Schedulingrhreaddor Low SpaceRequirement
andGoodLocality

Girija J. Narlikar

Bell Laboratoriesl.ucentTechnologies
700MountainAvenue
Murray Hill, NJ07974
girja@reseach.bell-labs.com

Appearsn the Theoryof ComputingSystems)olume35, 2002.

Keywords: Multithreading, spaceefficiencgy, work stealing,dynamicscheduling,nestedparal-
lelism, datalocality, dynamicdags.

Abstract

Therunningtime andmemoryrequiremenof aparallelprogranmwith dynamic lightweightthreads
depend$eaily ontheunderlyingthreadschedulerin this paperwe presenanew asynchronous,
space-dicient schedulingalgorithmfor sharednemorymachineghatcombineghelow schedul-
ing overheadsandgoodlocality of work stealingwith the low spacerequirement®f depth-first
schedulersFor a nested-parallgirogramwith depthD andserialspaceequirementS;, we shov
thattheexpectedspaceequiremenis S;+O (K -p-D) onp processorsHere, K is auseradjustable
runtime parameterwhich providesa trade-of betweerrunningtime andspacerequirementOur
algorithmachiezes good locality andlow schedulingoverheadsy automaticallyincreasingthe
granularityof thework scheduleadn eachprocessar

We have implementedhe new schedulingalgorithmin the context of a native, userlevel im-
plementatiorof Posixstandardhreadsor Pthreadsandevaluatedits performanceausinga setof
C-basedenchmarkshathave dynamicor irregular parallelism.We comparethe performancef
our schedulemvith thatof two previous schedulersthethreadlibrary’s original schedulefwhich
usesa FIFO queue),anda provably space-dicient depth-firstscheduler At a fine threadgran-
ularity, our scheduleoutperformsboth theseprevious schedulersbut requiresmarginally more
memorythanthe depth-firstscheduler

We also presentsimulationresultson syntheticbenchmarkgo compareour schedulemwith
space-dicient versionsof both a work-stealingscheduleanda depth-firstscheduler Theresults
indicatethat unlike theseprevious approachesthe new algorithmcoversa rangeof scheduling
granularitiesandspacerequirementsandallows the userto tradethe spacerequiremenbf a pro-
gramwith theschedulinggranularity

1 Intr oduction

Many parallelprogrammindanguagesllow theexpressiorof dynamic lightweightthreads These
includedataparallellanguagedike HPF[29] or Nesl[9] (wherethe sequencef instructionsex-
ecutedover individual dataelementsarethe “threads”),dataflav languagesike ID [21], control-
parallellanguagesvith fork-join constructdik e Cilk [26], CC++[17], andProteug36], languages
with futureslike Multilisp [49], and varioususerlevel threadlibraries[7, 22, 37, 53]. In the
lightweightthreadsmodel, the programmeisimply expressesll the parallelismin the program,
while thelanguagemplementatiomperformsthetaskof schedulinghethreadsontotheprocessors
at runtime. Thusthe adwvantagesf lightweight, userlevel threadsinclude the easeof program-
ming, automatidoadbalancingarchitecture-independeaddethatcanadaptto avaryingnumber
of processorsandtheflexibility to usekernel-independerthreadschedulers.

Programswith irregular and dynamic parallelismbenefitmost from the use of lightweight
threads Compile-timeanalysisof suchcomputations$o partitionandmapthethreadsontoproces-
sorsis generallynot possible. Therefore the programsdependheaily on theimplementatiorof
theruntimesystemfor goodperformanceln particular

1. Toallow theexpressiorof alargenumberof threadstheruntimesystemmustprovidefastthread
operationsuchascreationdeletionandsynchronization.

2. Thethreadschedulemustincur low overheadsvhile dynamicallybalancingheloadacrossall
theprocessors.

3. Theschedulingalgorithmmustbe spaceefficient, thatis, it mustnot createtoo mary simulta-
neouslyactive threadspr scheduleghemin anorderthatresultsin high memoryallocation. A
smallermemoryfootprint resultsin fewer pageand TLB misses.Thisis particularlyimportant
for parallelprogramssincethey aretypically usedto solve large problemsandareoftenlimited
by theamountof memoryavailableon a parallelmachine Existingcommerciathreadsystems,
however, canleadto poor spaceandtime performancdor multithreadedparallel programs jf
theschedulers notdesignedo be spaceefficient [42].

4. Today’s hardware-coherensharedmemorymultiprocessor§SMPSs)typically have a large off-
chip datacachefor eachprocessqrwith a lateng significantlylower thatthe lateng to main
memory Therefore,the threadschedulemustalso schedulethreadsfor good cachelocality.
The mostcommonheuristicto obtaingoodIocality for fine grainedthreadson multiprocessors
Is to scheduldghreadsclosein the computatiorgraph(e.g.,a parentthreadalongwith its child
threads)n the sameprocessarsincethey typically sharecommondatal2, 13,32, 34,38, 49].

Work stealingis a runtime schedulingmechanisnthat can provide a fair combinationof the
above requirementsEachprocessomaintainsits own queueof readythreads;a processosteals
a threadfrom anothermprocessos readyqueueonly whenit runsout of readythreadsn its own
gueue Sincethreadcreationandschedulingaretypically local operationsthey incurlow overhead
andcontention Further threadsclosetogethein thecomputatiorgraphareoftenschedule@nthe
sameprocessaresultingin goodlocality. Severalsystemd$ave usedwork stealingto provide high
performancgl5, 22,23, 26, 33,49, 52,54]. Wheneachprocessotreatsits own readyqueueasa
LIFO stack(thatis, addsor removesthreaddrom thetop of the stack)andstealsfrom the bottom
of anotherprocessos stack,the scheduleisuccessfullythrottlesthe excessparallelism[12, 49,

1

51, 54]. For fully strict computationssucha mechanisnwasprovedto requirep - S; spaceon
p processorswhereS; is the serial,depth-firstspacerequiremen{13]. A computatiornwith W
work (total numberof operationsnd D depth(lengthof the critical path)wasshown to require
W/p + O(D) time on p processor$l3]. We will henceforthreferto suchschedulersaswork-
stealingschedulers.

Recentvork[10, 41] hasresultedn depth-firstschedulinglgorithmsthatrequireS; +O(p- D)
spacefor nested-paralletomputationsvith depthD. For programghathave alow depth(a high
degreeof parallelism)suchasall programsn theclassNC [18], thespaceboundof S; +O(p- D)
is asymptoticallylower thanthe work stealingboundof p - S;. Further the depth-firstapproach
allows amoregeneraimemoryallocationmodelcomparedo the stack-basedllocationsassumed
in space-dfcient work stealing[10]. The depth-firstapproacthasbeenextendedto handlecom-
putationswith futures[49] or I-structureq21], resultingin similar spaceboundg8]. Experiments
shaved that an asynchronousgepth-firstscheduleroften resultsin lower spacerequirementn
practice,comparedo a work-stealingschedulef41]. However, sincedepth-firstschedulersise
a globally orderedqueue they do not provide someof the practicaladvantagenjoyed by work-
stealingschedulers.Whenthe threadsexpresseddy the userare fine grained,the performance
may suffer dueto poorlocality andhigh schedulingcontention(i.e., contentionover shareddata
structuresvhile scheduling]42]. Thereforegvenif basicthreadoperationarecheapthethreads
have to becoarsenedor depth-firstschedulerso provide goodperformancen practice.

In thispaperwe presentinew schedulinglgorithmfor implementingnultithreadedanguages
on sharednemorymachinesThealgorithm,called DFDeques, providesa compromiseébetween
previous work-stealingand depth-firstschedulers Readythreadsn DFDequesare organizedin
multiple readyqueuesthat are globally orderedasin depth-firstschedulers.The readyqueues
aretreatedasLIFO stackssimilar to previous work-stealingschedulers A processostealsfrom
a readyqueuechosenrandomlyfrom a setof high-priority queues.For nested-parallefor fully
strict) computationspur algorithm guaranteesan expectedspaceboundof S; + O(K - p - D).
Here, K is auseradjustableuntimeparametecalledthe memorythreshold which specifieghe
netamountof memorya processomay allocatebetweerconsecutie steals.Since K is typically
fixed to be a small, constantamountof memory, the spaceboundreducedo S; + O(D - p), as
with depth-firstschedulerskor asimplisticcostmodel,we show thatthe expectedrunningtimeis
O(W/p + D) onp processors

We referto thetotalnumberof instructionsexecutedn athreadasthethreads granularity. We
also(informally) definesdheduling granularity to bethe averagenumberof instructionsexecuted
consecutrely on a singleprocessofrom threadsclosetogethelin the computatiorgraph.Thus,a
larger schedulinggranularitytypically implies betterlocality andlower schedulingcontention.In
the DFDequeschedulerwhena processofindsits readyqueueempty it stealsathreadfrom the
bottomof anothereadyqueue.Thisthreads typically thecoarsesthreadn thequeueyesultingin
alargerschedulinggranularitycomparedo depthfirst schedulersAlthoughwe do notanalytically

1DFDequesstandgor “depth-firstdeques”.

2In practice,we set K to a few kilobytes (50KB in our experiments) which is small comparedo the several
megabytegor gigabytespf memoryavailableon today’s machines.

SWhenthe schedulein DFDequess parallelizedthe costsof all schedulingpperationsanbe accountedor with
amorerealisticmodel[40]. Then,in the expectedcase the parallelcomputationcanbe executedusingS; + O(D -
p - logp) spaceand O(W/p + D - logp) time (including schedulingoverheads).However, for brevity, we omit a
descriptionrandanalysisof sucha parallelizedscheduler

Benchmark Max threads L2 Cachemissrate || 8 processospeedup
FIFO | ADF | DFD | FIFO | ADF | DFD | FIFO | ADF | DFD
Vol. Rend. 436 | 36 37 42 | 3.0 | 18 || 539 | 599 | 6.96
DenseMM 3752 | 55 77 240 | 13 | 8.7 || 0.22 | 3.78 | 5.82
SparseMVM | 173 | 51 49 13.8 | 13.7| 13.7 | 3.59 | 5.04 | 6.29
FFTW 510 | 30 33 146 | 16.4| 144 | 6.02 | 5.96 | 6.38
FMM 2030 | 50 54 140 | 21 | 1.0 || 1.64 | 7.03 | 7.47
BarnesHut || 3570 | 42 | 120 || 19.0| 39 | 29 | 0.64 | 6.26 | 6.97
DecisionTr. 194 | 138 | 149 | 58 | 49 | 46 || 483 | 485| 5.39

Figurel: Summaryof experimentatesultswith the SolarisPthreadsibrary. For eachschedulingechnique,
we shav the maximumnumberof simultaneoushactive threads(eachof which requiresmin. 8kB stack
space)the L2 cachemissesates(%), andthe speedup®n an 8-processoEnterprises000 SMP. “FIFO”
is the original Pthreadscheduler*ADF” is anasynchronougjepth-firstschedulef42], and“DFD” is our
new DFDequescheduler

provethisclaim,we presenexperimentahndsimulationresultsto verify it. Adjustingthememory
thresholdK in the DFDequeslgorithmprovidesa usercontrollabletrade-of betweerscheduling
granularityandspacerequirement.

Posixthreadsor Pthreadsave recentlybecomea popularstandardor sharednemoryparal-
lel programming.We thereforeaddedthe DFDequesschedulingalgorithmto a native, userlevel
Pthreaddibrary [53]. Despitebeingoneof the fastesuserlevel implementation®f Pthreadgo-
day thelibrary’s scheduledoesnot efficiently supportfine-graineddynamicthreadsin previous
work [42], Narlikar and Blelloch shaved how its performancecan be improved using a space-
efficient depth-firstscheduler In this paper we comparethe spaceandtime performanceof the
nenv DFDequesschedulemwith the library’s original scheduler{which usesa FIFO scheduling
gueue)andwith a previousimplementatiorof a depth-firstschedulefrom [42]. To performthe
experimentalcomparisonyve used7 parallelbenchmarksvritten with a large numberof dynam-
ically createdPthreads. As shown in Figurel, the new DFDequesscheduleresultsin better
locality andhigherspeedupsomparedo boththe depth-firstscheduleandthe FIFO scheduler

Ideally, we would alsolik e to compareour Pthreads-basdathplementatiorof DFDequeswith
aspace-dfcientwork-stealingschedulefe.g.,thescheduleusedn Cilk [12]). However, support-
ing the generalPthreadgunctionality (which includesvarioussynchronizatiorprimitives) with
an existing space-dicient work-stealingschedulef{12] would require significantmodifications
to both the schedulingalgorithmandthe Pthreadsmplementatiof Therefore,to compareour
new scheduleto thiswork-stealingschedulerwe insteadouilt a simplesimulatorthatimplements
synthetic,fully-strict benchmarks Our simulationresultsindicatethat by adjustingthe memory
threshold our new schedulecoversa wide rangeof spacaequirementandschedulinggranular
ities. At oneextremeit performssimilar to a depth-firstschedulgrwith low spacerequirement
andsmall schedulinggranularity At the otherextreme,it behaesexactly lik e the work-stealing

4Evenfully strict Pthreadsbenchmarksannotbe executedusing sucha work-stealingscheduletin the existing
SolarisPthreadsmplementationbecausdhe Pthreaddmplementationitself makes extensve useof blocking syn-
chronizatiorprimitivessuchasPthreadnutexesandconditionvariables.

