
SchedulingThreadsfor Low SpaceRequirement
andGoodLocality

Girija J.Narlikar

Bell Laboratories,LucentTechnologies
700MountainAvenue
MurrayHill, NJ07974

girija@research.bell-labs.com

Appearsin theTheoryof ComputingSystems,Volume35,2002.

Keywords: Multithreading,spaceefficiency, work stealing,dynamicscheduling,nestedparal-
lelism,datalocality, dynamicdags.

2

Abstract

Therunningtimeandmemoryrequirementof aparallelprogramwith dynamic,lightweightthreads
dependsheavily ontheunderlyingthreadscheduler. In thispaper, wepresentanew asynchronous,
space-efficient schedulingalgorithmfor sharedmemorymachinesthatcombinesthelow schedul-
ing overheadsandgoodlocality of work stealingwith the low spacerequirementsof depth-first
schedulers.For anested-parallelprogramwith depth

�
andserialspacerequirement��� , weshow

thattheexpectedspacerequirementis �������	��

� ��� ���
on � processors.Here,
 isauser-adjustable

runtimeparameter, which providesa trade-off betweenrunningtime andspacerequirement.Our
algorithmachievesgoodlocality and low schedulingoverheadsby automaticallyincreasingthe
granularityof thework scheduledoneachprocessor.

We have implementedthenew schedulingalgorithmin thecontext of a native, user-level im-
plementationof Posixstandardthreadsor Pthreads,andevaluatedits performanceusinga setof
C-basedbenchmarksthathave dynamicor irregularparallelism.We comparetheperformanceof
our schedulerwith thatof two previousschedulers:thethreadlibrary’s original scheduler(which
usesa FIFO queue),anda provably space-efficient depth-firstscheduler. At a fine threadgran-
ularity, our scheduleroutperformsboth theseprevious schedulers,but requiresmarginally more
memorythanthedepth-firstscheduler.

We also presentsimulationresultson syntheticbenchmarksto compareour schedulerwith
space-efficient versionsof botha work-stealingscheduleranda depth-firstscheduler. Theresults
indicatethat unlike theseprevious approaches,the new algorithmcoversa rangeof scheduling
granularitiesandspacerequirements,andallows theuserto tradethespacerequirementof a pro-
gramwith theschedulinggranularity.

3

1 Intr oduction

Many parallelprogramminglanguagesallow theexpressionof dynamic,lightweightthreads.These
includedataparallellanguageslike HPF[29] or Nesl [9] (wherethesequenceof instructionsex-
ecutedover individual dataelementsarethe“threads”),dataflow languageslike ID [21], control-
parallellanguageswith fork-join constructslikeCilk [26], CC++[17], andProteus[36], languages
with futureslike Multilisp [49], and varioususer-level threadlibraries [7, 22, 37, 53]. In the
lightweight threadsmodel,the programmersimply expressesall the parallelismin the program,
while thelanguageimplementationperformsthetaskof schedulingthethreadsontotheprocessors
at runtime. Thusthe advantagesof lightweight, user-level threadsincludethe easeof program-
ming,automaticloadbalancing,architecture-independentcodethatcanadaptto avaryingnumber
of processors,andtheflexibility to usekernel-independentthreadschedulers.

Programswith irregular and dynamicparallelismbenefitmost from the useof lightweight
threads.Compile-timeanalysisof suchcomputationsto partitionandmapthethreadsontoproces-
sorsis generallynot possible.Therefore,theprogramsdependheavily on the implementationof
theruntimesystemfor goodperformance.In particular,

1. To allow theexpressionof alargenumberof threads,theruntimesystemmustprovidefastthread
operationssuchascreation,deletionandsynchronization.

2. Thethreadschedulermustincur low overheadswhile dynamicallybalancingtheloadacrossall
theprocessors.

3. Theschedulingalgorithmmustbespaceefficient, that is, it mustnot createtoo many simulta-
neouslyactive threads,or schedulethemin anorderthat resultsin high memoryallocation.A
smallermemoryfootprint resultsin fewer pageandTLB misses.This is particularlyimportant
for parallelprograms,sincethey aretypically usedto solvelargeproblems,andareoftenlimited
by theamountof memoryavailableonaparallelmachine.Existingcommercialthreadsystems,
however, canleadto poorspaceandtime performancefor multithreadedparallelprograms,if
thescheduleris notdesignedto bespaceefficient [42].

4. Today’s hardware-coherentsharedmemorymultiprocessors(SMPs)typically have a largeoff-
chip datacachefor eachprocessor, with a latency significantlylower that the latency to main
memory. Therefore,the threadschedulermustalsoschedulethreadsfor goodcachelocality.
Themostcommonheuristicto obtaingoodlocality for fine grainedthreadson multiprocessors
is to schedulethreadsclosein thecomputationgraph(e.g.,a parentthreadalongwith its child
threads)on thesameprocessor, sincethey typically sharecommondata[2, 13,32, 34,38,49].

Work stealingis a runtimeschedulingmechanismthat canprovide a fair combinationof the
above requirements.Eachprocessormaintainsits own queueof readythreads;a processorsteals
a threadfrom anotherprocessor’s readyqueueonly whenit runsout of readythreadsin its own
queue.Sincethreadcreationandschedulingaretypically localoperations,they incurlow overhead
andcontention.Further, threadsclosetogetherin thecomputationgraphareoftenscheduledonthe
sameprocessor, resultingin goodlocality. Severalsystemshaveusedwork stealingto providehigh
performance[15, 22,23,26,33,49,52,54]. Wheneachprocessortreatsits own readyqueueasa
LIFO stack(thatis, addsor removesthreadsfrom thetop of thestack)andstealsfrom thebottom
of anotherprocessor’s stack,the schedulersuccessfullythrottlesthe excessparallelism[12, 49,

1

51, 54]. For fully strict computations,sucha mechanismwasproved to require������� spaceon� processors,where ��� is the serial,depth-firstspacerequirement[13]. A computationwith �
work (total numberof operations)and

�
depth(lengthof thecritical path)wasshown to require�����	���	� ���

time on � processors[13]. We will henceforthrefer to suchschedulersaswork-
stealingschedulers.

