones with good performance



in practice.

In this paper, we present techniques for testing and tuning
the average-case performance of algorithms for this prob-
lem, given a table of prefixes and a statistical summary of
an input trace. We begin by describing a family of data
structures for IP lookup generated by composing known
techniques, particularly tries and splay trees. In order to
evaluate these data structures, we need two things: First,
our goal of average-case performance must be defined with
respect to some distribution of inputs. To make it a mean-
ingful measure, we must choose input distributions which
are representative of real settings. We examine several in-
put traces, both real and synthetic, and identify properties
distinguishing these traces. Second, we need a model that
allows us to efficiently estimate the performance that a given
design will provide. Here, a key component of the model is
estimating cache miss rates in various data structures, since
cache behavior is a significant factor in overall performance.
We validate our model using the traces, showing that the
model accurately predicts performance on different plat-
forms across different input traces. By applying this model
to specific system configurations, we are able to select the
data structure from this family which optimizes performance
for that system for the different traces. The data structures
we find with this method achieve performance comparable
to or better than the best previous implementations. In-
terestingly, the optimal data structure found is different for
different systems and for different packet traces. In addition,
this model can be used in guiding system design, allowing
designers to predict the performance of different hardware
configurations. To illustrate this, we examine the sensitivity
of the performance to system parameters like cache size and
cache speed, enabling us to identify components which have
a significant impact on overall performance.

2. IP LOOKUP ALGORITHMS AND DATA
STRUCTURES

In designing our algorithms for longest prefix match, we pro-
ceed by composing two known building blocks.

The first goes by a number of names, alternately described
as expanded prefix tries [18], generalized level-compressed
tries [4], and could easily be described as a tree-of-arrays or
tree-of-hashes. For lack of a consistent name, we will refer
to it simply as a trie throughout, with the understanding
that we mean it in this generalized sense.

Regardless of the name, the idea is straightforward. The
simplest version, a binary trie, represents a set of prefixes
as a binary tree, associating with each prefix a path from
the root in the tree. Looking up the prefix associated with
a string  in such a structure is easy: At each node n, read
the next unread bit of z. If it is 0, move to the left child,
if 1, move to the right child. Repeat this process until a
leaf is reached, which corresponds to the longest matching
prefix. Since each prefix corresponds to exactly one node,
we can store any information associated with the prefix in
that node, and look it up when we arrive there.

The trie data structure we use generalizes this to larger
strides or branching factors at each node in the natural way:
Instead of each node having at most two children, and read-
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Figure 1: An example trie with two levels

ing one bit to determine which one to move to, the number
of children a node has is 2% (the branching factor) for some
integer k (the stride), and the next k bits of z are used to
select which child to visit. This stride, and thus the number
of children, can be different for different nodes in the trie.
However, to simplify both the algorithm and the optimiza-
tions we perform later, we restrict our attention to levelled
tries. In such tries, the stride is fixed for all nodes at the
same depth in the trie. We will refer to specific parameter
choices using the notation T2(16,24) to denote a two-level
trie, where the first level is indexed by bits 1-16 and the sec-
ond level by bits 17-24. In our implementation, a trie node
consists of two pointers (8 bytes). There are three possible
outcomes of visiting a trie node, depicted in Figure 1: If the
node has children (node A), it points to a table of its chil-
dren. If it is a leaf entirely covered by a single prefix, or a
leaf uncovered by any prefix (node B), we store a pointer to
the appropriate data directly in the node. Finally, if a trie
node contains multiple prefixes (node C), or if the address
range represented by a trie node is not completely covered
by the single prefix it contains (node D), it requires a pointer
to the splay tree data structures described below.’

In this non-binary trie, there is no longer a one-to-one corre-
spondence between prefixes and nodes of the tree; for exam-
ple, if we take k = 3 bits in the first step, then the length one
prefix “1+” will actually correspond to four children “100+”
through “111%” at the first level of the trie, causing the
prefix to be replicated four times. Grouping several bits to-
gether in this way reduces the number of sequential memory
accesses required at the expense of increasing memory usage
due to replication of prefixes into multiple nodes.

In addition, it is possible that a leaf of the trie corresponds
to a range of addresses which is not covered by a single
prefix. The hope is that by using the trie at higher lev-
els, there are not too many prefixes sent to this leaf. What
we would like is a data structure to provide fast access to
the most popular ones, while having a memory requirement
which depends only on the (small) number of prefixes in this
leaf. This second data structure we use is a splay tree [17], a
type of self-adjusting binary search tree, which dynamically
restructures itself to bring frequently searched nodes close
to the root of the tree. To apply splay trees to our longest

!While we use two pointers for this, it could potentially
be reduced to 1 pointer by more aggressive manipulation of
pointer bits as flags for these cases. Instead, we use the addi-
tional space to store the number of hits to different prefixes,
which is an input to our performance model.



prefix match problem, we view the space of addresses as a
sequence of 32-bit integers, and divide this space into inter-
vals separated by the beginning and endpoints of each prefix
when represented in this integer form. This decomposition
of prefixes into intervals for binary search was used in pre-
vious work [8, 12]. There, they optimize the construction
of trees of this form. Here, we will use these trees in many
places in our data structure. Rather than explicitly optimiz-
ing each tree, we use self-adjusting trees to get good, if not
optimal, performance without requiring detailed optimiza-
tion. In our implementation, each splay tree node requires
24 bytes, since it stores two child pointers, a pointer to the
result of the lookup, as well as interval begin/end point-
ers and a hit counter. Because we use a self-adjusting tree,
bounding the worst-case performance of our data structures
is problematic. If a worst-case bound is desired, the splay
trees can be easily replaced by balanced binary trees, or the
more optimized weight-balanced binary trees [8].