3

schedulerwith higherspaceaequirementandlarger schedulinggranularity

2 Background and Previous Work

A parallelcomputationcan be representedby a directedacgyclic graph;we will referto sucha
computatiorgraphasadagin theremaindeof this paper Eachnodein thedagrepresentasingle
actionin athread;anactionis a unit of work thatrequiresa singletimestepto be executed.Each
edgen thedagrepresentadependencbetweenwo actions.Figure2 shavs suchanexampledag
for a simpleparallelcomputation.The dashedright-to-left fork edgesn thefigurerepresenthe
fork of a child thread.Thedashedleft-to-right synd edgesepresena join betweera parentand
child thread while eachsolid vertical continue edgerepresenta sequentialependencbetween
a pair of consecutie actionswithin a singlethread.For computationsvith dynamicparallelism,
thedagis revealedandschedulesntothe processorat runtime.

2.1 Schedulingfor locality

Detectionof dataaccessesr datasharingpatternsamongthreadsn a dynamicandirregularcom-
putationis often beyondthe scopeof the compiler Further today’s hardware-coherenEMPsdo
not allow explicit, software-controlledolacemenbf datain processocachestherefore,owner
computeoptimizationsfor locality thatare popularon distributedmemorymachinegypically do
not apply to SMPs. However, in mary parallelprogramswith fine-grainedthreads the threads
closetogetherin the computations dagoftenaccesshe samedata. For example,in a divide-and-
conquercomputation(suchas quicksort)wherea new threadis forked for eachrecursve call, a
threadsharesdatawith all its descendenthreads. Therefore,mary parallelimplementation®f
lightweightthreadsuseperprocessodatastructureso storereadythreadq422, 26, 31, 32, 49,52,
54]. Threadscreatedon a processoarestoredlocally andmoved only whenrequiredto balance
theload. Thistechniqueeffectively increaseschedulinggranularity andthereforeprovidesgood
locality [11] andlow schedulingcontention.

AnotherapproacHor obtaininggoodlocality is to allow the userto supplyhintsto the sched-
uler regardingthe dataaccesyatternsof thethreadq16, 35, 45, 55]. However, suchhints can
be cumbersomdor the userto provide in complex programsand are often specificto a certain
languageor library interface. Therefore,our DFDequesalgorithminsteadusesthe heuristicof
schedulinghreadsclosein thedagonthe sameprocessoto obtaingoodlocality.

2.2 Schedulingfor space-efficiency

The threadschedulemplays a significantrole in controlling the amountof active parallelismin
a fine-grainedcomputation. For example, considera single-processoexecutionof the dagin
Figure2. If thescheduleusesa LIFO stackto storereadythreadsanda child threadpreemptsts
parentassoonasit is forked,the nodesareexecutedn a (left-to-right) depth-firstorder resulting
in at most5 simultaneouslhactive threads.In contrast,if the scheduleusesa FIFO queue the
threadsareexecutedn abreadth-firsbrdet resultingin all 13thread$eingsimultaneouslyctive.
Systemghat supportfine-graineddynamicparallelismcansuffer from sucha creationof excess

root thread—~

Figure2: An exampledagfor aparallelcomputationthethreadsareshavn shadedEachright-to-leftedge
representa fork, andeachleft-to-right edgerepresenta synchronizatiorof a child threadwith its parent.
Verticaledgesepresensequentialependenciewithin threads.t, is theinitial (root) thread,which forks
child thread<y, o, andts in thatorder Child threadsmayfork threadghemseles;e.g.,t, forkst,.

parallelism. Limiting this excessparallelismand lowering the spacerequiremenis critical for
parallelprograms sincethey areoften limited by the amountof memoryavailableon a parallel
machine.

Initial attemptsto controlthe active parallelismwerebasedon heuristicg[7, 21, 38, 50, 49],
which includedwork stealingtechniqueq38, 49. Heuristicattemptswork well for somepro-
grams,but do not guaranteen upperboundon the spacerequirement®f a program. More re-
cently, two differenttechniqueshave beenshowvn to be provably space-dicient: work-stealing
schedulersanddepth-firstschedulers.

In additionto beingspaceefficient[12, 51], work stealingcanoftenresultin large scheduling
granularitiesby allowingidle processorto stealthreadsiigherupin thedag(e.g.,seeFigure3(a)).
Severalsystemsaisesuchanapproacho obtaingoodparallelperformancgl2, 22,33,49, 54].

Depth-firstschedulerguaranteen upperboundon the spacerequiremenbf a parallelcom-
putationby prioritizing its threadsaccordingo their serial,depth-firstexecutionorder[10, 41]. In
arecentpaperf42], Narlikar andBlelloch shavedthatthe performancef a commercialPthreads
implementatiorcould be improved for predominantlynested-parallédbenchmarksisinga depth-
first schedulerHowever, depth-firstschedulerganresultin high schedulingcontentionandpoor
locality whenthe threadsin the programare very fine grained[41, 42]. Thisis becauseunlike
work stealingschedulersgepth-firstschedulersnay mapthreadsclosetogethernn a computation
graphondifferentprocessorge.g.,seeFigure3).

Thenext sectiondescribesnew schedulingalgorithmthatcombinesdeasfrom theabove two
space-dicientapproaches.

(@) (b)

Figure 3: Possiblemappingsof threadsof the dagin Figure 2 onto processord, ..., Ps by (a) work-
stealingschedulersand(b) depth-firstschedulerslf, say theit* thread(goingfrom left to right) accesses
the i** block or elementof an array thenschedulingconsecutie threadson the sameprocessoprovides
bettercachdocality andlower schedulingoverheads.

3 The DFDequesSchedulingAlgorithm

We first describethe programmingmodelfor the multithreadedcomputationghat are executed
by the DFDequesschedulingalgorithm. We thenlist the datastructuresusedby the scheduler
followedby a descriptionof the DFDequesschedulingalgorithm.

3.1 Programming model

As with depth-firstschedulersour schedulingalgorithmappliesto pure,nested-parallecompu-
tations,which canbe modeledby series-paralletlags[10]. Our modelassumesinaryforks and
joins; the exampledagin Figure 2 representsucha nested-paralletomputation. Suchnested-
parallelcomputationgreequialentto thesubsebf fully strictcomputationshataresupportedy
Cilk’ sspace-dicientwork-stealingschedulef12, 26]. Nestedparallelismcanbeusedto expressa
largevarietyof parallelprogramsincludingrecursve, divide-and-conquesrogramsandprograms
with nested-paralldbops.

Althoughwe describeandanalyzeour algorithmfor nested-paralletomputationsin practice
it canbe extendedo executeprogramswith otherstylesof parallelism.For example the Pthreads
scheduledescribedn Section5 supportscomputationswith arbitrarysynchronizationssuchas
mutexes and condition variables. However, our analyticalspacebounddoesnot apply to such
generaktomputations.

A threadis active if it hasbeencreatedout hasnot yetterminated. A parentthreadwaiting to
synchronizewith a child threadis saidto be suspended We sayan active threadis readyto be
scheduledf it is notsuspendedndis notcurrentlybeingexecutedby a processarEachactionin

Figure4: The serial,depth-firstexecutionorderfor a nested-paralletomputation.Thei*"* nodeexecuted
is labelleds in this dag. The lower the label of athreads currentnode(action),the higheris its priority in
DFDeques

athreadmayallocateanarbitraryamountof spaceon thethreadstack,or onthe sharecheap.
Every nested-paralledomputatiorhasa naturalserialexecutionorder whichwe call its depth-
first order. Whena child threadis forked, it is executedbeforeits parentin a depth-firstexecution
(e.qg.,seeFigure4). Thus,the depth-firstorderis identicalto the uniqueserial executionorder
for ary stack-basethnguaggsuchasC), whenthethreadforks arereplacedoy simplefunction
calls. Algorithm DFDequegrioritizesreadythreadsaccordingo their serial,depth-firstexecution
order;anearlierserialexecutionordertranslateso a higherpriority.

3.2 Schedulingdata structures

Althoughthedagfor acomputations revealedastheexecutionproceedsgynamicallymaintaining
therelative threadprioritiesfor nested-paralletomputationss straightforvard[10] andinexpen-
sivein practice[41]. In algorithmDFDequesthereadythreadsarestoredin doubly-endedjueues
or dequeg20]. Eachof thesedequessupportspoppingfrom and pushingonto its top, aswell
aspoppingfrom the bottomof the deque.At ary time duringthe execution,a processoowns at
mostonedequeandexecuteghreaddrom it. A singledequehasat mostoneowneratary time.
However, unliketraditionalwork stealing thenumberof dequess notlimited, andmayexceedhe
numberof processorsAll thedequesarearrangedn a globallist R of deques.Thelist supports
addingof a new dequeto theimmediateright of anotherdeque deletionof a deque,andfinding
them!" dequeudrom theleft endof R.

3.3 The DFDequesschedulingalgorithm

The processorgxecutethe codein Figure5 for algorithm DFDequeéK); here K is the memory
threshold auserdefinedruntimeparameterEachprocessotreatsts own dequeasaregularLIFO
stack,andis assignec& memoryquotaof K bytesfrom whichto allocateheapandstackdata.This
memorythresholdK is equialentto the perthreadmemoryquotain depth-firstscheduler$41];
however, in algorithm DFDeques the memoryquotaof K bytescanbe usedby a processoto
executemultiple threaddrom onedeque.

The executionstartswith a singledequein the system containingtheinitial (root) thread.A
threadexecuteswithout preemptionon a processountil it forks a child thread,suspendsvaiting
for achild to terminateferminatespr the processorunsout of its memoryquota.If aterminating

while (3 threads)
if (currS=NuLL) currS:= steal();

if (currT=NuLL) currT:=popfrom_top(currS;

executecurrTuntil it forks, suspends,
terminatespr memoryquotaexhausted:
case(fork):
pushto_top(currT, curr§;
currT:= newly forkedchild thread:;
case(suspend):
currT:= NULL;
case(memoryquotaexhausted):
pushto_top(currT, curr§;
currT:= NULL;
currS:= NULL;
case(terminate):
if currTwakesup suspendegarentT’
currT:= T/
elsecurrT:= NULL;
if ((is_.emptyurrg) and (currT= NULL))
currS:= NULL;
endwhile

procedure steal():
setmemoryquotato K;
while (3 threads)

m ;= randomnumberin [1...p];

performstealif no currentstadk
get new threadfromtop of currentstad

placecurrentthreadon top of currentstad
begin executingnewly forked child thread

giveup currentthread; it will bewolenlater
placecurrentthreadon top of currentstad

giveup currentthread
giveup currentstadk

begin executingnewly woken parentthread
giveup currentthread

giveup anddeletecurrent (empty)stadk
repeatuntil endof parallel computation

returnsa new dequewith the stolenthreadin it

S:=mt"dequen R; # pick dequeto stealfrom
T := popfrom_bot(S); # attemptto steala thread
if (T # NULL) # attemptsucceeded
createnew dequeS’ containingT
andbecomats owner;
placeS’ to immediateright of Sin R;
return S';
endwhile # repeatuntil stealis successfubr computatiorends

Figure5: Pseudocodfor the DFDequeéK) schedulingalgorithmexecutedby eachof thep processorsk

is thememorythreshold.currSis the processos currentdeque.currTis the currentthreadbeingexecuted;
changingits value denotesa context switch. Memory managemenof the dequess not shavn herefor

brevity.

owners Po ‘Ps - P "Pl

executing [?] v ﬁ V ﬁ ﬁ

threads :
top [0 f 0
deques ;;
bottomHﬁ SHENE

<— list of deques®, —»

Figure6: Thelist R of dequesmaintainedn the systemby algorithm DFDeques Eachdequemay have
one(or no) owner processor The dottedline tracesthe decreasingrderof priorities of the threadsn the
systemthust, in thisfigure hasthe highestpriority, while t;, hasthelowestpriority.

threadwakes up its previously suspendegbarent,the processostartsexecutingthe parentnext;
for nestedparallelcomputationsye canshow thatthe processos dequemustbe empty at this
stage[40]. Whenanidle processofindsits dequeempty it deleteshe deque.Whena processor
deletesits deque,or whenit givesup ownershipof its dequedue to exhaustionof its memory
guota,it usesthest eal () procedureo obtainanew deque.The maindifferencefrom previous
depth-firstscheduler$10, 41] is in this stealprocedure Every invocationof st eal () resetghe
processos memoryquotato K bytes.We call aniterationof theloopin thest eal () procedure
astealattempt

A processoexecutesa stealattemptby picking arandomnumberm betweenl andp, where
p is the numberof processorsit thentriesto stealthe bottomthreadfrom the m** deque(starting
fromtheleft end)in thegloballist of dequesk. A stealattempimayfail (thatis, pop_f r ombot ()
returnsNULL) if two or moreprocessorsamgetthe samedeque(seeSectiond.1), or if thedeque
is emptyor non-«istent. If the stealattemptis successfu{pop_f r ombot () returnsathread),
the stealingprocessocreatesa nenv dequefor itself, placesit to the immediateright of the tar
getdeque andstartsexecutingthe stolenthread.Otherwise |t repeatghe stealattempt. Thusthe
numberof dequesn R maygrow duringtheexecutionbeyondthenumberof processordhowever,
atary timesteppnly theleftmostp dequesarepotentialtargetsof a steal.Whena processosteals
thelastthreadfrom a dequenot currentlyassociateavith (ownedby) any processaqrit deleteshe
deque.

If athreadcontainsanactionthatperformsa memoryallocationof m unitssuchthatm > K
(whereK is thememorythreshold)then|m/K | dummythreadsnustbe forkedin a binarytree
of depth© (log m/K) beforetheallocatior?. We do notshaw this extensionin Figure5 for brevity.
Eachdummythreadexecutesano-op.However, processorsustgive up theirdequesandperform
astealeverytime they executeadummythread.Onceall thedummythreadshave beenexecuted,
aprocessomay proceedwith the memoryallocation. This transformatiortakesplaceat runtime.
Theadditionof dummythreadseffectively delaydargeallocationsof spacesothathigherpriority
threadsmay be schedulednstead.In practice K is typically setto a few thousandytes,sothat
theruntimeoverheaddueto thedummythreadss negligible (e.g.,seeSectionb).