Recentwork [10,41] hasresultedin depth-firstschedulingalgorithmsthatrequire������������� ���
spacefor nested-parallelcomputationswith depth

�
. For programsthathave a low depth(a high

degreeof parallelism),suchasall programsin theclass��� [18], thespaceboundof ��� �!�����"� ���
is asymptoticallylower thanthe work stealingboundof �!�#��� . Further, the depth-firstapproach
allowsamoregeneralmemoryallocationmodelcomparedto thestack-basedallocationsassumed
in space-efficient work stealing[10]. Thedepth-firstapproachhasbeenextendedto handlecom-
putationswith futures[49] or I-structures[21], resultingin similarspacebounds[8]. Experiments
showed that an asynchronous,depth-firstscheduleroften resultsin lower spacerequirementin
practice,comparedto a work-stealingscheduler[41]. However, sincedepth-firstschedulersuse
a globally orderedqueue,they do not provide someof thepracticaladvantagesenjoyedby work-
stealingschedulers.When the threadsexpressedby the userarefine grained,the performance
maysuffer dueto poor locality andhigh schedulingcontention(i.e., contentionover shareddata
structureswhile scheduling)[42]. Therefore,evenif basicthreadoperationsarecheap,thethreads
have to becoarsenedfor depth-firstschedulersto providegoodperformancein practice.

In thispaper, wepresentanew schedulingalgorithmfor implementingmultithreadedlanguages
onsharedmemorymachines.Thealgorithm,calledDFDeques1, providesacompromisebetween
previouswork-stealinganddepth-firstschedulers.Readythreadsin DFDequesareorganizedin
multiple readyqueues,that areglobally orderedas in depth-firstschedulers.The readyqueues
aretreatedasLIFO stackssimilar to previouswork-stealingschedulers.A processorstealsfrom
a readyqueuechosenrandomlyfrom a setof high-priority queues.For nested-parallel(or fully
strict) computations,our algorithmguaranteesan expectedspaceboundof ���$�%�	��
&�'��� �	�

.
Here,
 is a user-adjustableruntimeparametercalledthememorythreshold, which specifiesthe
netamountof memorya processormayallocatebetweenconsecutivesteals.Since
 is typically
fixed to bea small,constantamountof memory2, thespaceboundreducesto ���(�)��� � �*� � , as
with depth-firstschedulers.For asimplisticcostmodel,weshow thattheexpectedrunningtime is�	�+�����,� �	�

on � processors3.
Wereferto thetotalnumberof instructionsexecutedin athreadasthethread’sgranularity. We

also(informally) defineschedulinggranularity to betheaveragenumberof instructionsexecuted
consecutively ona singleprocessorfrom threadsclosetogetherin thecomputationgraph.Thus,a
largerschedulinggranularitytypically impliesbetterlocality andlowerschedulingcontention.In
theDFDequesscheduler, whenaprocessorfindsits readyqueueempty, it stealsa threadfrom the
bottomof anotherreadyqueue.Thisthreadis typically thecoarsestthreadin thequeue,resultingin
alargerschedulinggranularitycomparedto depthfirst schedulers.Althoughwedonotanalytically

1DFDequesstandsfor “depth-firstdeques”.
2In practice,we set - to a few kilobytes (50KB in our experiments),which is small comparedto the several

megabytes(or gigabytes)of memoryavailableon today’smachines.
3Whentheschedulerin DFDequesis parallelized,thecostsof all schedulingoperationscanbeaccountedfor with

a morerealisticmodel[40]. Then,in theexpectedcase,theparallelcomputationcanbeexecutedusing .0/21	35476
89 8�:<;�= 9?> spaceand 354A@CB 9 1!6D8�:E;�= 9 > time (including schedulingoverheads).However, for brevity, we omit a
descriptionandanalysisof sucha parallelizedscheduler.

2

Benchmark Max threads L2 Cachemissrate 8 processorspeedup

FIFO ADF DFD FIFO ADF DFD FIFO ADF DFD

Vol. Rend. 436 36 37 4.2 3.0 1.8 5.39 5.99 6.96

DenseMM 3752 55 77 24.0 13 8.7 0.22 3.78 5.82

SparseMVM 173 51 49 13.8 13.7 13.7 3.59 5.04 6.29

FFTW 510 30 33 14.6 16.4 14.4 6.02 5.96 6.38

FMM 2030 50 54 14.0 2.1 1.0 1.64 7.03 7.47

BarnesHut 3570 42 120 19.0 3.9 2.9 0.64 6.26 6.97

DecisionTr. 194 138 149 5.8 4.9 4.6 4.83 4.85 5.39

Figure1: Summaryof experimentalresultswith theSolarisPthreadslibrary. Foreachschedulingtechnique,
we show the maximumnumberof simultaneouslyactive threads(eachof which requiresmin. 8kB stack
space),theL2 cachemissesrates(%), andthespeedupson an8-processorEnterprise5000SMP. “FIFO”
is theoriginal Pthreadsscheduler, “ADF” is anasynchronous,depth-firstscheduler[42], and“DFD” is our
new DFDequesscheduler.

provethisclaim,wepresentexperimentalandsimulationresultsto verify it. Adjustingthememory
threshold
 in theDFDequesalgorithmprovidesauser-controllabletrade-off betweenscheduling
granularityandspacerequirement.

Posixthreadsor Pthreadshave recentlybecomea popularstandardfor sharedmemoryparal-
lel programming.We thereforeaddedtheDFDequesschedulingalgorithmto a native,user-level
Pthreadslibrary [53]. Despitebeingoneof the fastestuser-level implementationsof Pthreadsto-
day, thelibrary’sschedulerdoesnot efficiently supportfine-grained,dynamicthreads.In previous
work [42], Narlikar andBlelloch showed how its performancecanbe improved usinga space-
efficient depth-firstscheduler. In this paper, we comparethe spaceandtime performanceof the
new DFDequesschedulerwith the library’s original scheduler(which usesa FIFO scheduling
queue),andwith a previous implementationof a depth-firstschedulerfrom [42]. To performthe
experimentalcomparison,we usedF parallelbenchmarkswritten with a largenumberof dynam-
ically createdPthreads. As shown in Figure1, the new DFDequesschedulerresultsin better
locality andhigherspeedupscomparedto boththedepth-firstschedulerandtheFIFOscheduler.