In summary, the data structures we consider are leveled
tries. Because of this leveled nature, the trie structure for a
given prefix table can be described completely by a vector
of strides.

2.1 Comparison with Previous Work

The trie technique described above appears in various forms
in numerous works. For example, the BSD kernel contains a
trie-based implementation [16]. As mentioned above, Srini-
vasan and Varghese [18] also use the idea of allowing replica-
tion of prefixes in order to construct tries with fewer lookups.
They consider a family of such tries with different parame-
ters, and find the optimal trie structure, as we do in subse-
quent sections. The distinction, however, is that they mini-
mize the memory required, subject to some worst-case per-
formance guarantees. Here, we maximize the performance
achieved in the average case; the memory required is impor-
tant to us only in its impact on caching behavior.

Both Waldvogel et al. [20] and Lampson et al. [12] mention
the idea of improving practical (i.e., average-case) perfor-
mance by adding an array lookup based on the first 16 bits
of the address as a preparatory step to other algorithms.
Our algorithm is a natural extension of this idea. As we
will show later, in improving average-case performance, this
is a very powerful technique; indeed, as we will show, the
optimal choice will often be to take more than 16 bits in the
first step, and the optimal number of bits is sensitive to the
properties of the inputs used.

Moving closer to the details of our schemes, several previ-
ous papers make use of similar trie data structures, such
as the LC-tries of Nilsson and Karlsson [14]. In particular,
Degermark et al. [2] construct a data structure which (at a
high level) can be described in our notation as a T3(16,24,32),
supplemented by several compression techniques. The com-
pression at the lower levels, which deals separately with
leaves depending on the number of prefixes they hold, is
aimed at addressing the same problems as our use of splay
trees, though it uses different techniques. Again, the overall
goal of this compression is to minimize storage requirements,
allowing a hardware implementation to use less SRAM, rather
than to directly improve performance. In a similar vein, the
table-based scheme of Crescenzi et al. [5] can be seen as an

implicit representation of a two-level trie: A row is indexed
by using a function of the first 16 bits (first level), and then
a position is indexed by a function of the second 16 bits
(second level). By using functions of these bits, rather than
the bits directly, and by combining prefixes with the same
next hop, they are able to compress the representation of the
trie, leading to less storage requirements and better cache
performance. In a different direction, Gupta el at [8] ex-
amine the problem of improving average case lookup times
while simultaneously bounding the worst case lookup time.
However, their key data structure is a binary tree, requiring
many sequential memory lookups, so their performance in
our setting is not competitive.

Finally, Cheung and McCanne [4] take an approach very
similar to ours: They consider a family of multilevel tries
and model the performance of such search algorithms on sys-
tems with a memory hierarchy. Using their model, they opti-
mize performance, either directly with a pseudopolynomial-
time dynamic programming algorithm or approximation via
Lagrangian relaxation. They describe how to implement this
approach on systems with explicit memory management,
and extend it to memories with caches by marking items
explicitly as cached or uncached. In our work, we look at
the cache behavior at a much more detailed level; in par-
ticular, accounting for non-trie tree accesses (not present in
their data structures) requires more detailed modeling. We
also model standard caches, where items are brought in on
demand and subsequently replaced.

3. DATA

To evaluate the average-case performance of different data
structures, we apply our models to several specific input
distributions. For us, the input to the IP lookup problem
consists of two parts: a table of prefixes and a trace consist-
ing of a sequence of IP addresses. We describe the table and
traces used in our experiments, and give characterizations
of the real traces which highlight their differences with sim-
ple synthetic traces, differences which will cause algorithms
optimized on synthetic traces to perform sub-optimally on
real data.

3.1 Data Sources

In all our experiments, we use a table obtained in May 2000
from the MAE-East peering point [10], which we take to be
representative of a large routing table used near the core
of an IP network. It contains 52857 prefixes, distributed
among lengths 8-32. As shown in Figure 2(a), about half
of all prefixes have length 24, with most of the remainder
distributed between 16 and 23 bits. Similar experiments
could be performed with other tables; we have chosen to
focus on this one table both for simplicity and because one
of our traces was anonymized in a table-dependent fashion.
This table does not contain the 0 length prefix 0/0, and
addresses not matching any of the prefixes in the table have
been removed from all traces. Without these modifications,
mismatches between where the table is used and where the
data is collected skew the data, producing significant traffic
for this default prefix.

Our experiments also make use of 4 traces, 2 real and 2 syn-
thetic. The first real trace, ISP, consists of 1M addresses
spanning 172K unique addresses obtained from packets seen



by an ISP core router. The addresses have been anonymized,
but in a manner which is one-to-one and respects the pre-
fix boundaries of the MAE-East table (i.e., both an address
and its anonymized version belong to the same prefix). This
trace will be our primary benchmark in evaluating perfor-
mance. The second real trace, SDC, contains 10M addresses
(63K unique) obtained from an edge router at the San Diego
Supercomputer Center [15]. Because it is collected at the
edge of the network, this trace is less similar to the dis-
tributions we expect to see in practice than the ISP trace;
however, access to two very different real traces provides
greater confidence in validating the model. In particular,
the distribution of addresses in the SDC trace is in some
ways too easy for IP lookup: It has a large contribution
from a small number of popular addresses. Therefore, one
could apply further optimizations (caching of destination IP
addresses, for example) which would improve performance
on this trace, but which would not generalize to other set-
tings. As we will see, however, even these two very different
real traces share several common characteristics not shared
by simple synthetic traces.