SThistransformatiordiffersslightly from depth-firstscheduler§10, 41], which allow dummythreadgo beforked
in amulti-way fork of constantlepth.

We now prove a lemmaregardingthe orderof threadsn R maintainedoy algorithm DFDe-
ques this orderis shawvn pictorially in Figure6.

Lemma 3.1 Algorithm DFDequesnaintainsthefollowing ordering of threadsin the system.
1. Threadsin eat dequeare in deceasingorder of priorities fromtop to bottom.

2. A threadcurrently executingon a processorhas higher priority than all other threadson the
processors deque

3. Thethreadsin anygivendequehavehigherpriorities thanthreadsin all thedequedo its right
inR.

Proof. By inductionon thetimesteps.The basecaseis the startof the execution,whenthe root
threads theonly threadn thesystem Letthethreepropertiedbetrueatthestartof any subsequent
timestep.Any of the following eventsmay take placeon eachprocessoduringthetimestep;we
will show thatthe propertiexcontinueto hold atthe endof thetimestep.

Whena threadforks a child thread,the parentis addedto the top of the processos deque,
andthe child startsexecution. Sincethe parenthasa higherpriority thatall otherthreadsn the
processos dequgby induction),andsincethechild threadhasahigherpriority (earlierdepth-first
executionorder)thanits parent,propertieg1) and(2) continueto hold. Further sincethe child
now hasthe priority immediatelyhigherthanits parentproperty(3) holds.

When a threadT" terminatesthe processorchecksif 7' hasreactvateda suspendegharent
threadTZ),. In this casejt startsexecutingZ;,. Sincethe computatioris nestedparallel,the proces-
sor’s dequemustnow be empty(sincethe parentZ;, musthave beenstolenat someearlierpoint
andthensuspended)Thereforeall 3 conditionscontinueto hold. If 7" did notwake up its parent,
the processopicks the next threadfrom the top its deque. If the dequeis empty it deletesthe
dequeandperformsa steal. Thereforeall threepropertiescontinueto hold in thesecasesoo.

Whenathreadsuspendsr is preemptedlueto exhaustiornof the processos memoryquota,it
is putbackonthetop of its deque andthedequeretainsits positionin R. Thusall threeproperties
continueto hold.

Whena processostealsthe bottomthreadfrom anotherdeque,it addsthe nev dequeto the
right of the target deque. Sincethe stolenthreadhadthe lowestpriority in the targetdeque the
propertiescontinueto hold. Similarly, removal of a threadfrom the target dequedoesnot affect
thevalidity of thethreepropertiedor thetargetdeque A threadmaybe stolenfrom a processos
dequewhile one of the above eventstakes placeon the processoitself; this doesnot affect the
validity of ourargument.

Finally, deletionof oneor moredequedrom R doesnot affectthethreeproperties.]

Work stealing as a specialcaseof algorithm DFDeques Considerthe casewhenwe setthe
memorythresholdK = oc. Then,for nested-paralledomputationsalgorithmDFDequeéxo) pro-
ducesa scheduladenticalto the oneproducedby the provably-eficient work-stealingscheduler
“WS” [13]. The processorsn DFDequeéx) never give up a dequedueto exhaustionof their
memoryquota,andtherefore aswith the work stealeytherearenever morethanp dequesn the
system. Further in both algorithms,whena processos dequebecomesmpty it picks another
processomuniformly at random,and stealsthe bottommostthreadfrom that processos deque.

10

Similarly, for nestedparallel computationsthe rule for waking up a suspendegbarentin DFD-
eques$oo) is equivalentto the correspondingule in WS®. Of course the resultingschedulesire
identicalprovidedwe assuméhe samecostmodelfor bothalgorithms;the modelcouldbe either
theatomic-accesmsodelusedto analyzeWS [13], or our costmodelfrom Sectior4. 1.

4 Analysis of Time and SpaceUsing Algorithm DFDeques

We now prove the spaceand time boundsfor nested-parallecomputationamplementedusing
Algorithm DFDeques

4.1 Costmodel

We definethe total numberof unit actionsin a parallelcomputation(or the numberof nodesin
its dag)asits work . Further let D be the depthof the computationthatis, the lengthof the
longestpathin its dag. For example,the computatiorrepresenteth Figure4 haswork W = 11
anddepthD = 6. We assumehatanallocationof m bytesof memory(for ary m > 0) hasadepth
of ©(logm) units'.

For this analysiswe assumehattimestepgclock cycles)aresynchronizedcrossall the pro-
cessorslf multiple processorsargeta non-emptydequein a singletimestepwe assumehatone
of themsucceedm thesteal while all theothersfail in thattimestepIf thedequeargetedby one
or morestealdss empty all of thosestealdail in asingletimestep Whena stealfails, theprocessor
attemptsanotherstealin the next timestep Whena stealsucceedshe processomsertsthe newly
createddequeinto R andexecuteghefirst actionfrom the stolenthreadin the sametimestep.At
theendof atimestep|f aprocessos currentthreadterminatesor suspendsandit findsits deque
to be empty it immediatelydeletests dequein thattimestep.Similarly, whena processosteals
thelastthreadfrom adequenot currentlyassociateavith arny processqit deleteshedequen that
timestep.Thus,atthe startof atimestepjf adeques empty it mustbe ownedby a processothat
is busyexecutingathread.

Our costmodelis somavhatsimplistic,becausé ignoresthe costof maintainingthe globally
orderedsetof dequesR. If we parallelizethe schedulingiasksof insertinganddeletingdeques
in R (by performingthemlazily), we canaccountfor all their overheadsn the time bound. We
canthenshaw thatin the expectedcase the computatiorcanbe executedn O(W/p + D - log p)
timeandsS; + O(p - logp - D) spaceon p processorsncludingthe schedulingoverhead$40]. In
practice theinsertionsanddeletionsof dequedrom R canbeeitherserializedandprotectedoy a
lock (for smallp), or performedazily in parallel(for largep).

8In WS, the reavakenedparentis placedaddedto the currentprocessos deque(which is empty); for nested
parallelcomputationsthe child mustterminateat this point, andtherefore the next threadexecutedby the processor
is theparentthread.

"Thisis areasonablassumptionn systemswith binaryforks thatzerooutthe memoryas soonasit is allocated.
The zeroingthenrequiresa minimumdepthof ©(logm); it canbe performedin parallelby forking a treeof height
O(logm).

11

4.2 Spacebound

We now analyzethe spaceboundfor a parallelcomputationexecutedby algorithm DFDeques
Theanalysisusesseveralideasfrom previouswork [3, 10,41]. Becausenorethanoneprocessor
is available to executea parallel computation,somenodesmay be executedout of order (i.e.,
prematurelywith respecto the serial,depth-firstschedule.Theseout-of-ordernodescancause
the parallel scheduleto requiremore spacethana serial schedule.By boundingthe numberof
suchnodes,we canboundthe spacerequiremenbf the parallelschedulein termsof the serial
spaceaequirement.

4.2.1 Definitions

Let G bethedagthatrepresentthe parallelcomputatiorbeingexecuted Dependingntheresult-
ing parallelschedulewe classifyits nodeg(actions)into oneof two types:heary andlight. Every
time a processoperformsastealthefirst nodeit executedrom the stolenthreadis calleda heavy
action.All remainingnodesn G arelabelledaslight.

We first assumehat every nodeallocatesat most K space;we will relax this assumptiorin
the end. Recallthata processomay allocateat most K' spacebetweenconsecutie steals;thus,
it may allocateat most K spacefor every heary nodeit executes.Thereforewe canattribute all
the memoryallocatedby light nodesto the lastheary nodethat precedeshem. This resultsin a
conserative view of thetotal spaceallocation.

Lets, = Vi,...,V; betheparallelschedulef thedaggeneratedby algorithmDFDeque§K).
HereV; is thesetof nodeshatareexecutedattimestep; 7 is thelength of theschedules,. Let s;
betheserial,depth-firstscheduleor the 1DF-schedulefor thesamedag;e.g.,thenodesn Figure4
arenumberedaccordingo their orderof executionin a 1bF-schedule

We now view anintermediatesnapshoof the parallelschedules,. At ary timestepl < j < 7
duringthe executionof s, all the nodesexecutedso far form a prefix of s,. This prefix of s, is
definedaso, = U]_, V;. Let o, bethelongestprefix of s; containingonly nodesin o,, thatis,
o1 C o,. Thenthe prefix o, is calledthe correspondingserial prefix of ,. The nodesin the
seto, — oy arecalledprematurenodessincethey have beenexecutedout of orderwith respect
to the 1DF-schedules;. All othernodesin o,, thatis, the seto,, arecallednon-premature For
example,Figure 7 shavs a simple dag with a parallel prefix o, for an arbitrary p-schedules,,
its correspondingerialprefix o1, anda possibleclassificationof nodesasheavy or light. It also
highlightsthe prematurenodesn o,,.

Whetheranodeis heavry or light is determinedy the parallelschedulewhile prematuranodes
aredefinedrelative to a given prefix (snapshotpf the parallelschedule For example,at the start
andatthe endof the execution(i.e., for the emptyprefix aswell asthe longestprefix of s,) there
are no prematurenodes,while intermediateprefixes of s, may containprematurenodes. The
maximumnumberof prematurenodes(over all prefixesof the parallelschedulewill determine
the amountof extra spacethe parallelschedulerequireswhencomparedwith the 1DF-schedule
(Lemma4.3, Section4.2.2); in contrast,the spaceallocatedby non-prematurenodeswill be
boundedby the spaceusageof the serialexecution. Therefore by boundingthe total numberof
prematurenodegLemma4.2,Sectiord.2.2)we canboundthespaceaequiremenof thep-schedule
Sp.

A readythreadbeingpresentn adequds equvalentto its first unexecutedhode(action)being

12

e = non-premature
o = premature

(@) (b)

Figure7: (a) An examplesnapshobf a parallelschedulgfor a simpledag. The shadechodes(the setof

nodesin o,,) have beenexecuted,while the blank (white) nodeshave not. Of the nodesin oy, the black
nodesform the correspondingparallel prefix o1, while the remaininggrey nodesare premature. (b) A

possiblepartitioningof nodesn o, into heary andlight nodes Eachshadedegion denoteghesetof nodes
executedconsecutiely in depth-firstorderon a single processo(P;, P», P; or P;) betweensteals. The
heary nodein eachregionis shavn shadedlack.

in thedequeandwe will usethetwo phrasesnterchangeablyGivena p-schedules, of adagG
generatethy algorithmDFDequeswe canfind auniquelast parentfor everynodein G (exceptfor
therootnode)asfollows. Thelastparentof anodeu in G is definedasthelastof v’s parentnodes
to be executedin the schedules,. If two or moreparentnodesof u werethe lastto be executed,
the processoexecutingoneof themcontinuesexecutionof ’s thread.We labelthe uniqueparent
of u executedby this processoasits last parent. This processomay have to preemptu’s thread
withoutexecutingu if it runsoutof its memoryquota;in thiscasejt putsu’sthreadonto its deque
andthengivesup thedeque.

Considetthe prefix o, of the parallelschedules, afterthefirst j timestepsforany 1 < 5 <.
Let v bethelastnon-prematur@ode(i.e., thelastnodefrom o,) to be executedduringthefirst j
timestepof s,. If morethanonesuchnodeexist, letv beary oneof them.Let P beasetof nodes
in thedagconstructeasfollows: P is initialized to {v}; for every nodeu in P, thelastparentof
u is addedto P. Sincetherootis theonly nodeatdepthl, it mustbein P, andthus,P contains
exactly all the nodesalonga particularpathfrom therootto v; we will call P thelast pathin o,.
Further sincev is non-prematuregll thenodesn P arenon-premature.

Letu; bethenodein thelastpathP atdepthi; thenu, is theroot,andu; is thenodev, where
0 is thedepthof v. Let t; bethetimestepin which u; is executed;jthent; = 1 sincetherootis
executedin the first timestep.For i = 2,...,¢ let I; betheinterval {¢;_1 + 1,...,t;}, andlet
I, = {1}. LetI;;; = {ts +1,...,j}. Sinceo, consistf all the nodesexecutedin thefirst j
timestepstheintervals I, . . ., I, cover the durationof executionof all nodesin o,. We will
call this uniquesetof disjoint intervals the covering intervals of o,,. We will analyzethe space
requiremenbf the parallel executionby boundingthe excessspaceallocated(comparedo the
1DF-schedulgduringeachcoveringinterval of o,,.

13

4.2.2 Analysisof spacebound

To analyzethe spacebound,we first boundthe numberof heary prematurenodesn ary prefix of
the parallelexecution(Lemmad4.2). This boundis obtainedoy countingthe maximumnumberof
heary prematurerodesexecutedn eachcoveringinterval of o,,. Sinceeachheavy prematurenode
canaccounfor upto K additionalspacecomparedo the serialexecution(hereK is the memory
threshold) we canrelatethe numberof prematurenodesto the spacerequiremenbf the parallel
execution(Lemma4.3).

We beagin by proving the following lemmaregardingthe nodesin a dequebelow ary of the
nodesonthelastpathin o,,.