Ideally, we would alsolike to compareourPthreads-basedimplementationof DFDequeswith
aspace-efficientwork-stealingscheduler(e.g.,theschedulerusedin Cilk [12]). However, support-
ing the generalPthreadsfunctionality (which includesvarioussynchronizationprimitives)with
an existing space-efficient work-stealingscheduler[12] would requiresignificantmodifications
to both the schedulingalgorithmandthe Pthreadsimplementation4. Therefore,to compareour
new schedulerto thiswork-stealingscheduler, weinsteadbuilt asimplesimulatorthatimplements
synthetic,fully-strict benchmarks.Our simulationresultsindicatethat by adjustingthe memory
threshold,our new schedulercoversa wide rangeof spacerequirementsandschedulinggranular-
ities. At oneextremeit performssimilar to a depth-firstscheduler, with low spacerequirement
andsmall schedulinggranularity. At theotherextreme,it behavesexactly like thework-stealing

4Even fully strict Pthreadsbenchmarkscannotbe executedusingsucha work-stealingschedulerin the existing
SolarisPthreadsimplementation,becausethe Pthreadsimplementationitself makesextensive useof blocking syn-
chronizationprimitivessuchasPthreadmutexesandconditionvariables.

3

scheduler, with higherspacerequirementandlargerschedulinggranularity.

2 Background and PreviousWork

A parallelcomputationcanbe representedby a directedacyclic graph;we will refer to sucha
computationgraphasadagin theremainderof thispaper. Eachnodein thedagrepresentsasingle
action in a thread;anactionis a unit of work thatrequiresa singletimestepto beexecuted.Each
edgein thedagrepresentsadependencebetweentwo actions.Figure2 showssuchanexampledag
for a simpleparallelcomputation.Thedashed,right-to-left fork edgesin thefigurerepresentthe
fork of a child thread.Thedashed,left-to-rightsynch edgesrepresenta join betweena parentand
child thread,while eachsolid verticalcontinueedgerepresentsa sequentialdependencebetween
a pair of consecutive actionswithin a singlethread.For computationswith dynamicparallelism,
thedagis revealedandscheduledontotheprocessorsat runtime.

2.1 Schedulingfor locality

Detectionof dataaccessesor datasharingpatternsamongthreadsin adynamicandirregularcom-
putationis oftenbeyondthescopeof thecompiler. Further, today’s hardware-coherentSMPsdo
not allow explicit, software-controlledplacementof datain processorcaches;therefore,owner-
computeoptimizationsfor locality thatarepopularon distributedmemorymachinestypically do
not apply to SMPs. However, in many parallelprogramswith fine-grainedthreads,the threads
closetogetherin thecomputation’sdagoftenaccessthesamedata.For example,in a divide-and-
conquercomputation(suchasquicksort)wherea new threadis forked for eachrecursive call, a
threadsharesdatawith all its descendentthreads.Therefore,many parallel implementationsof
lightweightthreadsuseper-processordatastructuresto storereadythreads[22, 26,31, 32, 49,52,
54]. Threadscreatedon a processorarestoredlocally andmovedonly whenrequiredto balance
theload. This techniqueeffectively increasesschedulinggranularity, andthereforeprovidesgood
locality [11] andlow schedulingcontention.

Anotherapproachfor obtaininggoodlocality is to allow theuserto supplyhintsto thesched-
uler regardingthedataaccesspatternsof the threads[16, 35, 45, 55]. However, suchhintscan
be cumbersomefor the userto provide in complex programs,andareoften specificto a certain
languageor library interface. Therefore,our DFDequesalgorithminsteadusesthe heuristicof
schedulingthreadsclosein thedagon thesameprocessorto obtaingoodlocality.

2.2 Schedulingfor space-efficiency

The threadschedulerplays a significantrole in controlling the amountof active parallelismin
a fine-grainedcomputation. For example,considera single-processorexecutionof the dag in
Figure2. If theschedulerusesaLIFO stackto storereadythreads,andachild threadpreemptsits
parentassoonasit is forked,thenodesareexecutedin a (left-to-right)depth-firstorder, resulting
in at most5 simultaneouslyactive threads.In contrast,if the schedulerusesa FIFO queue,the
threadsareexecutedin abreadth-firstorder, resultingin all 13threadsbeingsimultaneouslyactive.
Systemsthatsupportfine-grained,dynamicparallelismcansuffer from sucha creationof excess

4

t0

t2
t1

t4

root thread

t3

Figure2: An exampledagfor aparallelcomputation;thethreadsareshown shaded.Eachright-to-leftedge
representsa fork, andeachleft-to-right edgerepresentsa synchronizationof a child threadwith its parent.
Verticaledgesrepresentsequentialdependencieswithin threads.GIH is the initial (root) thread,which forks
child threadsG � , GIJ , and GIK in thatorder. Child threadsmayfork threadsthemselves;e.g., GLJ forks GIM .
parallelism. Limiting this excessparallelismand lowering the spacerequirementis critical for
parallelprograms,sincethey areoften limited by the amountof memoryavailableon a parallel
machine.

Initial attemptsto control the active parallelismwerebasedon heuristics[7, 21, 38, 50, 49],
which includedwork stealingtechniques[38, 49]. Heuristicattemptswork well for somepro-
grams,but do not guaranteean upperboundon the spacerequirementsof a program. More re-
cently, two different techniqueshave beenshown to be provably space-efficient: work-stealing
schedulers,anddepth-firstschedulers.

In additionto beingspaceefficient [12, 51], work stealingcanoftenresultin largescheduling
granularities,byallowing idleprocessorstostealthreadshigherupin thedag(e.g.,seeFigure3(a)).
Severalsystemsusesuchanapproachto obtaingoodparallelperformance[12, 22,33,49,54].

Depth-firstschedulersguaranteeanupperboundon thespacerequirementof a parallelcom-
putationby prioritizing its threadsaccordingto theirserial,depth-firstexecutionorder[10, 41]. In
a recentpaper[42], NarlikarandBlellochshowedthattheperformanceof a commercialPthreads
implementationcouldbe improvedfor predominantlynested-parallelbenchmarksusinga depth-
first scheduler. However, depth-firstschedulerscanresultin high schedulingcontentionandpoor
locality whenthe threadsin the programarevery fine grained[41, 42]. This is because,unlike
work stealingschedulers,depth-firstschedulersmaymapthreadsclosetogetherin a computation
graphondifferentprocessors(e.g.,seeFigure3).

Thenext sectiondescribesanew schedulingalgorithmthatcombinesideasfrom theabovetwo
space-efficientapproaches.

5

P3 P2 P1 P0
P1 P2P0 P3

(a) (b)

Figure3: Possiblemappingsof threadsof the dagin Figure2 onto processorsN HPORQRQRQSO N K by (a) work-
stealingschedulers,and(b) depth-firstschedulers.If, say, the TVU�W thread(goingfrom left to right) accesses
the T U�W block or elementof an array, thenschedulingconsecutive threadson the sameprocessorprovides
bettercachelocality andlowerschedulingoverheads.