The synthetic traces we compare to are generated using sim-
ple, natural heuristics. In RandIP, each address is generated
by choosing uniformly from among the addresses covered by
some prefix. In RandNet, first a prefix is chosen uniformly
at random from the set of prefixes, and then an address
belonging to that prefix is chosen, again uniformly at ran-
dom. These represent the natural choices for traffic distri-
bution in the absence of any information about real traces.
To distinguish them from more sophisticated traffic gener-
ation models, we will refer to them as “random.” As we
will show, however, real traces different significantly from
random traces, even at a statistical level. However, these
traces, particularly RandIP, are often used to benchmark
IP lookup algorithms. Several papers [20, 12] make use of
RandIP in attempting to characterize average-case perfor-
mance; in [4], RandNet is used explicitly (called iid prefix),
as well as a variant of RandIP called scaled prefix, where
prefixes are chosen with weights inversely proportional to
exp(prefix length).

All of our experiments are done on IPv4 traffic. While simi-
lar modelling techniques may apply to IPv6, we do not have
sufficient real data to judge average-case performance.

3.2 Data Characterization

These four traces will be used to validate our model and
select and tune data structures for specific scenarios. As we
will show in the Section 6, using different traces will lead to
different choices in designing data structures for IP lookup.
Before doing so, we examine the traces more closely to un-
derstand the properties of the traces and the differentiation
between real and random traces. We do this by character-
izing the traces along two main directions: distribution of
addresses by prefix and distribution of addresses by prefix
length.

The distribution of addresses in a trace among the prefixes
of the table is important because it reveals the extent to
which the traffic is concentrated among a small number of
prefixes. We illustrate this in Figure 2(b) by plotting the
fraction of addresses captured by the most popular network.

As expected, the real traces, particularly SDC, are heavily
skewed towards a few popular prefixes. This concentration
of real traffic patterns has been noted previously in a num-
ber of contexts, including inter-AS traffic [6] and web site
access [11, 1].

?

% 30 T T T T T Oé (, = N B

s : ’ - _
3 25 | % oo fr” A _
Soop - g 07 ]
g L 06 " ]
& 15t 1 2o/ 1
2 S 04 s ]
| A E o3l , ]
5 5p - S 02 i
[ 3 .

£ 0.1 |/ RandNet - ]
5 0 I y ; L o Il 1 Il Il Il

Z 5 10 15 20 25 30 35 5 10 20 30 20 5 eo

Prefix Length Number of prefixes (thousands)

(a) (b)

Figure 2: (a) Traffic Distribution of Prefix Lengths,
and (b) Traffic Distribution by Prefix

ISP SDC
13 14
12 B v} i
11 B
10 | B 10 | m
£ L i ©
5 . 5 8 ]
= 8r h =
5 7L i 5 6 R
o o
- -
6 1 4 T
5r i 2
Wb ] L 4
3 | AT AT L 0 i . AL |
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Prefix Length Prefix Length
RandIP RandNet
14 T T T 14 T T T
12 + g v} i
10 | B
s < 10 | B
§ 8l 1§
£ S i
> 6 1 =3
g g 6l i
4+ 4
2+ g 4 B
0 I AT A I 2 i I AL |
0 5 10 15 20 25 3 0 5 10 15 20 25 30

Prefix Length Prefix Length

Figure 3: Log(Traffic distribution) by prefix length

However, the performance of our lookup data structures will
be affected not only by the number of popular prefixes, but
how those popular prefixes are distributed across different
prefix lengths. Figure 3 shows the distribution of traffic to
different length prefixes. While clearly not identical, the
two real traces have a number of points of similarity: a high
concentration of traffic at 16-20 and 24 bit prefixes and rela-
tively little traffic outside that range. By contrast, the ran-
dom traces concentrate traffic in either very short (RandIP)
or very long (RandNet) prefixes. Therefore, the commonly-
used RandIP distribution is a very easy distribution for most
IP lookup algorithms: Hashing on the first 8 and/or 16 bits
gives direct answers for a large fraction of the addresses in
the trace.

We now examine the average number of hits for a prefix of



a given prefix length. For the random traces, the results
are as expected: The number of hits per prefix is roughly
constant independent of prefix length for RandNet, and for
RandIP decreases by a factor of 2 each time the prefix length
increases by 1. For the real traces, the answer has two parts.
Outside of prefix length of 13-24 bits, the mean number
of hits varies unpredictably; however, prefixes outside that
range represent only a small portion of the traffic in our real
traces. For prefixes with length in the important range 13-
24, the number of hits per prefix is decreasing with prefix
length (unlike RandNet), but at a rate much slower than
RandIP. A least-squares fit shown in Figure 5 of the log of
the number of hits to prefix length yields that increasing the
prefix length by one decreases the mean number of hits by
a factor of about 0.69. These observations could be used in
the future to develop more realistic synthetic trace models,
which would be an important help in analyzing average-case
performance.
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Finally, these characterizations rest on analyzing some short
segment of data, from which we wish to conclude some global
properties of the trace. To make this possible, the properties
of the trace that interest us (eg, distribution of hits among
prefix lengths) should not vary widely over time. In order
to demonstrate this, we examine the histograms of traffic
by prefix and traffic by prefix length taken from different
segments of the same trace. We then quantify the difference
between two such histograms by computing the total varia-
tion distance (essentially, a normalized L; distance between
the histograms):

> bins : abs(hi — hi)
Ebins i(hi + hi)
where h;, h; denote the weight given to histogram bin ¢ in
the two traces. This distance d is at least 0 and at most 1;

ISP | SDC
By Prefix | 0.278 | 0.389
By Prefix Length | 0.006 | 0.083

Table 1: Total Variation Distance

intuitively, it says that one histogram can be turned into the
other by moving a d fraction of the samples between bins.