Lemma4.1 Leto, beanyprefixof the parallel schedule andlet P bethelastpathin o,. For any
1 <4 <4, if u; isthenodeonthepathP at depthi, then

1. If during the executionu; is on somedeque thenevery nodebelowit in its dequeis the right
child of somenodein P.

2. Whenu; is executedbn a processareverynodeon the processors dequemustbetheright child
of somenodein P.

Proof. We canprove thislemmato betruefor any u; by inductiononi. Thebasecases theroot
node.Initially it is theonly nodein its deque andgetsexecutedbeforeary new nodesarecreated.
Thus,thelemmais trivially true. Let us assumehe lemmais true for all u;, for 0 < j < i. We
mustprove thatit is truefor u; ;.

Sinceu; isthelastparenof u; 1, u; 1 becomeseadyimmediatelyafteru; is executedonsome
processorTherearetwo possibilities:

1. u;. 1 is executedimmediatelyfollowing u; on that processar Property(1) hold trivially since
u; 41 1S never putonadeque.lf thedequeremainsunchangedbeforeu,, ; is executedproperty
(2) holdstrivially for u;,,. Otherwise the only changethat may be madeto the dequeis the
addition of the right child of u; beforeu;,; is executed,if u; wasa fork with ;. asits left
child. In this casetoo, property(2) holds,sincethe newv nodein the deques right child of some
nodein P.

2. u;y1 IS addedto the processos dequeafteru; is executed.This may happerbecause:; wasa
fork andu; 1 wasits right child (seeFigure8), or becauséhe processoexhaustedts memory
quota.In theformercase sinceu;, is theright child of u;, nothingcanbe addedo thedeque
beforeu;,. In thelattercase(thatis, the memoryquotais exhaustedeforeu; . is executed),
theonly nodethatmay be addedto the dequebeforeu; 1 is theright child of u;, if u; is afork.
This doesnot violate the lemma. Oncewu,; is addedto the deque,it may eitherget executed
on a processorwhenit becomeghe topmostnodein the deque,or it may getstolen. If it gets
executedwithout being stolen, properties(1) and(2) hold, sinceno nev nodescanbe added
below u;. 1 in thedeque.If it is stolen,the processothat stealsand executest hasan empty
deque,andthereforeproperties(1) and(2) aretrue, and continueto hold until u;,; hasbeen
executed.

14

deque

d | top
Ui+1
C

I : nodes along patlf® D
a | bottom

(b)

Figure 8: (a) A portion of the dynamically unfolding dag during the execution. Nodes
Ui—4,Ui—3, - - - , Ui, Ui4+1 li€ ONthelastpathP. Nodew;,; is ready andis currentlypresenin somedeque.
Thedequeis shavn in (b); all nodesbelowr ;1 onthe dequemustberight childrenof somenodeson P
abore u;41. In thisexample,nodeu;;; wastheright child of u;, andwasaddedo the dequewhenthefork
at u; wasexecuted. Subsequent)ydescendentsf the left child of u; (e.g.,noded), may be addedto the
dequeabore u; ;.

| |
To prove the spacebound,we first boundthe numberof heavyprematue nodesin an arbitrary
prefixo, of s, (Lemma4.2). Theproof,detailedbelow, proceedsisfollows: Wefocusontimesteps
in which one or more heary prematurenodesmay be executed. Thesetimestepsare split into
phasessuchthat eachphasehasa limited numberof stealattempts. Sincea heary premature
nodecanonly be executedasa resultof a steal,we boundthe numberof heary prematurenodes
executedby boundingthe numberof suchphaseghat canoccurin the parallelprefix o,. The
phasesreboundby consideringeachcoveringinterval of o, separatelyThebasicideais to shav
thatwith a constanprobability, thecurrentreadynodeu alongthelastpathin o, will getexecuted
duringa phasesincethe dequecontainingu mustbe a candidatdor steals.The currentcovering
interval endsassoonasu is executedby definition),therebylimiting the numberof phasesn the
interval.

Lemma4.2 Leto, beanyparallel prefixof a p-scheduleproduceddy algorithm DFDequegk) for
a computatiorwith depth D, in which everyactionallocatesat mostK space Thenthe expected
numberof heavyprematue nodesin o, is O(p - D). Further, for anye > 0, the numberof heavy
prematue nodess O(p - (D + In(1/¢))) with probability at leastl — e.

Proof. Considerthe startof ary coveringinterval I; of o, for: = 1,...,4 (we will look atthe
lastcoveringinterval 15, separately)heres is thedepthof thelastnon-prematureodeexecuted
in o,. Letwu; bethenodeat depth: on the lastpath? in o,. By Lemma3.1, all nodesin the
dequedo theleft of u;’s deque andall nodesabore u; in its dequearenon-prematurel et z; be
the numberof nodesbelow u; in its deque.Becausestealstarget the first (leftmost) p dequesn

15

thegloballist of dequesk, heary prematurenodescanbe pickedin any timestepfrom at mostp
deques Further every time a heary prematurenodeis picked, the dequecontainingu; mustalso
be a candidatadequeto be picked asa tamgetfor a steal;thatis, u; mustbe amongthe leftmostp
deques . Consideronly thetimestepsn which u; is amongtheleftmostp dequeswe will referto
suchtimestepsascandidatetimestepsBecausaen dequesnaybecreatedo theleft of u; atary
time, the candidatdimestepsieednot be contiguous.

We now boundthetotal numberof stealattemptghattake placeduringthecandidateéimesteps.
Eachsuchstealattemptmayresultin the executionof a heary prematurenode;stealsin all other
timestepgesultin the executionof heavy, but non-prematureéodes. Eachtimestepcan have at
mostp stealattempts.Therefore we canpartitionthe candidatdimestepsnto phasessuchthat
eachphasehasbetweerp and2p — 1 stealattemptsWe call aphasen interval I; successfuif at
leastoneof its ©(p) stealattemptdamgetsthedequecontainingu;. Let X;; betherandomvariable
with valuel if the j** phasdn interval I; is successfuland0 otherwise.Becausdametsfor steal
attemptsarechosenmat randomfrom the leftmostp dequeswith uniform probability andbecause
eachphasehasatleastp stealattempts,

1 P
p
1

1
e

1

2

v

Thus, eachphasesucceedsvith probability at least1/2. Becauseu; hadx; nodesbelow it in
its deque,it mustget executedbeforeor by the time z; + 1 successfubktealstarget v;’s deque.
Therefore therecanbe at mostz; + 1 successfuphasesn the coveringinterval 7;. The nodeu;
may getexecutedbeforez; + 1 stealattemptdargetits deque,f its ownerprocessoexecutesu;
off the top of the deque. Let therebe somen; < (z; + 1) successfuphasesn theintenal I;.
FromLemma4.1,the z; nodesbelow u; areright childrenof nodeson thelastpathP. Thereare
(6 — 1) < D nodesalongP notincludingus, andeachof themmay have at mostoneright child.
Sinceeachof theseright childrencanonly get executedonceduring one of thefirst 6 covering
intenvals,>-2_, #; < D. Thereforethetotal numberof successfuphasesn thefirst § intenvalsis
Y ini =Y (z;+1) < (D+6)<2D.

Finally, considerthe last coveringintenal I;.;. Let z be the readynodeat the startof the
interval with the highestpriority. Then,z ¢ o,, becaus®therwisez (or someothernode),andnot
v, would have beenthe lastnon-prematur@éodeto be executedin o,. Hence,if z is aboutto be
executednaprocessqithenintenal 75 ; is empty Otherwisez mustbeatthetop of theleftmost
dequeatthe startof interval 15, ;. Usinganamgumentsimilar to thatof Lemma4.1, we canshav
thatthenodesbelow z in thedequemustberight childrenof nodesalonga pathfrom therootto z.
Thus,z canhave atmost(D — 2) nodeshelaw it. Because: mustbe amongtheleftmostp deques
throughoutheintenal I, 1, thephasesn thisinterval areformedfrom all its timestepsWe call a
phasesuccessfuin intenal Iy, ; if atleastoneof the©(p) stealattemptsn the phaseametsthe
dequecontainingz. Thenthis interval musthave lessthan D successfuphases.As before,the
probability of a phasebeingsuccessfuis atleastl /2.

16

We have shavn thatfor ary j < 7 (herer is thelengthof the parallelschedules,), thefirst
J timestepsof the parallel execution,representedy the parallel prefix o,, musthave lessthan
3D successfuphase% Sincea heary prematurenodecanonly be executedafter a steal,each
phasemay resultin lessthan2p heary prematurenodesbeingstolenand executed. Further for
¢ = 1,...,4, in eachinterval ; of ,, anotherp — 1 heary prematurenodesmay be executed
in the sametimestepthat u; is executed. Sinced < D, if o, hasatotal of, say N phasesthe
numberof heary prematurenodesin o, is lessthan (2N + D) - p. Becausedhe entireexecution
musthave lessthan3 D successfuphasesandeachphasesucceedsvith probabilityat least1/2,
the expectednumberof total phasedeforewe see3D successfuphasess lessthan6D, thatis,
E[N] < 6D. Therefore,the expectednumberof heavy prematurenodesin o, is boundedby
E[2N+D)-p]<(12D+ D)-p=0O(p- D).

The high probability boundcan be proved asfollows. Supposehe executiontakes at least
12D + 81n(1/¢) phases.Thenthe expectednumberof successfuphasess at leasty = 6D +
41n(1/€). Usingthe Chernof bound[39, Theorem4.2] on the numberof successfuphasesX,
andsettinga = 6D + 81n(1/¢), we gef

PriX <pu—a/2] < exp [*{&2)2]

Therefore,

—a?/4
Pri(X <3D)] < exp l12D+ 81n(1/€)]

—a?
- o l4 “(2a - 81n(1/e))]
efa2/8a
e—a/8

o—(6D+81n(1/6))/8

IN

< ¢ 8In(1/9)/8

= €
Becauseherecanbeatmost3 D successfubhasesalgorithmDFDequesequiresi 2D +81n(1/¢)

or morephaseswvith probabilityat moste. Recallthateachphaseconsistof ©(p) stealattempts.
Thereforepg, hasO(p - (D + 1n(1/€))) heary prematurenodeswith probabilityatleastl —e. =

We cannow statea lemmarelatingthe numberof heavy prematurenodesin o, with the memory
requiremendf s,,.

Lemma4.3 Let G be a dag with depth D, in which every nodeallocatesat mostK space and
for which the serial depth-fist executionrequiresS; space Let s, bethe p-scheduleof lengthT

8Remembethat the parallel prefix o,,, andhencethe classificationof nodesas prematureor non-prematureor
phaseassuccessfuldepend®n the choiceof this ;.

9The probability of succesgor a phases not necessarilyndependenof previous phaseshowever, becauseach
phasesucceedsvith probabilityatleastl /2, independenof otherphaseswe canapplythe Chernof bound.

17

thread t

Figure 9: An example scenariowhen a processol(P, in this example) may not executea contiguous
subsequencef nodesbetweersteals.The shadedegionsindicatethe subsebf nodesexecutedon eachof
thetwo processorsP, and P,. Here,processorP, stealsthethreadt andexecutesnodew. It thenforks a
child thread(containingnodew), putsthreadt onits deque andstartsexecutingthechild. In themeantime,
processoP, stealghreadt from the dequebelongingto P,, andexecutest until it suspendsSubsequently
P, finishedexecutingthechild thread andwakesup thesuspendeg@arent andresumesxecutionof ¢t. The
combinedsetsof nodesexecutedon both processorformsa contiguoussubsequencef 1DF-schedule

geneatedfor G by algorithm DFDequegK). If for any: sudthatl < ¢ < T, theprefixo, of s,
representinghe computatiorafter thefirst: timestepsontainsat mostr heavyprematue nodes,
thentheparallel spacerequirrmenof s, is at mostS; + r - min(XK, S;). Further, there are at most
D + r - min(K, S;) activethreadsduring the execution.

Proof. We canpartitiono, into the setof non-prematur@odesandthe setof prematurenodes.
Since by definition,all non-prematureaodesorm someserialprefix of the 1DF-scheduletheirnet
memoryallocationcannotexceedsS;. We now boundthe netmemoryallocatedby the premature
nodes.Considera stealthatresultsin the executionof a heary prematurenodeon a processorr.
The nodesexecutedby P until its next steal,cannotallocatemorethan K space.Becausédhere
areatmostr heary prematurenodesexecutedthetotal spaceallocatedacrossall processorsafter
1 timestep<annotexceedS; + r - K.

Themaximumnumberof active threadss atmostthenumberof threadswith prematurenodes,
plusthe maximumnumberof active threadsduringa serialexecution,whichis D. Assumingthat
eachthreadneeddo allocateatleastaunit of spacevhenit is forked(e.g.,to storeits registerstate),
atmost K threadswith prematurenodescanbe forked for eachheary prematurenodeexecuted.
Thereforethetotal numberof actve threadss atmostD + r - K.]

Notethateachactive threadrequiresat mosta constanamountof spaceo be storedby thesched-
uler (not including its stackspace). We now extendthe analysisto handlelarge allocations(of
morethan K space).

Handling large allocations of space We hadassumedearlierin this sectionthat every node
allocatesatmostK unitsof memory Individualnodeghatallocatemorethan K spacearehandled
asdescribedn Section3. The key ideais to delaythe big allocations,so that if threadswith

18

higherprioritiesbecomeaeady they will beexecutednstead.Thesolutionis to insertbeforeevery
allocationof m bytes(m > K), a binary fork tree of depthlog(m/K), sothatm/K dummy
threadsare createdat its leaves. Eachof the dummythreadssimply performsa no-opthattakes
onetimestep,but the threadsat the leaves of the fork tree aretreatedasif it wereallocating K
space;a processogivesup its dequeand performsa stealafter executingeachof thesedummy
threads.Therefore by thetime them/K dummythreadsareexecuteda processomay proceed
with the allocationof m byteswithout exceedingour spacebound. Recallthatin our costmodel,
an allocationof m bytesrequiresa depthof O(logm); therefore this transformatiorof the dag
increaseds depthby at mosta constantactor Thetransformatiortakesplaceatruntime,andthe
on-line DFDequesalgorithmgenerates scheduldor this transformeddag. The final boundon
the spacerequirementf the generatedgchedulejs statedbelown. Also, in Lemma4.3, eachnode
wasassumedo allocateat most K spacesincethe executioncannever have a netnegative space
allocation,thisassumptiomequiredthat K'leS;. Withoutthis assumptionye needto additionally
boundmemoryallocationfor verylarge K'; we thereforeprove belowv atighterboundfor thespace
requirementvhenkK > S;.