3 The DFDequesSchedulingAlgorithm

We first describethe programmingmodel for the multithreadedcomputationsthat areexecuted
by the DFDequesschedulingalgorithm. We thenlist the datastructuresusedby the scheduler,
followedby adescriptionof theDFDequesschedulingalgorithm.

3.1 Programming model

As with depth-firstschedulers,our schedulingalgorithmappliesto pure,nested-parallelcompu-
tations,which canbemodeledby series-paralleldags[10]. Our modelassumesbinary forks and
joins; the exampledagin Figure2 representssucha nested-parallelcomputation.Suchnested-
parallelcomputationsareequivalentto thesubsetof fully strictcomputationsthataresupportedby
Cilk’sspace-efficientwork-stealingscheduler[12, 26]. Nestedparallelismcanbeusedto expressa
largevarietyof parallelprograms,includingrecursive,divide-and-conquerprogramsandprograms
with nested-parallelloops.

Althoughwe describeandanalyzeour algorithmfor nested-parallelcomputations,in practice
it canbeextendedto executeprogramswith otherstylesof parallelism.For example,thePthreads
schedulerdescribedin Section5 supportscomputationswith arbitrarysynchronizations,suchas
mutexesandconditionvariables. However, our analyticalspacebounddoesnot apply to such
generalcomputations.

A threadis active if it hasbeencreatedbut hasnot yet terminated.A parentthreadwaiting to
synchronizewith a child threadis saidto be suspended. We sayan active threadis ready to be
scheduledif it is notsuspended,andis notcurrentlybeingexecutedby aprocessor. Eachactionin

6

8
5

11

7
9

10

1

3

2
6

4

Figure4: Theserial,depth-firstexecutionorderfor a nested-parallelcomputation.The TVU�W nodeexecuted
is labelled T in this dag. Thelower thelabelof a thread’s currentnode(action),thehigheris its priority in
DFDeques.

a threadmayallocateanarbitraryamountof spaceon thethreadstack,or on thesharedheap.
Everynested-parallelcomputationhasanaturalserialexecutionorder, whichwecall its depth-

first order. Whenachild threadis forked,it is executedbeforeits parentin adepth-firstexecution
(e.g.,seeFigure4). Thus, the depth-firstorder is identical to the uniqueserialexecutionorder
for any stack-basedlanguage(suchasC), whenthethreadforks arereplacedby simplefunction
calls.Algorithm DFDequesprioritizesreadythreadsaccordingto theirserial,depth-firstexecution
order;anearlierserialexecutionordertranslatesto ahigherpriority.

3.2 Schedulingdata structures

Althoughthedagfor acomputationis revealedastheexecutionproceeds,dynamicallymaintaining
therelative threadprioritiesfor nested-parallelcomputationsis straightforward[10] andinexpen-
sivein practice[41]. In algorithmDFDeques, thereadythreadsarestoredin doubly-endedqueues
or deques[20]. Eachof thesedequessupportspoppingfrom andpushingonto its top, aswell
aspoppingfrom thebottomof thedeque.At any time duringtheexecution,a processorownsat
mostonedeque,andexecutesthreadsfrom it. A singledequehasat mostoneownerat any time.
However, unliketraditionalwork stealing,thenumberof dequesis not limited,andmayexceedthe
numberof processors.All thedequesarearrangedin a global list X of deques.Thelist supports
addingof a new dequeto the immediateright of anotherdeque,deletionof a deque,andfinding
the Y U�W dequeuefrom theleft endof X .

3.3 The DFDequesschedulingalgorithm

Theprocessorsexecutethecodein Figure5 for algorithmDFDeques(
); here
 is thememory
threshold, auser-definedruntimeparameter. Eachprocessortreatsits own dequeasaregularLIFO
stack,andis assignedamemoryquotaof
 bytesfrom whichto allocateheapandstackdata.This
memorythreshold
 is equivalentto theper-threadmemoryquotain depth-firstschedulers[41];
however, in algorithmDFDeques, the memoryquotaof
 bytescanbe usedby a processorto
executemultiple threadsfrom onedeque.

Theexecutionstartswith a singledequein thesystem,containingthe initial (root) thread.A
threadexecuteswithout preemptionon a processoruntil it forks a child thread,suspendswaiting
for achild to terminate,terminates,or theprocessorrunsoutof its memoryquota.If a terminating

7

while (Z threads)
if (currS= NULL) currS:= steal(); # performstealif nocurrentstack
if (currT= NULL) currT := pop from top(currS); # get new threadfromtopof currentstack
executecurrTuntil it forks,suspends,

terminates,or memoryquotaexhausted:
case(fork):

pushto top(currT, currS); # placecurrentthreadon topof currentstack
currT := newly forkedchild thread; # begin executingnewly forkedchild thread

case(suspend):
currT := NULL; # giveupcurrentthread;it will bewokenlater

case(memoryquotaexhausted):
pushto top(currT, currS); # placecurrentthreadon topof currentstack
currT := NULL; # giveupcurrentthread
currS:= NULL; # giveupcurrentstack

case(terminate):
if currTwakesupsuspendedparentT [

currT := T [; # begin executingnewly wokenparentthread
elsecurrT := NULL; # giveupcurrentthread

if ((is empty(currS)) and (currT= NULL))
currS:= NULL; # giveupanddeletecurrent(empty)stack

endwhile # repeatuntil endof parallel computation

procedure steal(): # returnsa new dequewith thestolenthreadin it
setmemoryquotato K;
while (Z threads)\ := randomnumberin [] QRQRQ�^];

S := \ U�W dequein _ ; # pick dequeto stealfrom
T := pop from bot(S); # attemptto steala thread
if (T `a NULL) # attemptsucceeded

createnew dequeS [containingT
andbecomeits owner;

placeS [to immediateright of S in _ ;
return S [;

endwhile # repeatuntil stealis successfulor computationends

Figure5: Pseudocodefor theDFDeques(b) schedulingalgorithmexecutedby eachof the ^ processors;b
is thememorythreshold.currSis theprocessor’s currentdeque.currT is thecurrentthreadbeingexecuted;
changingits valuedenotesa context switch. Memory managementof the dequesis not shown herefor
brevity.