This total variation distance was computed for the ISP trace
(comparing the first 0.5M packets with the last 0.5M packets
out of the 1M packets in the trace) and the SDC trace (com-
paring the first 1M packets against the last 1M packets out
of the 10M in the trace; the two segments are over one hour
apart). The results are shown in Table 1. While the SDC
trace exhibits larger variation in an absolute sense (both be-
cause of the properties of the trace and the larger separation
between the intervals compared), the conclusions for the two
traces are similar. While the access frequencies to individ-
ual prefixes change somewhat, the frequencies to different
prefix lengths remain relatively constant. For trie-based al-
gorithms hashing on bits of the address, this is encouraging,
since it indicates that the importance of specific address bits
is not varying widely with time. It also indicates that , at
this coarse time scale, the traces have only limited tempo-
ral locality. Further work, examining these properties over
longer traces (which are difficult to obtain in unanonymized
form), would be helpful in making these statements more
precise.

4. PERFORMANCE MODEL

‘We now describe how we build the performance model to
predict average case lookup time for a lookup data struc-
ture, given the prefix table and a summary of the input
packet trace consisting of the access frequencies for each of
the entries in the table. This summary data is much easier to
collect than complete traces, so our model assumes only this
knowledge; however, the full traces described in the previ-
ous section are used in validation. Our model focuses solely
on the problem of lookup time, assuming that other issues
like updates are handled separately (say, through a double-
buffered implementation). Incorporating update handling
into such a model is a problem for future study.

The lookup engine in our model has a 3-level memory hierar-
chy: an L1 cache, an L2 cache and main memory (see Figure
6). The number of levels, however, can be easily adjusted
for different processors. We make some assumptions and
approximations to simplify the analysis of average lookup
performance; these assumptions are mentioned throughout
this section, and are highlighted.

Let tz1 be the penalty of missing in the L1 cache, which
equals the L2 read latency. Let t1,2 be the additional penalty
for missing in the L2 cache. Since every L2 miss also causes
an L1 miss, tz1 + tr2 equals the main memory latency of
the machine. Because references to the L1 cache depend
statically on the compiled code and not on the locality in-
troduced by the input data, we include the cost of accessing
the L1 cache as part of the of the useful work done in the
code.
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Figure 6: The cache hierarchy in our model.

An IP lookup in our chosen space of data structures consists
of visiting one or more trie nodes followed by visiting zero
or more nodes in a binary (splay) tree at the leaf of the trie.
Therefore the average time tq.4 to search the data structure
can be expressed as

tavg =M -t +Ms-tro+ H - tirie + S - tiree + teconst (1)

where M; is the average number of L1 cache misses and
M, is the average number of L2 cache misses per IP lookup.
Here t4r4 is the average amount of time per IP lookup spent
visiting a trie node that is in the L1 cache, tiee is the av-
erage amount of time spent visiting a tree node in the L1
cache, and tcons+ is the additional overhead for processing
each packet. H is the average number of trie nodes vis-
ited while S is the average number of splay tree nodes vis-
ited. This assumes that the useful work done while the
CPU is waiting on a miss is negligible; this is reasonable for
the lookup procedure, because it essentially involves pointer
jumping. However, this assumption is not valid for multi-
threaded lookup engines that can context switch between
threads to hide memory latency. Further, Equation 1 as-
sumes that no other process is contending with the lookup
process for access to the memory bus or caches.

We first explain how the average number of cache misses can
be computed in general. We then describe how the average
number of accesses to tree and trie nodes can be inferred;
this allows us to compute the expected number of cache
misses incurred during the lookup procedure.

4.1 Computing cache misses

We compute the cache misses for the L1 and L2 caches sep-
arately. Consider a set of N memory blocks being accessed
through a cache with C blocks. Let B be the total number
of accesses made to the IV blocks over a certain period of
time. For i =1,..., N let b; be the number of accesses to
memory block 7. To simplify the analysis we assume that ac-
cesses to prefixes are independent; that is, we do not model
small-scale temporal locality in the input traffic. Since real
traffic typically has such temporal locality, this approxima-
tion causes our model to over-predict cache misses incurred
during lookups for real traces. However, in actual lookup
experiments we found at most a 10% difference in the mea-
sured average lookup time between our ISP packet trace
and its random permutation, and at most 15% for the SDC
trace, indicating that the resulting inaccuracies are limited.

We approximate the expected number of cache misses while
accessing block ¢ as follows. For simplicity, we first assume

the cache is direct mapped; we subsequently show how to
handle set-associative caches. If the number of memory
blocks N accessed is large compared to C, and no small set of
blocks is accessed too frequently, it is reasonable to assume
that each cache block is accessed with roughly equal prob-
ability.> Therefore, each cache block gets B/C accesses.
Now consider a memory block i; it gets mapped to a unique
cache block. Every time memory block ¢ is accessed, the
access will be a hit if the last access to the cache block was
for the same memory block. Since b; of the B/C accesses
to the cache block are for memory block 7, the probability
¢; (in steady state) that an access to memory block 7 will
result in a miss is given by

B/C —b;
q'=7/

i=~gg —L1-Cb/B

Since there are a total of b; accesses to memory block i, the
total number of cache misses incurred due to memory block
7 is b; (1 -C bz/B)

Associative caches. If the cache is a-way set associative,
the memory block can map to a set of a cache blocks. Let
Si be the set of a cache blocks that memory block 7 maps
to. Then S; gets a - B/C accesses. If LRU replacement is
used between cache blocks in one set, then access to mem-
ory block ¢ will not be a miss if at least one of the last
a accesses to set S; was an access to memory block 7. The
number of misses m; incurred due to memory block % is then

summarized as
C b\*
i=0bi (1 2
m; =b ( a-B) (2)

This expression may overestimate the misses to memory
block i because a reference to it can be a hit even when
none of the last a accesses to set S; was to memory block
7. This may happen when there are repeated references to
some other memory block that maps to S;, while ¢ was still
within the last a unique memory blocks to be accessed.