Theorem 4.4 (Upper bound on spacerequirement)

Considera nested-paallel computatiorwith depthD andserial, depth-fistspacerequirements;.
Then,for any K > 0, the expectedvalue of the spacerequired to executethe computationon p
processos usingalgorithm DFDequegK), includingthe spacerequiredto store activethreads,is
S1+ O(min(K, Sy) - p- D). Further, for anye > 0, the probability that the computatiorrequires
S1 4+ O(min(K, Sy) -p- (D +1In(1/¢))) spaces atleastl — e.

Proof. Lemmast.2and4.3holdfor ary prefix (snapshotdf the parallelcomputationTherefore,
usingtheabovetransformatiorof thedagfor allocationdargerthan K, it followsthattheexpected
amountof spaceequiredby the parallelcomputatioris S; + O(K - p- D). Further it follows that
for ary € > 0, the probabilitythatthe computatiorrequiresS; + O(K - p - (D + In(1/¢))) space
is atleastl — e.

We now obtainatighterboundwhenK > S;. Considerthe casewhena processor” stealsa
threadandexecutesaheary prematuranode. Thenodesexecutedby P beforethenext stealareall
prematureandform a seriesof oneor moresubsequences the 1DF-schedule Theintermediate
nodeshetweerthesesubsequencds depth-firstorder)areexecutedon otherprocessorg¢e.g.,see
Figure9). Theseintermediatenodesoccurwhen other processorstealthreadsfrom the deque
belongingto P, andfinish executingthe stolenthreadsdefore P finishesexecutingall theremain-
ing threadsn its deque.Subsequentlywhen P’s dequebecomesmpty the threadexecutingon
P maywake upits parent,sothat P startsexecutingthe parentwithout performinganothersteal.
Therefore,the setof nodesexecutedby P beforethe next steal,possiblyalongwith premature
nodesexecutedon otherprocessordprm a contiguoussubsequencef the 1bF-schedule

Assumingthatthe netspaceallocatedduringthe 1DF-schedulecannever be negative, this sub-
sequenceannofallocatemorethan$; unitsof netmemory Thereforejf therearer heary prema-
turenodesthenetmemoryallocationof all theprematurenodescannotexceedr - min(K, S;), and
thetotal spaceallocatedacrossall processorsfteri timestepsannotexceedS; + r - min(K, Sy).
ThereforeusingLemmad4.2,the abore expectedandhigh probability spaceboundsollow.]

We now shaw thatthe above spaceboundis tight (within constanfactors)in the expectedcase,
for algorithmDFDeques

19

Theorem 4.5 (Lower bound on spacerequirement)

ForanyS; > 0,p > 0, K > 0, and D > 24logp, there existsa nestedparallel dag with a
serial spacerequirementof S; anddepthD, sud that the expectedspacerequired by algorithm
DFDequefK) to executeit onp processosis Q(S; + min(K, S1) - p - D).

Proof. Considethedagshavn in Figurel0. Theblacknodesdenoteallocationswhile the grey
nodesdenotedeallocations.The dagessentiallyhasa fork tree of depthlog(p/2), at the leaves
of which exist subgraph¥. The root nodesof thesesubgraphsrelabelledu,, uo, . . ., u,, where
n = p/2. Theleftmostof thesesubgraphs(z,, shovn in Figure10 (b), consistsof a serialchain
of d nodes. The remainingsubgraphsare identical, have a depthof 2d + 1, andare shovn in
Figure 10 (c). The amountof spaceallocatedby eachof the black nodesin thesesubgraphss
definedasA = min(K, S7). Sincewe areconstructingadagof depthD, thevalueof d is setsuch
that2d + 1 + 2log(p/2) = D. Thespaceaequiremenbdf a 1DF-scheduldor this dagis S;.

We now examinehow algorithm DFDequeéK) would executesucha dag. One processor
startsexecutingthe root node,and executesthe left child of the currentnodeat eachtimestep.
Thus,within log(p/2) = logn timestepsijt will have executednodeu;. Now considemodeu,,;
it is guaranteedo be executedoncelog n successfustealstargetthe root thread.(Recallthatthe
right child of a forking node,thatis, the next nodein the parentthread,mustbe executedeither
beforeor whenthe parentthreadis next stolen.) Becauseherearealwaysn = p/2 processorin
this examplethatareidle andattemptstealstargetingp dequesat the startof every timestepthe
probability py:.. thata stealwill targeta particulardequeis givenby

1 p/2
1_<1__)
p

—-1/2

AV

Dsteal

AV

1—e¢
1

V

3

We call atimestepi successfulf somenodealongthe pathfrom therootto u,, getsexecutedthis
happensvhenastealtargetsthedequecontaininghatnode.Thus,afterlog n successfulimesteps,
nodeu,, mustgetexecutedafterthat,wewill considereverysubsequertmestepo besuccessful.
Let S be the numberof successfutimestepsan the first 121logn timesteps.Then,the expected
valueis givenby

E[S] > 12logn - psiea
> 4logn

Usingthe Chernof bound[39, Theorem4.2] onthe numberof successfulimestepswe have

Pr[S < (1—2) "E[S]] < exp l_ <2)2¥]

10All logarithmsdenotedaslog areto thebase2.

20

log (p/2)

p/2
subgraphs

log (p/2)

A
|
|
|
|
|
|
|
|
|

v

(a)
subgraph G :
4\
|
|
|
- !
+ |
o |
subgraph Gy : e
<
LS 5
| g © |
| |
o : |
= | . |
o | |
[%
T ;j
| - — - — - — - — — — -
v -S1 © node w d threads forked
(b) (c)

Figurel0: (a) Thedagfor which the existentiallower boundholds. (b) and(c) presenthe detailsof the
subgraphshavnin (a). The blacknodesdenoteallocationsandgrey hodesdenotedeallocationsthe nodes
aremarkedwith theamountof memory(de)allocatedHere, A = min(K, S7).

21

Therefore,

Pr[S <logn] < exp [—g logn]

_ 9 Inn
- P 8 In2

< e—l.62-lnn

<

Recallthatn = p/2. (Thecaseof p < 4 canbe easilyhandledseparately Let &; bethe event
that nodeu; is not executedwithin the first 12logn timesteps.We have shaved that Pr[€,] <
(2/3) - (1/n). Similarly, we canshow thatfor eachi = 1,...,n — 1, Pr[&] < (2/3) - (1/n).
Therefore Pr[U} &;] < 2/3. Thus,fori = 1,...,n, all theu; nodesgetexecutedwithin thefirst
12 log n timestepwith probabilitygreaterthan1/3.

EachsubgraphG hasd nodesat differentdepthsthatallocatememory;thefirst of thesenodes
cannotbe executedbeforetimesteplogn. Let ¢ be the first timestepat which all the u; nodes
have beenexecuted.Then,at this timestep thereareat least(d + logn — t) nodesremainingin
eachsubgraph’ thatallocateA byteseach,but have not yet beenexecuted. Similarly, nodew
in subgraphy, will not be executedbeforetimestep(d + logn), thatis, another(d + logn — t)
timestepsafter timestept. Therefore,for the next (d + logn — t) timestepsthere are always
n— 1= (p/2) — 1 non-emptydequegout of atotal of p dequesyuringthe execution.Eachtime
athreadis stolenfrom oneof thesedequesa blacknode(from Figure10 (c)) is executedandthe
threadthensuspendsBecause /2 processorbecomedle andattempta stealat the startof each
timestep,we canshaw thatin the expectedcase at leasta constanfraction of the p/2 stealsare
successfuin every timestep. Eachsuccessfustealresultsin A = min(S;, K) units of memory
being allocated. Considerthe casewhent = 12logn. Then, using linearity of expectations,
overthed — 11logn timestepsafter timestept, the expectedvalue of the total spaceallocated
isS1 +QA-p-(d—11logn)) = S1+ QA -p- (D —logp)). (D > 24logp ensureghat
(d—11logn) > 0.)

We shavedthatwith constanprobability (> 1/3), all thewu; nodeswill beexecutedwithin the
first 12 logn timesteps.Thereforejn the expectedcase the spaceallocatedat somepointduring
the executionafterall u; nodeshave beenexecuted)s Q(S; + min(Sy, K) - (D — logp) - p). =

Corollary 4.6 (Lower bound usingwork stealing)

ForanyS; > 0,p > 0, andD > 24logp, there existsa nestedparallel dag with a serial space
requirrmenbf S; anddepthD, sud thattheexpectedspacerequiredto executdt usingthespace-
efficientwork stealerfrom[13] onp processosis 2(S; - p - D). "

The corollary follows from Theoremd.5 andthe fact that algorithm DFDequesbehaeslik e the
space-dicient work-stealingscheduleffor K = oo. Blumofe and Leiserson[13] presentedan
upperboundon spaceof p - S; usingrandomizedwvork stealing. Their resultis not inconsistent

22

with the above corollary, becauseheir analysisallows only “stack-like” memory allocatiort?,

whichis morerestrictedthanour model. For suchrestricteddagstheir spaceboundof p - S; also
appliesdirectly to DFDequeéxo). Ourlower boundfor K = oo is alsoconsistentvith the upper
boundof p - S by Simpsonand Burton [51], where S is the maximumspacerequiremenbover
all possibledepth-firstschedulesIn this example,S = S; - D, sincethe right-to-left depth-first
scheduleequiresS; - D space.

4.3 Timebound

We now prove the time boundrequiredfor a parallel computationusing algorithm DFDeques
This time bounddoesnot include the schedulingcostsof maintainingthe relative order of the

dequegi.e.,insertinganddeletingdequesn thegloballist of dequesR), or findingthem™ deque.
Elsevhere[40], we describeéhow the schedulecanbeparallelized andthenprove thetime bound
including theseschedulingcosts. We first assumehat every action allocatesat most K space
(whereK is the memorythresholdusedby the DFDequesalgorithm)andprove thetime bound.
We thenrelaxthis assumptiorandprovide the modifiedtime boundat the endof this subsection.

Lemma4.7 Considera parallel computationwith work W and depth D, in which every action
allocatesat mostK space Theexpectedimeto executethis computatioron p processas using
the DFDeque@K’) schedulingalgorithmis O(W/p+ D). Further, for anye > 0, thetimerequired
to executethe computatioris O(W/p + D + In(1/¢)) with probability at leastl — .

Proof. Considerary timestepi of the p-schedulelet n; bethenumberof dequesn R attimestep
1. We first classifyeachtimestepi into oneof two types(A andB), dependingnthevalueof n;.
We thenboundthetotal numberof timesteps’s andTs of typesA andB, respeciiely.

TypeA: n; > p. At thestartof timestepi, let thereber < p stealattemptdn thistimestep.Then
theremainingp — r processorarebusyexecutingnodesthatis, atleastp — r nodesareexecuted
in timestepi. Further atmostp — r of theleftmostp dequesnaybe empty;therestmusthave at
leastonethreadin them.

Let X; be the randomvariablewith valuel if the j%* non-emptydequein R (from the left
end)getsexactly onestealrequestandO otherwise.Then,E [X;] = Pr (X, = 1] = (r/p) - (1 —
1/p)"~'. Let X betherandomvariablerepresentinghetotal numberof non-emptydequeghatget
exactly onestealrequest’. Becausghereareat leastr non-emptydequesthe expectedvalueof
X (assuminghatp > 2) is givenby

BIX] > YE[X)]

1
A e U
p p

1Their modeldoesnot allow allocationof spaceon a globalheap.An instructionin a threadmay allocatestack
spaceonly if thethreadcannotpossiblyhave aliving child whentheinstructionis executed The stackspaceallocated
by thethreadmustbe freedwhenthethreadterminates.

2For simplicity, we only countthedequeshatgetexactly onerequestinsteadof ary non-zeranumberof requests.

23

N

r

1
> —-(1-2>)P
p p
2 1,1
> T_.(l__)._
p p €
r2
2

2:p-e

Recallthatp — r nodesareexecutedoy thebusyprocessorsThereforejf Y is therandomvariable
denotingthetotal numberof nodesexecutedduringthis timestepthen

T2

EY] > (p—T)+§p

v
|

Therefore, E[p—-Y] < p— b

I
g
—~

—_
I
1

The quantity (p — Y') mustbe non-n@ative; therefore usingthe Markov’s inequality[39, Theo-
rem3.2], we get

Pri(p—¥) > p(l -)] <

IN

Therefore, Pr[Y < 42] <
e

. p

> 2

thatis, Pr[Y > 46] >

10

We will call eachtimestepof type A successfuif atleastp/4e nodesgetexecutedduringthe
timestep.Thenthe probability of thetimestepbeingsuccessfuis atleastl /10. Becausehereare
W nodesn the entirecomputationtherecanbe at most4e - W/p successfulimestepsf type A.
Thereforethe expectedvaluefor T4 is atmost40e - W/p.