8

list of dequesc
top

bottom

executing
 threads

owners P0 P3 P2 P1

ta

tb

deques

-- --

Figure6: Thelist _ of dequesmaintainedin thesystemby algorithmDFDeques. Eachdequemayhave
one(or no) ownerprocessor. Thedottedline tracesthedecreasingorderof prioritiesof the threadsin the
system;thus GLd in this figurehasthehighestpriority, while GIe hasthelowestpriority.

threadwakesup its previously suspendedparent,the processorstartsexecutingthe parentnext;
for nestedparallelcomputations,we canshow that the processor’s dequemustbe emptyat this
stage[40]. Whenanidle processorfindsits dequeempty, it deletesthedeque.Whena processor
deletesits deque,or when it givesup ownershipof its dequedue to exhaustionof its memory
quota,it usesthesteal() procedureto obtaina new deque.Themaindifferencefrom previous
depth-firstschedulers[10, 41] is in this stealprocedure.Every invocationof steal() resetsthe
processor’smemoryquotato
 bytes.Wecall aniterationof theloop in thesteal() procedure
astealattempt.

A processorexecutesa stealattemptby picking a randomnumberY between1 and � , where� is thenumberof processors.It thentriesto stealthebottomthreadfrom the Y U�W deque(starting
fromtheleft end)in thegloballist of dequesX . A stealattemptmayfail (thatis,pop from bot()
returnsNULL) if two or moreprocessorstarget thesamedeque(seeSection4.1),or if thedeque
is emptyor non-existent. If thestealattemptis successful(pop from bot() returnsa thread),
the stealingprocessorcreatesa new dequefor itself, placesit to the immediateright of the tar-
getdeque,andstartsexecutingthestolenthread.Otherwise,it repeatsthestealattempt.Thusthe
numberof dequesin X maygrow duringtheexecutionbeyondthenumberof processors;however,
atany timestep,only theleftmost� dequesarepotentialtargetsof asteal.Whenaprocessorsteals
thelastthreadfrom a dequenot currentlyassociatedwith (ownedby) any processor, it deletesthe
deque.

If a threadcontainsanactionthatperformsa memoryallocationof Y unitssuchthat Ygf�

(where
 is thememorythreshold),then hiY!�?
�j dummythreadsmustbeforkedin a binarytree
of depthkC�Vlnm opY!�?
 �

beforetheallocation5. Wedonotshow thisextensionin Figure5 for brevity.
Eachdummythreadexecutesano-op.However, processorsmustgiveuptheirdequesandperform
a stealevery time they executeadummythread.Onceall thedummythreadshavebeenexecuted,
a processormayproceedwith thememoryallocation.This transformationtakesplaceat runtime.
Theadditionof dummythreadseffectively delayslargeallocationsof space,sothathigherpriority
threadsmaybescheduledinstead.In practice,
 is typically setto a few thousandbytes,so that
theruntimeoverheaddueto thedummythreadsis negligible (e.g.,seeSection5).

5This transformationdiffersslightly from depth-firstschedulers[10, 41], whichallow dummythreadsto beforked
in a multi-way fork of constantdepth.

9

We now prove a lemmaregardingthe orderof threadsin X maintainedby algorithmDFDe-
ques; thisorderis shown pictorially in Figure6.

Lemma 3.1 AlgorithmDFDequesmaintainsthefollowingorderingof threadsin thesystem.

1. Threadsin each dequeare in decreasingorderof priorities fromtop to bottom.

2. A threadcurrently executingon a processorhashigher priority than all other threadson the
processor’sdeque.

3. Thethreadsin anygivendequehavehigherpriorities thanthreadsin all thedequesto its right
in X .

Proof: By inductionon the timesteps.Thebasecaseis thestartof theexecution,whentheroot
threadis theonly threadin thesystem.Let thethreepropertiesbetrueatthestartof any subsequent
timestep.Any of the following eventsmaytake placeon eachprocessorduringthe timestep;we
will show thatthepropertiescontinueto holdat theendof thetimestep.

Whena threadforks a child thread,the parentis addedto the top of the processor’s deque,
andthe child startsexecution. Sincethe parenthasa higherpriority that all otherthreadsin the
processor’sdeque(by induction),andsincethechild threadhasahigherpriority (earlierdepth-first
executionorder)thanits parent,properties(1) and(2) continueto hold. Further, sincethe child
now hasthepriority immediatelyhigherthanits parent,property(3) holds.

When a thread q terminates,the processorchecksif q hasreactivateda suspendedparent
threadq�r . In this case,it startsexecutingqsr . Sincethecomputationis nestedparallel,theproces-
sor’s dequemustnow beempty(sincetheparentq�r musthave beenstolenat someearlierpoint
andthensuspended).Therefore,all 3 conditionscontinueto hold. If q did notwakeup its parent,
the processorpicks the next threadfrom the top its deque. If the dequeis empty, it deletesthe
dequeandperformsasteal.Thereforeall threepropertiescontinueto hold in thesecasestoo.

Whenathreadsuspendsor is preempteddueto exhaustionof theprocessor’smemoryquota,it
is putbackonthetopof its deque,andthedequeretainsits positionin X . Thusall threeproperties
continueto hold.

Whena processorstealsthe bottomthreadfrom anotherdeque,it addsthe new dequeto the
right of the target deque.Sincethe stolenthreadhadthe lowestpriority in the target deque,the
propertiescontinueto hold. Similarly, removal of a threadfrom the target dequedoesnot affect
thevalidity of thethreepropertiesfor thetargetdeque.A threadmaybestolenfrom a processor’s
dequewhile oneof the above eventstakesplaceon the processoritself; this doesnot affect the
validity of ourargument.

Finally, deletionof oneor moredequesfrom X doesnotaffect thethreeproperties.

Work stealingas a specialcaseof algorithm DFDeques. Considerthe casewhenwe setthe
memorythreshold
utwv . Then,for nested-parallelcomputations,algorithmDFDeques(v) pro-
ducesa scheduleidenticalto theoneproducedby theprovably-efficient work-stealingscheduler
“WS” [13]. The processorsin DFDeques(v) never give up a dequedueto exhaustionof their
memoryquota,andtherefore,aswith thework stealer, therearenever morethan � dequesin the
system.Further, in both algorithms,whena processor’s dequebecomesempty, it picks another
processoruniformly at random,and stealsthe bottommostthreadfrom that processor’s deque.

10

Similarly, for nestedparallelcomputations,the rule for waking up a suspendedparentin DFD-
eques(v) is equivalentto the correspondingrule in WS6. Of course,the resultingschedulesare
identicalprovidedwe assumethesamecostmodelfor bothalgorithms;themodelcouldbeeither
theatomic-accessmodelusedto analyzeWS [13], or ourcostmodelfrom Section4.1.