4.2 Access counts for each memory block
Each binary tree node and trie table entry is treated as
a separate memory block. This assumes that we get no
spatial locality from accesses to consecutive trie nodes.> We
compute the number of times each memory block is accessed
during the lookup procedure. We then use Equation 2 to
predict the cache misses for both the L1 and the L2 caches
separately.

The input to the model is the prefix table, and the rela-
tive lookup frequencies of the prefixes for a representative
packet trace. The lookup frequency of a prefix is how of-
ten the prefix is returned as the answer to the IP lookup
problem, when a fixed number of packets from the represen-
tative packet trace are looked up. We also need the machine
parameters tr1 and tr2, and the parameters tirie, tiree and

2This assumption is not valid for traffic patterns where a
very small number of prefixes significantly dominate the set
of prefixes looked up.

3Trie nodes, which are 8 bytes each, are implemented as
arrays and are likely to have some spatial locality. In princi-
pal this can be modeled, but would complicate our modeling
code. Splay tree nodes are larger and are not likely to yield
spatial locality.



tconst Which depend on the implementation of the lookup
code on the given machine.

For simplicity, we first explain how the access counts are
computed for a one-level trie followed by splay trees at its
leaves, and then describe how to extend it to a trie with
multiple levels. To build the performance model for a prefix
table, we perform a depth-first traversal of a 32-level binary
tree, which we will call Ts. The goal is to compute, in a
single traversal of Ts, the average lookup time for 1-level
tries with all possible strides.

We start with all the prefixes at the root; each prefix is as-
signed a weight that represents its lookup frequency. As we
traverse T, we split the prefixes at each level of Ts. At
level 1, all the prefixes with 0 at bit position ! are passed
down the left branch, while all prefixes with 1 in bit posi-
tion [ are passed down the right branch. Each prefix with
length less than ! is passed down both branches; its weight is
divided by two down each branch. Since we do not know the
real lookup frequency for the prefix across each branch, we
assume that it is looked up equally often along each branch.

When we reach a node of depth [ during this depth-first
traversal, we know that when the initial stride is /, this node
will be a trie leaf and all prefixes contained in it will be stored
in a splay tree rooted at this node. By summing the weights
of the prefixes at this node, the number of accesses to this
trie leaf is obtained.

Accounting for the splay tree accesses requires more effort.
Although the prefixes are converted (by possibly splitting
them) into intervals before insertion into the splay trees at
the leaves of the trie, we construct the model assuming that
prefixes themselves form the nodes of the splay tree.* A
splay tree is a self-balancing tree data structure that at-
tempts to minimize lookup depth (that is, the average num-
ber of nodes touched in a lookup). For a given distribution
of requests T, this average depth (for any binary tree) is
at least the entropy E(T) = — 3, pilogyp; of the dis-
tribution of requests; here p; is the probability of looking
up element . In practice, splay trees come close to achiev-
ing this optimum. Theoretical bounds show that they do
no worse than 3E(T) + 2 for sufficiently long sequences of
lookups[7]. Therefore, we approximate the lookup depth for
each splay tree T at a trie leaf as 1 + E(T') to include for
the access to the root of the tree. Thus if h; is the lookup
frequency of a prefix in a splay tree T', then

hi
E(T) = - ZP@ 10g2 (pz), where Di = ﬁ
ieT jer N

Let n be a leaf of the trie in the lookup data structure, and
let T}, be the splay tree stored under n. Then, every lookup
to a prefix under n results in one access to n. Thus n is
accessed H(T,) = > ;. hi times, where h; is the lookup
frequency of node (prefix) i. Every access to trie node n is
followed by an average of 1+ E(T,) accesses to the nodes in
T),. Thus, the nodes in T}, get a total of (1+ E(T3)) - H(Ty)
accesses. We cannot precisely determine the distribution

*Only a small fraction of prefixes get split into two or more
intervals because of overlap between prefixes; the remaining
prefixes map directly into intervals.

| Processor L1 cache L1 miss L2 cache | L2 miss
400 MHz 16KB on- 512KB off-
Pentium IT | chip, 4-way | 20 ™ | chip, 4-way | 100 P8
700 MHz 16KB on- 256KB on-
Pentium 11T | chip, 4-way | ©™ | chip, 8-way | 100 B8

Table 2: Relevant details of the hardware platforms
we tested our model on. Cache lines are 32 bytes.
The Pentium II has 128MB RAM while the Pentium
IIT has 512MB RAM.

of these accesses to the nodes in T, without explicitly con-
structing the splay tree (for example, the root of the tree gets
accessed every time any prefix in the tree is looked up). We
therefore assume as an approximation that each prefix i in
T, with a lookup frequency of h; is accessed E(T)-h; times.
The inaccuracy introduced by this approximation becomes
significant when the binary splay tree is large and therefore
has a large entropy. However, as we show in Section 5, good
lookup performance is obtained only with small splay trees,
and therefore we did not find it necessary to derive a more
accurate model for large splay trees.

Once we know the number of accesses to each node in the
trie and the splay trees, we can compute the L1 and L2 cache
misses using Equation 2. For a one-level trie, exactly one
trie node is accessed in each lookup. The average number
of splay tree nodes accessed is computed as the weighted
sum ».((1 + E(T)) - H(T)/N) over all splay trees T at the
leaves of the trie; here N is the total number of IP lookups
performed on the data structure.

‘We maintain global counters for each level [ = 1,...,32 of
Ts. When visiting a node at level [ of the binary tree Tz, we
incrementally add to the total number of L1 and L2 cache
misses, and the number of tree or trie nodes visited, when a
stride of [ bits is used in the final lookup data structure. By
the end of the traversal of T's, we accumulate these statistics
for each choice of the stride. We can now compute the aver-
age lookup time using Equation 1, and choose the optimal
value for the trie’s stride.