The analysisof the high probability boundis similar to that for Lemma4.2. Supposehe
executiontakesmorethan80eW/p + 40 In(1/¢) timestepf type A. Thenthe expectechumbery
of successfulimestep®f typeA is atleast8eWW/p+41n(1/¢). If Z istherandonmvariabledenoting
the total numberof successfutimestepsthenusingthe Chernof bound[39, Theorem4.2], and
settinga = 40eW/p + 401n(1/¢), we get'3

Pr(Z < pu—a/10] < exp l%]

13As with the proof of Lemma4.2, we can usethe Chernof boundhere becauseeachtimestepsucceedsvith
probabilityatleastl /10, evenif theexactprobabilitiesof successefr timestepsrenotindependent.

24

Therefore,
Pr[Z < 4eW/p] < e /200m

= exp [— 200(a/5 j24 ln(l/e))]

CL2
< - -
= P l 200 - a/5]

e—a/40

e—eW/p—ln(l/e)

e In(1/€)

IN

€

We have shavn that the executionwill not completeeven after 80eW/p + 401n(1/¢) type A
timestepsvith probabilityatmoste. Thus,forany e > 0, 74 = O(W/p+1n(1/e¢)) with probability
atleastl — e.

Type B: n; < p. We now considertimestepsn which the numberof dequesan R is lessthan
p. As with the proof of Lemma4.2, we split type B timestepanto phasesuchthat eachphase
hasbetweerp and2p — 1 stealattempts.We canthenusea potentialfunction argumentsimilar
to the dedicatednachinecaseby Arora et al. [3]. Composingphasegrom only type B timesteps
(ignoringtypeA timestepsyetainsthe validity of their analysis.We briefly outlinethe proofhere.
Nodesareassignedxponentiallydecreasingotentialsstartingfrom the root downwards. Thus,
anodeat a depthof d is assignedx potentialof 32(P~4) andin the timestepin which it is about
to be executedon a processqra weightof 32(P~49-1_ They shaw thatin ary phaseduringwhich
betweerp and2p — 1 stealattemptsoccur thetotal potentialof the nodesin all the dequesirops
by a constantfactor with at leasta constantprobability Sincethe potentialat the startof the
executionis 32P~!, the expectedvalueof thetotal numberof phasess O (D). Thedifferencewith
our algorithmis thata processomay executea node,andthenput up to 2 (insteadof 1) children
of the nodeon the dequeif it runsout of memory;however, this differencedoesnot violate the
basisof their aguments.SinceeachphasehasO(p) stealattemptsthe expectednumberof steal
attemptsduring type B timestepss O(pD). Further for ary e > 0, we canshaw thatthe total
numberof stealattemptsduring timestepsof type B is O(p - (D + In(1/¢))) with probability at
leastl — e.

Recallthatin every timestepeachprocessoeitherexecutesa stealattemptthatfails, or exe-
cutesanodefromthedag. Thereforejf Ny.a IS thetotalthenumberof stealattemptsluringtypeB
timestepsthenTs isatmost(W + Ngea1) /p. Thereforetheexpectedvaluefor T is O(W/p+ D),
andfor ary e > 0, the numberof timestepss O(W/p + D + In(1/¢)) with probability at least
1—e

The total numberof timestepsan the entire executionis 74 + Tg. Therefore,the expected
numberof timestepsn the executionis O(W/p + D). Further combiningthe high probability
boundsfor timestepof type A andB, (andusingthefactthatPr [X U Y] < Pr[X] + Pr[Y]), we
canshow thatfor ary ¢ > 0, thetotal numberof timestepsn the parallelexecutionis O(W/p +
D +1n(1/€)) with probabilityatleastl — e. "

25

To handleeachlarge allocationof m units (wherem > K), recallthatwe add |m/K | dummy
threadsthedummythreadsareforkedin abinarytreeof depth©(log(m/K)). Becausaveassume
a depthof ©(logm) for every allocationof m bytes,this transformatiorof the dagincreasests

depthby at mosta constantfactor If S, is the total spaceallocatedin the program(not counting
the deallocations)the numberof nodesin the transformedagis atmostW + S,/ K. Therefore,
usingLemmad4.7,the modifiedtime boundis statedasfollows.

Theorem 4.8 (Upper bound on time requirement)

The expectedtime to executea parallel computationwith W work, D depth, and total space
allocation S, onp processos usingalgorithm DFDequegK) is O(W/p + S,/pK + D). Further,
for anye > 0, thetimerequiredto executethe computatioris O(W/p + S,/pK + D + In(1/¢))
with probability at least1 — e.

In a systemwhereevery memorylocationallocatedmustbe zeroed,S, = O(W). The expected
time boundthereforebecomesO(W/p + D). This time bound, althoughasymptoticallyopti-
mal[14], is notaslow asthetime boundof W/p + O(D) for work stealing[13].

Trade-off betweenspace,time, and schedulinggranularity . As the memorythresholdK is
increasedthe schedulinggranularityincreasessincea processorcan executemoreinstructions
betweersteals.In addition thenumberof dummythreadsaddedoeforelargeallocationglecreases.
However, thespaceaequiremenincreasesvith K. Thus,adjustingthevalueof K providesatrade-
off betweerrunningtime (or schedulinggranularity),andspacerequirement.

5 Experimentswith Pthreads

Weimplementedhescheduleaspartof anexistinglibrary for Posixstandardhreadsor Pthread$30].
Thelibrary is the native, userlevel Pthreaddibrary on Solaris2.5 [46, 53]. Pthreadson Solaris
are multiplexed at the userlevel on top of kernelthreadswhich actlike virtual processorsThe
original scheduleiin the Pthreadlibrary usesa FIFO queue. Our experimentswere conducted
on an 8 processoEnterprise5000 SMP with 2GB main memory Eachprocessois a 167 MHz
UltraSFARC with a512kB L2 cache.

Having to supportthe generalPthreadgunctionality preventseven a userlevel Pthreadsm-
plementatiorfrom beingextremelylightweight. For example,a threadcreationis two ordersof
magnitudemore expensve thana null function call on the UltraSFARC. Therefore,the useris
requiredto createPthreadshatarecoarseenoughto amortizethe costof threadoperationsHow-
ever, with a depth-firstschedulerthreadsat this granularityhadto be coarsenedurtherto get
goodparallelperformancg42]. We show thatusingalgorithm DFDequesgoodspeedupsanbe
achiezed usingPthreadsvithout this additionalcoarseningThus,the usercannow fix thethread
granularityto amortizethreadoperationcosts andexpectto getgoodparallelperformanceén both
spaceandtime.

The Pthreadsnodelsupportsa binaryfork andjoin mechanismWe modifiedmemoryalloca-
tion routinesnmal | oc andf r ee to keeptrack of the memoryquotaof the currentprocessofor

26

kernelthread)andto fork dummythreadsbeforean allocationif required.Our scheduleimple-
mentationis a simpleextensionof algorithm DFDequeghat supportshe full Pthreadgunction-
ality (including blocking'* mutexesand conditionvariables)oy maintainingadditionalentriesin
R for threadssuspendedn synchronizationsOur benchmarksrepredominantlynestedoarallel,
andmake limited useof mutexesandconditionvariables.For example,thetree-lilding phasen
Barnes-Huusesnutexesto protectmodificationgo thetrees cells. However, the SolarisPthreads
implementationtself makesextensie useof blockingsynchronizatiomprimitivessuchasPthread
mutexesandconditionvariables.

Sinceour executionplatformis an SMP with a modestnumberof processorsaccesdo the
readythreadsin R wasserialized. R is implementedasa linked list of dequesprotectedby a
sharedschedulelock. We optimizedthe commoncasesof pushingand poppingthreadsonto a
processos currentdequeby minimizing locking time. A stealrequiresthe lock to be acquired
moreoftenandfor alongerperiodof time.

In theexisting Pthreadsmplementationit is notalwayspossibleto placea reavakenedthread
on the samedequeas the threadthat wakesit up; therefore,our implementationof DFDeques
is an approximationof the pseudocodén Figure5. Further sincewe serializeaccesgo R, and
supportmutexes and condition variables,settingthe memorythreshold K to infinity doesnot
producethe samescheduleasthe space-dicient work-stealingscheduleintendedfor fully strict
computationg13]. Therefore,we canusethis settingonly asa roughapproximationof a pure
work-stealingscheduler

We first list the benchmarksisedin our experiments.Next, we comparethe spaceandtime
performanceof the library’s original scheduler(labelled“FIFO”) with an asynchronousjepth-
first schedulef42] (labelled“ADF”), andthe new DFDequesschedulerlabelled“DFD”) for a
fixed value of the memorythresholdK. We alsouse DFDequeéx) asan approximationfor a
work-stealingscheduler(labelled“DFD-inf”). To studyhow the performanceof the schedulers
is affected by threadgranularity we presentresultsof the experimentsat two differentthread
granularities Finally, we measurehetrade-of betweerrunningtime, schedulinggranularity and
spacefor algorithm DFDequesby varying the value of the memorythresholdK for oneof the
benchmarks.

5.1 Parallel benchmarks

The benchmarksvereeitheradaptedrom publicly availablecoarsegrainedversiong25, 44, 52,
56], or written from scratchusing the lightweight threadsmodel[42]. The parallelismin both
divide-and-conquerecursionand parallelloops was expressedas a binary tree of forks, with a
separat®threaccreatedor eachrecursve call. Threadgranularitywasadjustedy serializingthe
recursionnearthe leafs. In the comparisorresultsin Section5.2, mediumgranularityrefersto
thethreadgranularitythatprovidesgoodparallelperformanceisingthe depth-firstschedulef42].
Evenatmediumgranularity thenumberof threadssignificantlyexceedg¢he numberof processors;
thisallows simplecodingandautomatidoadbalancingwhile resultingin performancequivalent
to hand-partitionedcoarse-grainedode using the depth-firstschedulef42]. Fine granularity
refersto thefinestthreadgranularitythatallows the costof threadoperationsn asingle-processor

We usetheterm“blocking” for synchronizatiorthat causeghe calling threadto block andsuspendratherthan
spinwait.

27

Benchmark Inputsize Mediumgrained Finegrained
total | FIFO | ADF | DFD || total | FIFO [ADF | DFD
Vol. Rend. 256° vol, 3752 img 1427 | 195 | 29 29 4499 | 436 | 36 37
DenseMM 1024 x 1024 doubles 4687 | 623 33 48 37491 | 3752 | 55 77
SparseMVM | 30K nodes151Kedges| 1263 54 31 31 5103 173 51 49
FFTW N =222 177 64 13 18 1777 510 30 33
FMM N =10K,5mplterms || 4500 | 1314 | 21 29 36676 | 2030 | 50 54
BarnesHut | N = 100K, Pimrmodel || 40893 | 1264 | 33 106 || 124767| 3570 | 42 120
DecisionTree 133,999nstances 3059 82 60 77 6995 194 | 138 | 149

Figurel1l: Input sizesfor eachbenchmarktotal numberof threadsexpressedn the programat medium
andfine granularitiesandmax. numberof simultaneoushactive threadscreatedby eachscheduleat both
granularitiesfor K = 50,000bytes.“DFD-inf” createsat mosttwice asmary threadsas“DFD” for Dense
MM, andatmost15%morethreadghan“DFD” for theremainingbenchmarks.

executionto be up to 5% of the serialexecutiontime'®. The parallelbenchmarksrebriefly de-
scribedbelow.

1. Volume Rendering This applicationwasadaptedrom the Splash-2rolumerenderingoench-
mark[56, 52]. A ray is castfrom the viewing positionthrougheachpixel in theimageplane;
parallelismis exploited acrosshesepixels. We createa separatd’threadto handleeachsetof
tilesin theimage,whereatile is 4 x 4 pixels. Thegranularityis variedby limiting the number
of tilesin eachset. Rayscastthroughtiles closetogetheiin theimagearelik ely to accessnuch
of the samevolumedata,thereforeprocessingsuchtiles on the sameprocessoprovidesgood
locality. Eachthreadprocessespto 100pixel tiles of therenderedmageatmediumgranularity
andupto 5 tiles atfine granularity

2. DenseMatrix Multiply . We usea recursve, divide-and-conquealgorithmto multiply two
densamatrices. Eachmatrixis splitinto four quadrantsthequadrantaremultipliedrecursvely,
andtheresultingmatricesareaddedo getthefinal result. Matrix additionis alsoimplemented
in arecursve,divide-and-conqudiashion.A new threads forkedto executeeachrecursveccall.
Serialmatrix multiply is performedat the leavesof therecursiorntreewhenthe matrix sizefalls
below a specifiedblock size. Suchhierarchicalmatrix multiply algorithmshave beenshawvn to
achieve high performancealueto their goodcachingbehaior [1, 24, 43]. The mediumgrained
versionusesblocksof size64 x 64, while thefine grainedversionuses32 x 32 blocks.

3. SparseMatrix Vector Multiply . This codeto multiply a sparseunsymmetricnatrix with a
densevectorwasadaptedrom the Spark98kernels[44]. The sparsematrix is generatedrom
a finite elementmeshusedto simulatethe motion of the groundafteran earthquak in the San
Fernandovalley [5, 4]. Eachthreadcalculateghe productfor a contiguoussetof rows of the
matrix; with a sufficiently large numberof threadsthe load is automaticallybalanced.Since
therows of thematrix areorderedoy a graphpartitioner neighboringrows mayaccess€ommon

15The exceptionwas the densematrix multiply, which we wrote for n x n blocks, wheren is a power of two.
Thereforefine granularityinvolvedreducingthe block sizeby afactorof 4, andincreasinghe numberof threadsy
afactorof 8, resultingin 10%additionaloverhead.