4 Analysisof Time and SpaceUsingAlgorithm DFDeques

We now prove the spaceand time boundsfor nested-parallelcomputationsimplementedusing
Algorithm DFDeques.

4.1 Costmodel

We definethe total numberof unit actionsin a parallelcomputation(or the numberof nodesin
its dag)asits work � . Further, let

�
be the depthof thecomputation,that is, the lengthof the

longestpathin its dag. For example,thecomputationrepresentedin Figure4 haswork � tyx x
anddepth

� twz . Weassumethatanallocationof Y bytesof memory(for any Y{fD|) hasadepth
of kC�Vlnm opY �

units7.
For this analysis,we assumethattimesteps(clock cycles)aresynchronizedacrossall thepro-

cessors.If multipleprocessorstargeta non-emptydequein a singletimestep,we assumethatone
of themsucceedsin thesteal,while all theothersfail in thattimestep.If thedequetargetedby one
or morestealsis empty, all of thosestealsfail in asingletimestep.Whenastealfails,theprocessor
attemptsanotherstealin thenext timestep.Whenastealsucceeds,theprocessorinsertsthenewly
createddequeinto X andexecutesthefirst actionfrom thestolenthreadin thesametimestep.At
theendof a timestep,if a processor’s currentthreadterminatesor suspends,andit findsits deque
to beempty, it immediatelydeletesits dequein that timestep.Similarly, whena processorsteals
thelastthreadfrom adequenotcurrentlyassociatedwith any processor, it deletesthedequein that
timestep.Thus,at thestartof a timestep,if adequeis empty, it mustbeownedby aprocessorthat
is busyexecutinga thread.

Our costmodelis somewhatsimplistic,becauseit ignoresthecostof maintainingtheglobally
orderedsetof dequesX . If we parallelizethe schedulingtasksof insertinganddeletingdeques
in X (by performingthemlazily), we canaccountfor all their overheadsin the time bound. We
canthenshow that in theexpectedcase,thecomputationcanbeexecutedin �	�+�����}� � �~lnm?o�� �
time and ��������������lnm?o���� ���

spaceon � processors,includingtheschedulingoverheads[40]. In
practice,theinsertionsanddeletionsof dequesfrom X canbeeitherserializedandprotectedby a
lock (for small �), or performedlazily in parallel(for large �).

6In WS, the reawakenedparentis placedaddedto the currentprocessor’s deque(which is empty); for nested
parallelcomputations,thechild mustterminateat this point,andtherefore,thenext threadexecutedby theprocessor
is theparentthread.

7This is a reasonableassumptionin systemswith binaryforks thatzeroout thememoryassoonas it is allocated.
Thezeroingthenrequiresa minimumdepthof ��47:<;�=�� > ; it canbeperformedin parallelby forking a treeof height��4�:E;�=�� > .

11

4.2 Spacebound

We now analyzethe spaceboundfor a parallelcomputationexecutedby algorithmDFDeques.
Theanalysisusesseveralideasfrom previouswork [3, 10,41]. Becausemorethanoneprocessor
is available to executea parallel computation,somenodesmay be executedout of order (i.e.,
prematurely)with respectto theserial,depth-firstschedule.Theseout-of-ordernodescancause
the parallelscheduleto requiremorespacethana serialschedule.By boundingthe numberof
suchnodes,we canboundthe spacerequirementof the parallelschedulein termsof the serial
spacerequirement.

4.2.1 Definitions

Let � bethedagthatrepresentstheparallelcomputationbeingexecuted.Dependingontheresult-
ing parallelschedule,weclassifyits nodes(actions)into oneof two types:heavy andlight. Every
timeaprocessorperformsasteal,thefirst nodeit executesfrom thestolenthreadis calledaheavy
action.All remainingnodesin � arelabelledaslight.

We first assumethat every nodeallocatesat most
 space;we will relax this assumptionin
the end. Recallthata processormayallocateat most
 spacebetweenconsecutive steals;thus,
it mayallocateat most
 spacefor every heavy nodeit executes.Therefore,we canattributeall
thememoryallocatedby light nodesto the lastheavy nodethatprecedesthem. This resultsin a
conservativeview of thetotal spaceallocation.

Let ��r�t��2�S�P�P�P���S��� betheparallelscheduleof thedaggeneratedby algorithmDFDeques(
).
Here ��� is thesetof nodesthatareexecutedat timestep� ; � is thelengthof theschedule�Rr . Let ���
betheserial,depth-firstscheduleor the1DF-schedulefor thesamedag;e.g.,thenodesin Figure4
arenumberedaccordingto theirorderof executionin a 1DF-schedule.

We now view anintermediatesnapshotof theparallelschedule��r . At any timestepx}�������
during theexecutionof ��r , all thenodesexecutedso far form a prefix of �Rr . This prefix of ��r is
definedas ��r!t��������� ��� . Let �2� be the longestprefix of ��� containingonly nodesin ��r , that is,�2� �{��r . Thenthe prefix �2� is calledthe correspondingserialprefix of ��r . The nodesin the
set ��r¢¡£�2� arecalledprematurenodes,sincethey have beenexecutedout of orderwith respect
to the 1DF-schedule�?� . All othernodesin ��r , that is, theset �2� , arecallednon-premature. For
example,Figure7 shows a simpledag with a parallelprefix ��r for an arbitrary � -schedule��r ,
its correspondingserialprefix �2� , anda possibleclassificationof nodesasheavy or light. It also
highlightstheprematurenodesin ��r .

Whetheranodeis heavy or light is determinedby theparallelschedule,while prematurenodes
aredefinedrelative to a givenprefix (snapshot)of theparallelschedule.For example,at thestart
andat theendof theexecution(i.e., for theemptyprefix aswell asthelongestprefix of ��r) there
are no prematurenodes,while intermediateprefixes of ��r may containprematurenodes. The
maximumnumberof prematurenodes(over all prefixesof the parallelschedule)will determine
the amountof extra spacethe parallelschedulerequireswhencomparedwith the 1DF-schedule
(Lemma4.3, Section4.2.2); in contrast,the spaceallocatedby non-prematurenodeswill be
boundedby thespaceusageof the serialexecution. Therefore,by boundingthe total numberof
prematurenodes(Lemma4.2,Section4.2.2)wecanboundthespacerequirementof the� -schedule��r .