Extension for multi-level tries. For a two-level trie,
when we visit a node in the 32-level binary tree TB, we
must now add in the contributions to the cache misses and
average number of trie or tree nodes accessed under two
cases: when the current node represents a first-level trie
node, or a second-level trie node. Similarly, for a three-level
trie, we add contributions to the misses and node access
counts in three cases: when the current node is the first-
level, middle-level or third-level trie node. These counts can
be collected over exactly two traversals of T5.°

5. MODEL VERIFICATION

‘We now present results to show that our performance model
is valid for a range of traces, and for the two different ma-
chines listed in Table 2.

®The first traversal simply computes the total number of
accesses to memory blocks while the second computes the
miss rates using the access counts.



5.1 Determining the Model Parameters

We first explain how the various parameters were deter-
mined for each machine, and then validate the use of Equa-
tion 1 using these parameters.

The L1 and L2 cache miss penalties (that is, the parameters
tz1 and tr2 used in Equation 1) were inferred by running the
“Imbench” benchmark [13] on each machine. Note that the
memory hierarchies and relative speeds of memory accesses
to clock cycles are fairly different on the two machines. We
also set a limit of 32MB on the total size of the lookup data
structures that the model evaluates.

We used the performance counters available on the Pentiums
to measure the actual number of L1 and L2 cache misses
during the search procedure, for one million packets from
each packet trace. We also counted the average number of
tree and trie nodes visited by modifying our code. Thus
we have the values for tqvg, M1, M2, tri, tre, H, and T in
Equation 1. To infer the values for the cost of visiting a trie
node (ttrie), the cost for visiting a splay tree node (ttree),
and the constant overhead (tconst), we used a least-squares
fit against the real lookup time with tirie, tiree and tconst as
the unknowns. We confirmed the results using Vtune [19], a
profiler from Intel. For the Pentium II, we find that tirie =
12.5ns, teonst = 7.5ms and tiree = 37.5ns. For the Pentium
II1, tirie = 2.5m8, teonst = 4.5ms, and tiree = 16ns. Figure 7
shows the lookup time computed according to Equation 1
with the above parameter values (and using experimentally
measured values for Mi, M2, H and T'), and compares it
with the experimentally measured lookup time for a 1-level
trie.

5.2 \Verification of performance prediction

We now examine the accuracy of the predicted performance
when M, My, H and T are predicted by our performance
model. We use the values of t11, tr2, tirie, ttree and teonst
as given in Section 5.1. Figure 8 compares the measured
performance with the performance predicted by the model
for the Mae-East table, using a one-level trie. The measured
lookup time is averaged over one million consecutive pack-
ets in each trace. Figure 9 shows the prediction accuracy of
the model for 2-level tries. In this figure, for each z-value we
show the performance of the best 2-level trie with stride z at
the upper level. In both figures, the error bars indicate the
standard deviation for the measured average lookup time.
To keep measurement overheads low, we compute the mean
lookup times for sets of 1000 consecutive packets (from a
total of 1 million packets for each trace), and compute the
standard deviation of the resulting 1000 means. The stan-
dard deviations were within 10% of the mean for all the
traces.

For 1-level tries with strides smaller than 8, the splay trees
are fairly big, making our approximate counting of memory
accesses to tree nodes inaccurate. Further, a small stride
translates to a small number of contiguously spaced trie leaf
nodes, each with high access counts; this leads to spatial
locality (which our model does not account for). However,
for these settings, the performance of the lookup structure
is far from optimal. For the interesting ranges of bits, the
performance is predicted fairly accurately. This problem
does not arise for the 2-level trie, provided that the stride in

Trace Pentium II Pentium III
1-level trie | 2-level trie | 1-level trie | 2-level trie
R-Net | 3.57, 6.32 7.67,14.3 4.16, 14.4 8.66, 11.7
ISP 2.64, 4.69 4.85, 6.9 10.4, 19.9 2.14, 6.10
R-IP 11.2, 16.3 11.4, 16.9 9.1, 17.8 7.45, 18.0
SDC 15.3, 23.9 18.3, 29.2 13.9, 27.9 20.9, 28.8

Table 3: Percentage errors (average, maximum) in pre-
dicted running time relative to real running time on the
different traces. Here R-Net is RandNet and R-IP is
RandIP. For the 1-level trie, only cases with strides of 8
or more are considered.

the 2nd level is at least 8 bits. The relative errors are listed
in Table 3; we do not include the errors for the 1-level trie
here when the stride is less than 8 bits. Except for the SDC
trace, the prediction errors are typically within 10%. Our
model consistently overestimates the cache misses incurred
by the lookup procedure for the SDC trace. This is probably
because the SDC trace has higher temporal locality and very
few unique addresses, resulting in a few prefixes dominating
others in the lookup table. (This breaks the assumptions
in our model that the consecutive accesses to prefixes are
independent, and that all cache blocks are equally likely to
be accessed.) However, for such a trace, placing a software
cache in front of the lookup data structure can significantly
boost performance and extract out this locality.

We have also built the model and implementation of a 3-
level trie, which gives a further performance improvement
for some of the traces on the Pentium III. These results are
discussed in Section 6.

6. IMPLICATIONS AND APPLICATIONS

‘We now use the model to study the effect of the packet traces
and machine architectures on the performance of IP lookup.