28

data. At mediumgranularity 64 threadsare forked to performthe multiplication, while 256
threadsareforkedatfine granularity

4. FastFourier Transform. We usedthe Pthreads-basembdefrom the FFTW library [25], which
is typically fasterthanall otherpublicly available codeto computeone-and multidimensional
complec discreteFourier transforms(DFTs). The codeimplementsthe Cooley-Tukey algo-
rithm [19]; a new threadis forked to performeachrecursve transformuntil a userspecified
numberof threadshave beencreated. We use64 threadsto computethe 1D FFT at medium
granularity and512threadsatfine granularity

5. Fast Multipole Method. This multithreadedcodeimplementshe uniform FMM [28], an N-
body algorithmthat calculatesorcesbetweenN bodiesin O(XN) time. Although every phase
in thecomputationwasparallelizedwe only variedthe granularityof the mosttime consuming
phasethetop-dowvn traversal.For eachcell, we fork a separatéhreadto calculatats interaction
with a fixed numberof its neighborg(the cells on its interactionlist). At mediumgranularity
eachthreadcalculate$0interactionf acell with its neighboringcells,while atfine granularity
eachthreadcompute$ suchinteractions.

6. Barnes-Hut. Thecodefor thisO(N log N) N-bodyalgorithm[6] wasadaptedrom the Splash-
2 benchmarksuite [56]. All the original load balancingcodewasremoved sinceour simpler,
rewritten versionis automaticallyload balancedby the Pthreaddibrary. As with FMM, we
varied the granularitywithin the mosttime consumingphase which is the force calculation.
We rewrote this phaseto recursvely traversedown the octreeby forking a new threadfor each
subtree andterminatingthe forking after a fixed numberof levels. After that, the force on all
the particlesin eachsubtreds calculatedby a separatéhread.Sinceparticlesclosetogethelin
thetreearelik ely to requirecommondatafor force calculation this providesgoodlocality. The
granularityis adjustedoy varyingthe cut-off level at which parallelrecursionis terminated At
mediumgranularity eachthreadcomputeghe forceson particlesin up to 4 leaf cells (thatis,
eachsubtreecontains4 leaveson average) while at fine granularity eachthreadhandlesone
leaf cell.

7. DecisionTree Builder. This dataclassificationprogramimplementsa top-down, divide-and-
conquertree building algorithmID3 [47], with C4.5-like additionsto handlecontinuousat-
tributes[48]. A new threadis forked to executeeachrecursve call. Theresultingdivide-and-
conquerdag is highly irregular and datadependentwhere eachstageof the recursionitself
involvesa paralleldivide-and-conqueguicksortto split theinstancesWe useda speectrecog-
nition datasetvith 4 continuousattributesanda true/falseclassificatiorastheinput. Thethread
granularityis adjustedby settinga thresholdfor the numberof instancesbelonv which there-
cursionis executedserially The thresholdswere setto 2000 and 200 for mediumand fine
granularitiesrespectiely.

Figurel1l lists thetotal numberof threadsexpressedn eachbenchmarlat boththe threadgranu-
larities.

29

5.2 Comparisonresults

In all the comparisorresults,we usea memorythresholdof K = 50,000 bytesfor “ADF” and
“DFD” '8, Eachactie threadis allocateda minimum 8kB (1 page)stack. Therefore the space-
efficient schedulerseffectively consere stackmemoryby creatingfewer simultaneouslhactive
threadscomparedo the original FIFO scheduler(seeFigure 11). The FIFO schedulerspends
significantportionsof time executingsystemcalls relatedto memoryallocationfor the thread
stackq42]; this problemis aggraiatedwhenthethreadsaremadefine grained.

The 8-processospeedupsor all the benchmarkat mediumandfine threadgranularitiesare
showvn in Figure 12. To concentrateon the effect of the schedulerandto ignore the effect of
increasedhreadoverheadgup to 5% for all exceptdensematrix multiply) at the fine granular
ity, speedupdgor eachthreadgranularityare with respectto the single-processomultithreaded
executionat thatgranularity The speedupshaow that both the depth-firstschedulemandthe nev
DFDequescheduleoutperformthelibrary’s original FIFO schedulerHowever, atthefine thread
granularity the new scheduleiprovides better performancehan the depth-firstscheduler This
differencecanbe explainedby the betterlocality andlower schedulingcontentionexperiencedy
algorithmDFDeques

We measuretheexternal(L2) cachamissratesfor eachbenchmarkisingon-chipUltraSRARC
performancecounters.Figure 1, which lists the resultsat the fine threadgranularity shavs that
our scheduleachievesrelatively low cachemissrates(i.e., resultsin betterlocality).

Threeout of the seven benchmarksnake significantuseof heapmemory For thesebench-
marks,we measuredhe high watermarkfor heapmemoryallocationusingthe threeschedulers.
Figure 14 shaws that algorithm DFDequesresultsin slightly higher heapmemoryrequirement
comparedo the depth-firstschedulerbut still outperformghe original FIFO scheduler

TheCilk runtimesysten{26] usesa provably space-dicientwork stealingalgorithmto sched-
ulethread$’. Figure13 compareghe spaceperformancef Cilk with the depth-firstand DFDe-
quesschedulersor thedensematrix multiply benchmarkat thefine threadgranularity). Thefig-
ureindicategshat DFDequesequireanorememorythanthedepth-firstschedulerbut lessmemory
thanCilk. In particular similarto thedepth-firstschedulerthe memoryrequiremenbf DFDeques
increaseslowly with the numberof processors.

5.3 Measuringthe tradeoff betweenspace time, and schedulinggranularity

We studiedthe effect of the size of memorythresholdK on the runningtime, memoryrequire-
ment,andschedulinggranularityusing DFDequeéK). Eachprocessokeepsrackof thenumber
of timesa threadfrom its own dequeis scheduledandthe numberof timesit hasto performa
steal. Theratio of thesetwo counts,averagedover all the processorss our approximatiorof the
schedulinggranularity Thetrade-of is bestillustratedin the densematrix multiply benchmark,
which allocatessignificantamountsof heapmemory Figure 15 shows the resultingtrade-of for

18|n thedepth-firstschedulerthe memorythresholdK is the memoryquotaassignedo eachthreadbetweerthread
preemption$42].

"BecauseCilk requiregycc to compilethebenchmarkgwhich resultsin slower codefor floatingpoint operations
comparedo the natve cc compileron UltraSFARCS), we do not shav a direct comparisonof runningtimes or
speedupsf Cilk benchmarksvith our Pthreads-basesystemhere.

30

[1 Medium-Grain

o N A O

B Fine-Grain FIFO ADF DFD

(a) VolumeRendering

o N M O ©
o N A~ O ©

FIFO ADF DFD FIFO ADF DFD

(b) DenseMatrix Multiply (c) SparseMatrix Multiply

o N M OO ©
o N A O

FIFO ADF DFD FIFO ADF DFD

(d) FastFourier Transform (e) FastMultipole Method

o N M O ©
o N A~ O ©

FIFO ADF DFD FIFO ADF DFD

() BarnesHut (g) DecisionTreeBuilder

Figure 12: Speedupn 8 processorsith respectto single-processoexecutionsfor the three sched-
ulers (the original “FIFO”, the depth-first*ADF”, andthe nenv “DFD” or DFDeque} at both medium
andfine threadgranularitieswith K = 50,000bytes. Performancef “DFD-inf” (or DFDequeéx)), be-
ing very similar to that of “DFD”, is not shawn here. All benchmarksvere compiledusingcc - f ast
-xarch=v8pl usa -xchi p=ultra -xtarget=native -xO4.

31

T T T T T T
50 | it
> 40 [&~ S oogoEe B
5
E 30
= 20 - Cilk ——
DFD -+
10 1 ADF &
Input size -
0 1 1 1 1 1 |
1 2 3 4 5 6 7 8

PROCESSORS

Figure13: Variationof the memoryrequirementvith the numberof processorfor densematrix multiply
usingthreeschedulersdepth-first(*ADF”), DFDequeg“DFD”), andCilk (“Cilk”).

] Medium-Grain I Fine-Grain
240 3 60
200 25 50
160 2 40
120 15 30
80 1 20
40 0.5 10
0 0 0

FIFO ADF DFD DFD-inf FIFO ADF DFD DFD-inf FIFO ADF DFD DFD-inf
(a) DenseMatrix Multiply (b) FastMultipole Method (c) DecisionTreeBuilder

Figurel4: High watermarkof heapmemoryallocation(in MB) on 8 processorfor benchmark#volving
dynamicmemoryallocation(K =50,000bytesfor “ADF” and“DFD”), atboththreadgranularities‘DFD-
inf” is our approximatiorof work stealingusing DFDequeéx).

6 T T T 80 FT T T 3 T T T
rad -
5 b —~ Po00d” £ 20 5005%7)
— @ 60k & i 8)4
g 4t - s @9%@%95 = 15| 1
2 = : g e
o 3+ 1 g‘ 40 + B > 10 } : o
£ 1S ; :
': 2 ~ 1 [} E "
= 2 h < 5 FO0%04 E
1F — s}
n
0 1 1 1 0 1 1 1 0 1 1 1

le+02 1e+04 1e+06 le+02 1e+04 1e+06 le+02 1e+04 1le+06
K (bytes)

(a) Runningtime

K (bytes)
(b) MemoryAllocation

K (bytes)
(c) Schedulinggranularity

Figurel5: Trade-of betweerrunningtime,memoryallocationandschedulinggranularityusingalgorithm
DFDequesasthe memorythresholdK is varied,for the densematrix multiply benchmarkat fine thread
granularity

32

- 0.12 T T T |7 2000 F T T T T]
K 0.1 [/ B N o
E ¢ @ 1600 | P /- g—
§ 0.08 |- @/ﬁxsfeyd 7 g @fé DFD ¢
o % & -
2 006 & g 2 1200 |4 ADF - 1
/ A
£ & WS — £ ! +
= 0.04 | / DFD -o—- - (] / . P
i o ADF -+-- = g
S 0.02 v 4] ,1*‘+‘+
A it i i g
ot 1 1 1 1 400 E 1 1 1 1
0 40 80 120 160 0 40 80 120 160
Memory Threshold K (KB) Memory Threshold (KB)
(a) Schedulinggranularity (b) Memory

Figure16: Simulationresultsfor a divide-and-conquenenchmarkwith 15 levels of recursionrunningon
64 processorsThe memoryrequirementandthreadgranularitydecreasg@eometrically(by a factorof 2)
down therecursiortree. Schedulinggranularityis shawvn asapercentagef thetotalwork in thedag.“WS”
is thespace-dicientwork-stealingscheduler*ADF” is the space-dicient depth-firstschedulerand“DFD”
is our nev DFDequesscheduler

thisbenchmarlatthefine threadgranularity As expectedpothmemoryandschedulinggranulas
ity increasewith K, while runningtime reducesas K is increased.

6 Simulating the schedulers

To comparealgorithm DFDequeswith a work-stealingschedulerwe built a simple systemthat
simulatesthe parallel executionof synthetic,nested-paralleldivide-and-conquebenchmark.
Our implementatiorsimulatesthe executionof the space-dicient work-stealingschedulef13]
(labeled'WS”), thespace-dicient,asynchronoudepth-firstschedulef41] (“ADF”), andour new
DFDequesscheduleflabeled'DFD”).

We presentresultsfor one of the syntheticbenchmarksheré®, in which both the memory
requirementindthethreadgranularitydecreasgeometricallydowvn therecursiortree. A number
of divide-and-conqueprogramsexhibit suchproperties.Schedulinggranularitywasmeasure@s
the averagenumberof actionsexecutedby a processobetweentwo steals. Figure 16 shows
that work stealingresultsin high schedulinggranularityand high spacerequirementthe depth
first scheduleresultsin low schedulinggranularityandlow spaceequirement,while DFDeques
allowsschedulinggranularityto betradedwith spaceequiremenby varyingthememorythreshold
K.

7 Summary and Discussion

Depth-firstschedulersare space-dicient, but unlike work-stealingschedulersthey requirethe
userto explicitly increasdhe threadgranularitybeyondwhatis requiredto amortizebasicthread

8To modelirregular applications the spaceandtime requirement®f a threadat eachlevel of the recursionare
selecteduniformly atrandomwith the specifiedmean.

PResultsfor otherbenchmarksind a detaileddescriptionof the simulatorcanbe foundin the authors disserta-
tion [40].

33

[] Medium-Grain Il Fine-Grain

L

FIFO ADF DFD Cilk

Figure 17: Speedupdor the tree-liilding phaseof BarnesHut (for 1M patrticles). The phaseinvolves
extensve useof locks on cells of the treeto ensuremutualexclusion. The Pthreads-basesthedulergall

exceptCilk) supportblockinglocks.“DFD” doesnotresultin alargeschedulinggranularitydueto frequent
suspensiof the threadson locks; therefore jts performancas similar to thatof “ADF”. Cilk [26] usesa
purework stealerandsupportspinwaiting locks. For this benchmarkthe single-processaxecutiontime

on Cilk is comparablevith thaton the Pthreads-basexystem.

costs. In contrast,algorithm DFDequesautomaticallyincreaseghe schedulinggranularity by
executingneighboring fine-grainedhreadson the sameprocessoto yield goodlocality andlow
schedulingcontention.n theory for nested-parallgbrogramswith alarge amountof parallelism,
algorithm DFDequeshasa lower spaceboundthanwork-stealingschedulersWe shavedthatin
practicejt requiresmorememorythanadepth-firsschedulerandlessmemorythanwork stealing.
DFDequeslsoallowstheuserto controlthetrade-of betweerspaceequiremenandrunningtime
(or schedulinggranularity). Becausealgorithm DFDequesallows more dequeshan processors,
it canbe easily extendedto supportblocking synchronizations.For example,experimentswith
a benchmarkhat makes a significantuse of locks indicatethat DFDequeswith blocking locks
resultsin betterperformancehanawork stealerthatusesspin-waiting locks (seeFigurel7).