A readythreadbeingpresentin adequeis equivalentto its first unexecutednode(action)being

12

= non-premature
= premature

σp

= heavy nodes

P1

P2

P3

P4

(a) (b)

Figure7: (a) An examplesnapshotof a parallelschedulefor a simpledag. Theshadednodes(thesetof
nodesin ¤ r) have beenexecuted,while the blank (white) nodeshave not. Of the nodesin ¤ r , the black
nodesform the correspondingparallel prefix ¤ � , while the remaininggrey nodesare premature. (b) A
possiblepartitioningof nodesin ¤ r into heavy andlight nodes.Eachshadedregiondenotesthesetof nodes
executedconsecutively in depth-firstorderon a singleprocessor(N �SO N2J O N2K or N�M) betweensteals. The
heavy nodein eachregion is shown shadedblack.

in thedeque,andwe will usethetwo phrasesinterchangeably. Givena � -schedule��r of a dag �
generatedby algorithmDFDeques, wecanfindauniquelastparentfor everynodein � (exceptfor
therootnode)asfollows. Thelastparentof anode¥ in � is definedasthelastof ¥ ’sparentnodes
to beexecutedin theschedule��r . If two or moreparentnodesof ¥ werethe last to beexecuted,
theprocessorexecutingoneof themcontinuesexecutionof ¥ ’s thread.We labeltheuniqueparent
of ¥ executedby this processorasits lastparent.This processormayhave to preempt¥ ’s thread
withoutexecuting¥ if it runsoutof its memoryquota;in thiscase,it puts ¥ ’s threadonto its deque
andthengivesup thedeque.

Considertheprefix ��r of theparallelschedule��r afterthefirst � timesteps,for any x¦�
���D� .
Let § bethelastnon-prematurenode(i.e., thelastnodefrom �2�) to beexecutedduringthefirst �
timestepsof ��r . If morethanonesuchnodeexist, let § beany oneof them.Let ¨ beasetof nodes
in thedagconstructedasfollows: ¨ is initialized to ©~§�ª ; for every node ¥ in ¨ , thelastparentof¥ is addedto ¨ . Sincetheroot is theonly nodeat depth1, it mustbein ¨ , andthus, ¨ contains
exactly all thenodesalonga particularpathfrom theroot to § ; we will call ¨ the last path in ��r .
Further, since§ is non-premature,all thenodesin ¨ arenon-premature.

Let ¥�� bethenodein thelastpath ¨ at depth� ; then ¥«� is theroot,and ¥�¬ is thenode§ , where­
is the depthof § . Let ®¯� be the timestepin which ¥�� is executed;then ®��}t{x sincethe root is

executedin the first timestep. For �°t²±��*�P�P�*� ­ let ³�� be the interval ©�®¯�A´��µ�¶x �P�*�P�*�·®¯�+ª , and let³'�¦t¸©#x?ª . Let ³�¬L¹��,t¸©�®º¬µ�»x �P�P�*���¯��ª . Since ��r consistsof all the nodesexecutedin the first �
timesteps,the intervals ³'���P�*�P���·³*¬L¹�� cover the durationof executionof all nodesin ��r . We will
call this uniquesetof disjoint intervals the covering intervals of ��r . We will analyzethe space
requirementof the parallelexecutionby boundingthe excessspaceallocated(comparedto the
1DF-schedule) duringeachcoveringinterval of ��r .

13

4.2.2 Analysisof spacebound

To analyzethespacebound,we first boundthenumberof heavy prematurenodesin any prefixof
theparallelexecution(Lemma4.2). This boundis obtainedby countingthemaximumnumberof
heavy prematurenodesexecutedin eachcoveringinterval of ��r . Sinceeachheavy prematurenode
canaccountfor up to
 additionalspacecomparedto theserialexecution(here
 is thememory
threshold),we canrelatethenumberof prematurenodesto thespacerequirementof theparallel
execution(Lemma4.3).

We begin by proving the following lemmaregardingthe nodesin a dequebelow any of the
nodeson thelastpathin ��r .
Lemma 4.1 Let ��r beanyprefixof theparallel schedule, andlet ¨ bethelastpathin ��r . For anyx����µ� ­

, if ¥�� is thenodeon thepath ¨ at depth� , then

1. If during the execution¥�� is on somedeque, thenevery nodebelowit in its dequeis the right
child of somenodein ¨ .

2. When¥�� is executedona processor, everynodeon theprocessor’sdequemustbetheright child
of somenodein ¨ .

Proof: We canprove this lemmato betruefor any ¥�� by inductionon � . Thebasecaseis theroot
node.Initially it is theonly nodein its deque,andgetsexecutedbeforeany new nodesarecreated.
Thus,the lemmais trivially true. Let usassumethe lemmais true for all ¥ � , for |¼�½�¾�¶� . We
mustprovethatit is truefor ¥���¹�� .

Since¥�� is thelastparentof ¥���¹�� , ¥��¿¹�� becomesreadyimmediatelyafter ¥�� is executedonsome
processor. Therearetwo possibilities:

1. ¥���¹�� is executedimmediatelyfollowing ¥�� on that processor. Property(1) hold trivially since¥���¹�� is never put on a deque.If thedequeremainsunchangedbefore¥���¹�� is executed,property
(2) holdstrivially for ¥���¹�� . Otherwise,the only changethat may be madeto the dequeis the
additionof the right child of ¥�� before ¥���¹�� is executed,if ¥�� wasa fork with ¥���¹�� as its left
child. In thiscasetoo,property(2) holds,sincethenew nodein thedequeis right child of some
nodein ¨ .

2. ¥���¹�� is addedto theprocessor’s dequeafter ¥�� is executed.This mayhappenbecause¥�� wasa
fork and ¥���¹�� wasits right child (seeFigure8), or becausetheprocessorexhaustedits memory
quota.In theformercase,since ¥���¹�� is theright child of ¥�� , nothingcanbeaddedto thedeque
before ¥���¹�� . In the lattercase(that is, thememoryquotais exhaustedbefore ¥���¹�� is executed),
theonly nodethatmaybeaddedto thedequebefore¥���¹�� is theright child of ¥�� , if ¥�� is a fork.
This doesnot violate the lemma. Once ¥��¿¹�� is addedto the deque,it may eitherget executed
on a processorwhenit becomesthe topmostnodein thedeque,or it maygetstolen. If it gets
executedwithout beingstolen,properties(1) and(2) hold, sinceno new nodescanbe added
below ¥���¹�� in the deque.If it is stolen,the processorthat stealsandexecutesit hasan empty
deque,andthereforeproperties(1) and(2) aretrue, andcontinueto hold until ¥��¿¹�� hasbeen
executed.