6.1 Finding the appropriate data structure
Researchers in the past have often used synthetic traces with
IP addresses generated at random with uniform probability
over the entire IP address space (as in our RandIP trace).
Experiments with such data would suggest that a relatively
small stride (say, 16 bits) would be sufficient. For example,
for the RandIP trace, it is best to choose a stride of 16 bits
at the top level of the trie (see Figures 8 and 9). In fact, this
is often a popular choice while designing a multilevel trie.
However, for more representative traffic (like the ISP trace),
an initial stride of 20 bits gives better performance. Ta-
ble 4 lists the optimal data structures determined for each
trace; our performance model successfully chose the right
data structures. The structures that work best for the syn-
thetic traces are not optimal for the real traces. Table 5
shows the loss in performance when the optimal setting for
one trace is used on another trace. The results indicate that
the lookup time may increase by a fair amount if the data
structure is not optimized for the type of packet trace being
looked up.

We show in Figure 10 the performance of software IP lookup
code by other researchers on our machines; we only report
results for which we had the source code. The two methods
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Trace Pentium II Pentium IIT

Meas | Mod [ Structure || Meas | Mod | Structure
R-Net | 242 | 235 T2 (16,24) || 168 | 164 | T3 (16,24,28)
ISP 192 | 202 | T2 (20,24) || 131 | 149 | T3 (21,24,27)
R-IP | 140 | 142 | T2 (16,24) || 89| 108 | T3 (16,24,28)
SDC 89| 104|T1 (21) 50| 62| T1(21)

Table 4: Optimal data structures for the traces, with
lookup times in nanoseconds measured (“Meas”) as well
as predicted by our performance model (“Mod”).

Trace for which lookup structure is optimized
Input Pentium II Pentium III
Trace | R-Net [ ISP | R-IP | SDC || R-Net | ISP | R-IP [ SDC
R-Net — 15.7 0 58.3 — 15.1 0 39.7
ISP 29.9 — | 29.9 | 11.3 06.8 — | 06.8 | 34.3
R-IP 0 33.1| — | 35.0 0 13.7| — | 44.9
SDC 31.5 |20.4]| 315 | — 28.1 [09.0| 28.1 | —

Table 5: Percentage increase in lookup time for each
trace, when the data structure that is optimal for an-
other trace is used to perform the lookup. The optimal
data structures for each trace are listed in Table 4.

include the LC-trie [14] and the RLE next-hop compression
scheme [5]. For the LC-trie we tried expanding 16 bits or 20
bits at the top level, and report the better of the two for each
trace. The RLE compression scheme works very well on the
Pentium II because they make use of repeated next hops in
the route table to compress the lookup structure and get
good L2 cache performance. We do not use any information
on the next hop in our code, and can therefore store a pointer
to any arbitrary information about each prefix in our data
structure. We conjecture that ideas from their method could
further improve our performance, since next hops do appear
to be highly compressible. The results in Figure 10 indicate
that the lookup performance of the optimal data structure
chosen by our model is competitive with or higher than that
of previous approaches. The method by Gupta et al. [8] is
equivalent to using splay trees without the trie, since we find
that splay trees perform approximately as well as weight-
balanced binary trees. However, as shown in Section 5, the
performance improves significantly by examining multiple
bits in a trie before accessing the binary trees.

Number of trie levels. A 3-level trie works well on the
Pentium-IIT with its smaller L2 cache, while the L2 cache
on the Pentium-II is large enough to accommodate the fre-
quently accessed nodes of a 2-level trie, thereby saving one
additional access. The SDC trace always picks a 1-level trie
because very few prefixes are hit while performing a lookup
on the trace. This ensures that the trie nodes accessed are
often cached, and whenever a splay tree is accessed, the pre-
fix being searched for is often at the root of the splay tree.

6.2 Selecting the right architecture

Several alternative processor and memory architectures are
available for performing IP lookups in software. They range
from desktop PCs with small L1 and moderate L2 caches
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Figure 10: A comparison with lookup times for other
software-based IP lookup schemes (in nanoseconds).

to specialized network processors with large off-chip caches.
In this section we use our performance model to study the
effect of the some of the architectural features that influence
the performance of IP lookups.

6.2.1 Size of the L2 cache

The selection of the optimal data structure can depend on
the amount (and speed) of the L2 cache. We therefore ex-
tended the size of the L2 cache to up to 8 MB, and studied
the performance through our model. Current network pro-
cessors support large SRAMs (eg, the IXP [9] can have up
to 8 MB of SRAM), so this seems like a reasonable range.
For each value of the L2 cache size, we show in Figure 11
the performance for the optimal data structure found by the
model. The L1 cache was fixed at 16 KB, and the memory
limit for the data structure was set to 32 MB. For all the
traces, we find that increasing the L2 cache size from 256 or
512 KB to 2 or 3 MB provides a very large benefit; beyond
that size, the performance is typically improved further by
only about 10-15%. This implies that although the selected
data structures are often bigger than 8 MB, only a fraction of
that memory is frequently accessed. Because most networks
are concentrated in small portions of the 232 address space,
many leaves of a trie that uses a large (> 16 bit) stride do
not contain any prefix, or contain prefixes that are hit very
infrequently. The knee of the curve may shift to the right for
larger tables. However, the actual prefixes only contribute a
small fraction to the total space requirement for a large trie;
therefore we do not expect this shift to be large. Things
may look very different for IPv6, but the model could still
be used in a similar way.

For the Pentium II, the optimal data structures selected
look similar to those in Table 4. The only exception is the
RandIP trace, which switches to a 3-level trie when the L2
size is 2 MB or more. This switch probably allows most of
the common prefixes for RandIP (the shorter prefixes) to
fit in the L2 cache. For the Pentium III, which has a very
fast (on-chip) L2 cache, the traces that have a large number
of accesses to very few networks (SDC and RandIP) prefer
a 1-level trie for L2 caches beyond 512 KB. Even the ISP
trace switches to a 1-level trie beyond an L2 size of 2 MB.
This is because, unlike on the Pentium II, the additional L1
misses caused by using large strides in the 1-level trie can
be more easily offset by the reduced number of L2 misses
in the larger L2 cache. Only the RandNet trace prefers a
3-level trie, because it contains roughly equal accesses to all
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Figure 11: The effect of L2 cache size on performance
as predicted by our performance model.

prefixes, including very long prefixes; this keeps both the L1
and L2 cache miss rates high for a 1-level trie.