SincePthreadsare not very lightweight, serializingaccesdo the setof readythreadsR did
not significantlyaffect the performancen our implementation.However, serialacces3o R can
becomea bottleneckf threadsareextremelyfine grained,andrequirefrequentsuspensionlueto
memoryallocationor synchronization.To supportsuchthreadsthe schedulingoperationgsuch
asupdatedo R) needto beparallelized40].

Eachprocessoin DFDequedreatsits dequeasa regular stack. Therefore,in a systemthat
supportsvery lightweight threads,the algorithm shouldbenefitfrom stack-basedptimizations
suchaslazy threadcreation[27, 38]; thesemethodsavoid allocatingresourcegor athreadunless
it is stolentherebymakingmostthreadcreationsmearlyascheapasfunctioncalls.

Increasingchedulingyranularitytypically senesto enhance&latalocality on SMPswith limited-
size,hardware-coherentachesHowever, on distributedmemorymachinegor software-coherent
clusters) executingthreadswvherethe datapermanentlyesidesbecomesmportant.A multi-level
schedulingstratgy mayallow the threadimplementatiorio scaleto clustersof SMPs.For exam-
ple, the DFDequesalgorithmcould be deplogyed within a single SMP, while someschemebased
on dataaffinity is usedacrossSMPs.

An openguestionis how to automaticallyfind the appropriatevalueof the memorythreshold
K, whichmaydependnthebenchmarkandonthethreadmplementationOnepossiblesolution
is for the user(or the runtimesystem)to set K’ to anappropriatevalueafter runningthe program
for arangeof valuesof K onsmallerinput sizes.Alternatively, it may be possiblefor the system

34

to keepstatisticsto dynamicallyadjustK to anappropriatezalueduringtheexecution.

Acknowledgements

This researchwas conductedwvhile the authorwasat Carngjie Mellon University, andwassup-
portedby ARPA ContractNo. DABT63-96-C-0071. Guy Blelloch, RobertBlumofe, Bwolen
Yang,andthe anorymousrefereegprovidedvaluablefeedbackon previousversionsof this paper
We alsothankAdamKalai andAvrim Blum for usefuldiscussions.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A. Aggarwal, B. Alpern, A. ChandraandM. Snir. A modelfor hierarchicaimemory In Proceedings
of the 19th AnnualACM Symposiunon Theoryof Computing pages305-314 New York City, NY,
May 1987.

T. E.AndersonE.D. Lazavska,andH. M. Levy. Theperformancémplicationsof threadmanagement
alternatves for shared-memorynultiprocessors. PerformanceEvaluation Review, 17:49—60,May
1989.

N. S.Arora,R. D. Blumofe,andC. G. Plaxton. Threadschedulingor multiprogrammeadnultiproces-
sors.In ACM symp.Parallel Algorithmsand Architectues 1998.

H. Bao, J. Bielak, O. Ghattas,L. F. Kallivokas,D. R. O’Hallaron, J. R. Shevchuk, and Jifeng Xu.
Large-scaleSimulationof ElasticWave Propagatiorin HeterogeneouMlediaon ParallelComputers.
ComputetMethodsn AppliedMedchanicsand Engineering 152(1-2):85-102]anuaryl998.

H. Bao,J. Bielak, O. GhattasD. R. O’Hallaron, L. F. Kallivokas,J. R. Shavchuk,andJ. Xu. Earth-
guale GroundMotion Modelingon ParallelComputersln Supecomputing96, November1996.

J.E. BarnesandP. Hut. A hierarchicalO(N log N) forcecalculationalgorithm. Nature, 324(4):446—
449,Decemben986.

F. BellosaandM. Steclermeier Theperformancémplicationsof locality informationusagéen shared-
memorymultiprocessorsl]. Parallel and DistributedComputing 37(1):113—-121August1996.

G. Blelloch, P. Gibbons,Y. Matias,and G. Narlikar. Space-dicient schedulingof parallelismwith
synchronizatiorvariables.In Proc. ACM Symp.on Parallel Algorithmsand Architectues pagesl2—
23,1997.

G.E.Blelloch,S.Chatterjee).C. Hardwick,J.SipelsteinandM. ZaghaImplementatiorof aportable
nesteddata-parallelanguage.J. Parallel and DistributedComputing21(1):4—14 April 1994.

G. E. Blelloch, P. B. Gibbons,andY. Matias. Provably efficient schedulingor languagesvith fine-
grainedparallelism. In Proc. ACM symp.Parallel Algorithmsand Architectues pagesl-12,Santa
BarbaraCalifornia,July 17-19,1995.

R. D. Blumofe, M. Frigo, C. F. Joeg, C. E. Leiserson,andK. H. Randall. An analysisof dag-
consistentistributed shared-memorglgorithms. In Proc. ACM Symposiunon Parallel Algorithms
andArchitectues page297-308,Junel996.

35

[12] R.D. Blumofe,C. F. Joeqg, B. C. KuszmaulC. E. LeisersonK. H. Randall,andY. Zhou. Cilk: An

efficientmultithreadeduntimesystem.J. Par. and Distr. Computing 37(1):55-69August1996.

[13] R.D.BlumofeandC. E. LeisersonSchedulingnultithreadedomputationdy work stealing.In Proc.

SympFoundationsof ComputeiSciencepages356—-368,1994.

[14] R. P Brent. The parallelevaluationof generalarithmeticexpressions.J. ACM, 21(2):201-206April

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

1974.

F. W. BurtonandM. R. Sleep.Executingfunctionalprogramson avirtual treeof processorsln Proc.
ACM Conf onFunctionalProgramming_anguaesandComputerArchitectuie, pagesl87—194,1981.

R. ChandraA. Gupta,andJ. L. HennessyDatalocality andload balancingn COOL. In Proc. ACM
symp Principles& Practiceof Parallel Programming pages239-259,1993.

K. M. ChandyandC. KesselmanCompositionat++: compositionaparallelprogramming.n Proc.

Intl. Wkshp.on Languayesand Compiles for Parallel Computing pagesl24—-144 New Haven, CT,
August1992.

S.A. Cook. A taxonomyof problemswith fastparallelalgorithms.InformationandControl, 64:2-22,
1985.

J.W. Cooley andJ. W Tukey. An algorithmfor the machinecomputationof complex fourier series.
Mathematicof Computation19:297-301Apr. 1965.

T.H. CormenC. E. LeisersonandR. L. Rivest.Introductionto algorithms MIT PressandMcGraw-
Hill Book Compam, 6th edition,1992.

D. E. CullerandG. Arvind. Resourcaequirement®f dataflav programs. In Proc. Intl. Symp.on
ComputerArchitectue, pagesl41-151,1988.

D. R. Engler G. R. Andrews, andD. K. Lowenthal. Filaments:Efficient supportfor fine-grainparal-
lelism. TechnicalReport93-13,University of Arizona.Dept.of ComputerScience;1993.

R. FeldmannpP. Mysliwietz, andB. Monien. Studyingoverheadsn massiely parallelmin/max-tree
evaluation(extendedabstract).In ACM Symp Parallel Algorithmsand Architectues pages94—-103,
1994.

Frigo, LeisersonProkop, andRamachandranCache-obliious algorithms. In FOCS:IEEE Sympo-
siumon Foundationsof ComputerSciencg FOCS) 1999.

M. Frigo andS. G. Johnson.The fastestfourier transformin the west. TechnicalReportMIT-LCS-
TR-728,Massachusetisstituteof TechnologySeptembe997.

M. Frigo, C. E. LeisersonandK. H. Randall. The implementatiorof the Cilk-5 multithreadedan-
guage.In Proc. ACM Cont on ProgrammingLanguaye Designand Implementationpages212—-223,
1998.

S.C.GoldsteinK. E. SchauserlndD. E. Culler. Enablingprimitivesfor compilingparallellanguages.
In Workshopon Languages, Compiles, and Run-Tme System$or ScalableComputes, May 1995.

L. GreengardTherapid evaluationof potentialfieldsin particle systemsThe MIT Press,1987.

36

[29] High PerformancéortranForum. High performancédortranlanguagespecificationvertion1.0,1993.

[30] IEEE. InformationTechnology—Portabl®peratingSysteminterface(POSIX)-Rart 1: SystemAppli-
cation: Programinterface(API) [C Language] I[EEE/ANSI Std1003.1,1996Edition.

[31] V. KaramchetiJ.Plevyak,andA. A. Chien. Runtimemechanisméor efficient dynamicmultithread-
ing. J. Parallel and DistributedComputing37(1):21-40August1996.

[32] R.KarpandY. Zhang.A randomizegarallelbranch-and-boungrocedureln Proc. SympTheoryof
Computing page290-300,1988.

[33] D. A. Kranz,R. H. HalsteadJr., andE. Mohr. Mul-T: A High-PerformancéarallelLisp. In Proc.
ProgrammingLanguaye Designand ImplementationPortland Oregon,June21-23,1989.

[34] E.P MarkatosandT. J.LeBlanc.Locality-basedchedulingn shared-memorgnultiprocessorsTech-
nical Report94, Instfor ICS-FOR'H, Heraklio,Crete,Greec,1993.

[35] EvangelosMarkatosandThomad_ eBlanc.Locality-basedchedulingn shared-memorgnultiproces-
sors. TechnicalReportTR93-0094]CS-FORH, Heraklio,Crete,Greece 1993.

[36] P. H. Mills, L. S. Nyland, J. F. Prins,J. H. Reif, andR. A. Wagner Prototypingparalleland dis-
tributedprogramsn Proteus.TechnicalReportUNC-CH TR90-041,ComputerScienceDepartment,
University of North Carolina,1990.

[37] T. Miyazaki, C. SakamotoM. Kuwayamal.. SaishoandA. Fukuda.Parallelpthreadibrary (PPL):
userlevel threadlibrary with parallelismandportability In Proc. Intl. ComputerSoftwae and Appli-
cationsCont (COMPSA), pages301-306Novemberl994.

[38] E.Mohr, D. Kranz,andR. Halstead Lazy taskcreation:A techniquefor increasinghe granularityof
parallelprogramsIEEE Trans.on Parallel and Distributed Systems1 990.

[39] R. Motwani and P. Ragh&an. Randomizedilgorithms CambridgeUniversity Press,Cambridge,
England,Junel995.

[40] G. J. Narlikar Space-Hicient Shedulingfor Parallel, MultithreadedComputations PhD thesis,
Carngie Mellon University 1999. AvailableasCMU-CS-99-119.

[41] G.J.NarlikarandG.E. Blelloch. Space-dicientimplementatiorof nestecparallelism.In Proc. ACM
SIGPLANSymp Principlesand Practiceof Parallel Programming pages25—-36,Junel997.

[42] G.J.NarlikarandG. E. Blelloch. Pthreaddor dynamicandirregular parallelism.In Proc. of Super
computing98, Novemberl998.

[43] Girija J.NarlikarandGuy E. Blelloch. Pthread$or dynamicparallelism.TechnicaReportCMU-CS-
98-114,ComputerScienceDept.,Carngie Mellon University April 1998.

[44] D. O’'Hallaron. Spark98: Sparsematrix kernelsfor sharedmemoryand messageassingsystems.
TechnicaReportCMU-CS-97-178 Schoolof ComputerScienceCarngjie Mellon University 1997.

[45] J.Philbin,J.E., O.J.AnshusandC. C. Douglas.Threadschedulingor cachelocality. In Intl. Conf
Architectual Supportfor ProgrammingLanguaesand Opeiating Systemgages0-71,1996.

37

[46] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah,D. Stein,and M. Weeks. SunOSmulti-thread
architectureln Proc.Winter 199 1USENIXTecnical ConfeenceandExhibition page$5-80,Dallas,
TX, USA, Januaryl991.

[47] J.R. Quinlan.Inductionof decisiontrees.Machinelearning 1(1):81-106,1986.
[48] J.R.Quinlan.C4.5: Programsfor Machine Learning MorganKaufmann SanMateo,CA, 1993.

[49] Jr. R. H. Halstead. Multilisp: A languagefor concurrentsymbolic computation. ACM Trans.on
ProgrammingLanguajesand Systemsr(4):501-5381985.

[50] C. A. RuggieroandJ. Sageant. Control of parallelismin the manchestedataflav machine. In
G. Kahn, editor Functional Programming Languaes and Computer Architectue, pages1-16.
SpringefVerlag,Berlin, DE, 1987.

[51] D. J.SimpsonandF. W. Burton. Spaceefficient executionof deterministicparallelprograms.|[EEE
Transaction®on Softwae Engineering 25(3),May/Junel999.

[52] J.P Singh,A. Gupta,andM. Levoy. Parallelvisualizationalgorithms:Performancendarchitectural
implications.IEEE Computey 27(7):45-55,July 1994,

[53] D. SteinandD. Shah. Implementinglightweightthreads.In Proc. Summerl992USENIXTednical
ConfeenceandExhibition pagesl—10,SanAntonio, TX, 1992.USENIX.

[54] M. T. VandeoordeandE. S. Roberts.WorkCrawvs: anabstractiorfor controllingparallelism.Intl. J.
Parallel Programming 17(4):347-366August1988.

[55] B. WeissmanPerformanceountersandstatesharingannotationsa unifiedapproacho threadlocal-
ity. In Intl. Conf on Architectual Supportfor ProgrammingLanguajesand Opeiating Systemgages
262—2730ctober1998.

[56] S.C.Woo,M. OharaE. Torrie,J.P. Singh,andA. Gupta. The SPLASH-2programs:Characteriation
and methodologicaktonsiderations.In Proc. Intl. Symp.ComputerArchitectue, pages24—37,June
1995.

38