6.2.2 Size of the L1 cache

Figure 12 shows the effect on the lookup performance as
the size of the on-chip L1 cache is increased, up to 512 KB.
The L2 cache was fixed at 1 MB, and the memory limit
was set to 32 MB. The L1 cache appears to have a far less
significant effect on performance compared to the L2 cache,
mainly because it remains too small to cache any significant
portion of the data structure. The data structures selected
by the model did not differ significantly from those listed in
Table 4.
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Figure 12: The effect of L1 cache size on performance
as predicted by our performance model.

6.2.3 Total size of the data structure

So far we have restricted our search to the set of data struc-
tures that are under a total of 32 MB in size; we felt this was
a reasonable limit for a software implementation. Figure 13
shows the lookup performance as this limit is varied, from
2 MB up to 128 MB. It also shows the size of the optimal
data structure when no memory constraint is applied. The
L1 and L2 cache sizes were fixed at 32 KB and 1 MB, re-
spectively. For traces that involve hits to a large number
of prefixes (RandNet and ISP), the performance is signifi-
cantly reduced when the data structure size is constrained
to below 4 MB. Except for the RandNet trace, however,
none of the traces require data structures of size more than
10 MB. Even for the RandNet trace, 85-95% of the perfor-
mance can be reached using a data structure under 10 MB.
Cache misses increase rapidly as prefixes are replicated in
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Figure 13: The effect performance of limiting the maxi-
mum space requirement of the lookup data structure, as
predicted by our performance model. Each curve’s label
includes the size of the largest data structure chosen for
the trace under no memory constraint.

larger data structures (with larger branching factors), and
offset any advantage obtained by reducing the total number
of memory accesses.

The data structures selected under low memory limits (4
MB or less) vary widely across traces, and are often different
from the ones listed in Table 4. For example, for the SDC
trace on the Pentium II, a 3-level trie is preferred under 4
MB, while a 1-level trie with a large branching factor works
best under larger memory limits. In contrast, the ISP trace
consistently performs best with a 2-level trie on the Pentium
IT and a 3-level trie on the Pentium III (although the tries’
branching factors vary).

6.2.4 Processor and cache speeds

Finally, we examine the effect of both processor and L2 cache
speeds on the lookup performance. We fixed the sizes of the
L1 and L2 caches at 32 KB and 1 MB, respectively. Fig-
ure 14(a) shows how the lookup time is reduced as the pro-
cessor speed increases. As expected, with increasing proces-
sor speed, the lookup eventually becomes memory limited.
The cache and memory latencies assumed are the same as
the Pentium II. At moderate clock speeds, such as those
of our Pentium II or of commercial networking processors,
CPU overhead is still significant. This indicates that there
may be room for further optimizing the lookup procedure;
however, since our goal was to design and validate a per-
formance model, we did not focus on optimizing to the last
cycle. Also note that the processor time shown here includes
time to read data from the L1 cache, which requires a few
cycles. Therefore the results shown here assume that L1
speeds will increase in proportion to clock speeds.

Our two Pentium platforms have significantly different L2
latencies (10ns and 50ns). We decided to study the effect
on lookup performance when the L2 latency is varied from
5ns to 50ns (see Figure 14(b)). The performance improves
by 35-45% over this range. The latency for L2 and main
memory remains between 65-75% of total lookup time over
this range, again indicating that it may be possible to further
optimize the CPU work out of the lookup procedure. The
processor speed was fixed at 400 MHz.
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Figure 14: The effect on lookup performance of (a) pro-
cessor speed, and (b) L2 latency on the lookup proce-
dure. We also show the portion of the running time the
processor spends waiting for data from the L2 cache or
main memory (labelled “latency”).

6.2.5 Searching the space of hardware configurations
Instead of varying one hardware parameter at a time, it
would be useful to simultaneously search the space of pa-
rameters, including the sizes and latencies of the different
caches and the processor speed. For direct-mapped caches
(a =1 in Equation 2), it is possible to express the average
lookup time in terms of access counts to memory blocks in
each candidate lookup data structure. The variables in such
an expression are the above hardware parameters. Then,
if the cost of the hardware can be expressed as a funtion
of these hardware parameters, a non-linear optimizer can
find the fastest hardware configuration for each lookup data
structure under a given cost limit. Alternatively, the op-
timizer can find the cheapest hardware configuration for a
specified lower limit on the average lookup performance.

7. CONCLUSION

We presented an analytical model that accurately predicts
the performance of software-based IP lookups that use hier-
archical data structures. Because realistic traces have very
different characteristics from synthetic traces such as one
with random IP addresses, it is important to find the op-
timal data structure for the type of traffic being processed.
Our model can be used to select the appropriate data struc-
ture based on knowing the distribution of packet hits to
different networks in the routing table. The model can also
be used to select the appropriate processor and memory ar-
chitecture to perform the lookups. For the traces and table
we studied, we found that the size and latency of the L2
cache, and to some degree the processor speed, are critical
in determining the resulting lookup performance. Increasing
the L1 cache or space requirement of the lookup data struc-
ture does not significantly improve performance. Although
we do not use highly optimized lookup procedures or highly
compressed data structures, the data structures selected by
our performance model yield good lookup speeds. Adding
further optimizations or different trie schemes is likely to
involve simple changes to our current performance model.
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