14

ui+1

ui

ui-1

ui-2

ui-3

ui-4

b

c

d
a

a

b
c

ui+1

d top

bottom

deque

: nodes along pathP

(a) (b)

Figure 8: (a) A portion of the dynamically unfolding dag during the execution. NodesÀ �n´ M O À �n´ K ORQRQRQ�O À �IO À ��¹�� lie on thelastpath Á . Node À ��¹�� is ready, andis currentlypresentin somedeque.
Thedequeis shown in (b); all nodesbelow À ��¹�� on thedequemustberight childrenof somenodeson Á
above À ��¹�� . In thisexample,nodeÀ �¿¹�� wastheright child of À � , andwasaddedto thedequewhenthefork
at À � wasexecuted.Subsequently, descendentsof the left child of À � (e.g.,node Â), may be addedto the
dequeabove À ��¹�� .
To prove the spacebound,we first boundthe numberof heavypremature nodesin an arbitrary
prefix ��r of ��r (Lemma4.2).Theproof,detailedbelow, proceedsasfollows: Wefocusontimesteps
in which oneor moreheavy prematurenodesmay be executed. Thesetimestepsaresplit into
phases,suchthat eachphasehasa limited numberof stealattempts. Sincea heavy premature
nodecanonly beexecutedasa resultof a steal,we boundthenumberof heavy prematurenodes
executedby boundingthe numberof suchphasesthat canoccur in the parallelprefix ��r . The
phasesareboundby consideringeachcoveringinterval of ��r separately. Thebasicideais to show
thatwith aconstantprobability, thecurrentreadynode¥ alongthelastpathin ��r will getexecuted
duringa phase,sincethedequecontaining¥ mustbea candidatefor steals.Thecurrentcovering
interval endsassoonas ¥ is executed(by definition),therebylimiting thenumberof phasesin the
interval.

Lemma 4.2 Let ��r beanyparallel prefixof a � -scheduleproducedbyalgorithmDFDeques(
) for
a computationwith depth

�
, in which everyactionallocatesat most
 space. Thentheexpected

numberof heavypremature nodesin ��r is �	�¿��� ���
. Further, for any Ã�f½| , thenumberof heavy

prematurenodesis �	�¿�Ä��� � ��lAÅÆ�Çx��?Ã �·�È� with probabilityat least x"¡
Ã .
Proof: Considerthestartof any coveringinterval ³�� of ��r , for �Ét�x �P�P�*�*� ­ (we will look at the
lastcoveringinterval ³*¬I¹�� separately);here

­
is thedepthof thelastnon-prematurenodeexecuted

in ��r . Let ¥�� be the nodeat depth � on the last path ¨ in ��r . By Lemma3.1, all nodesin the
dequesto theleft of ¥�� ’s deque,andall nodesabove ¥�� in its dequearenon-premature.Let Ê�� be
the numberof nodesbelow ¥�� in its deque.Becausestealstarget the first (leftmost) � dequesin

15

theglobal list of dequesX , heavy prematurenodescanbepickedin any timestepfrom at most �
deques.Further, every time a heavy prematurenodeis picked,thedequecontaining¥�� mustalso
bea candidatedequeto bepickedasa target for a steal;that is, ¥�� mustbeamongtheleftmost �
deques.Consideronly thetimestepsin which ¥�� is amongtheleftmost � deques;we will referto
suchtimestepsascandidatetimesteps.Becausenew dequesmaybecreatedto theleft of ¥�� atany
time,thecandidatetimestepsneednotbecontiguous.

Wenow boundthetotalnumberof stealattemptsthattakeplaceduringthecandidatetimesteps.
Eachsuchstealattemptmayresultin theexecutionof a heavy prematurenode;stealsin all other
timestepsresult in the executionof heavy, but non-prematurenodes.Eachtimestepcanhave at
most � stealattempts.Therefore,we canpartitionthecandidatetimestepsinto phases, suchthat
eachphasehasbetween� and ±���¡Dx stealattempts.We call aphasein interval ³�� successfulif at
leastoneof its kC�¿� � stealattemptstargetsthedequecontaining¥�� . Let ËC� � betherandomvariable
with value1 if the � U�W phasein interval ³�� is successful,and0 otherwise.Becausetargetsfor steal
attemptsarechosenat randomfrom the leftmost � dequeswith uniform probability, andbecause
eachphasehasat least� stealattempts,ÌpÍ�Î ËC� � tÏx*Ð�Ñ x"¡ Ò xÉ¡ x��Ó rÑ x"¡ xÔÑ x±
Thus, eachphasesucceedswith probability at least x~�?± . Because¥�� had Ê�� nodesbelow it in
its deque,it mustget executedbeforeor by the time Ê��«�¶x successfulstealstarget ¥�� ’s deque.
Therefore,therecanbeat most Ê�����x successfulphasesin thecoveringinterval ³�� . Thenode ¥��
maygetexecutedbefore Ê�����x stealattemptstarget its deque,if its ownerprocessorexecutes¥��
off the top of the deque. Let therebe some Õ��}�g�VÊ����Ïx � successfulphasesin the interval ³�� .
FromLemma4.1, the Ê�� nodesbelow ¥�� areright childrenof nodeson thelastpath ¨ . Thereare� ­ ¡�x �×Ö)�

nodesalong ¨ not including ¥�¬ , andeachof themmayhaveat mostoneright child.
Sinceeachof theseright childrencanonly get executedonceduring oneof the first

­
covering

intervals, Ø ¬����� Ê�� Ö��
. Therefore,thetotal numberof successfulphasesin thefirst

­
intervalsisØ ¬�¿��� Õ��2t Ø ¬�¿��� �VÊ��s�)x ��Ö � � � ­ � �)± � .

Finally, considerthe last covering interval ³*¬I¹�� . Let Ù be the readynodeat the startof the
interval with thehighestpriority. Then, Ù ÚÛ ��r , becauseotherwiseÙ (or someothernode),andnot§ , would have beenthe lastnon-prematurenodeto beexecutedin ��r . Hence,if Ù is aboutto be
executedonaprocessor, theninterval ³*¬L¹�� is empty. Otherwise,Ù mustbeat thetopof theleftmost
dequeat thestartof interval ³�¬L¹�� . Usinganargumentsimilar to thatof Lemma4.1,we canshow
thatthenodesbelow Ù in thedequemustberight childrenof nodesalongapathfrom theroot to Ù .
Thus, Ù canhaveatmost � � ¡Ü± � nodesbelow it. BecauseÙ mustbeamongtheleftmost� deques
throughouttheinterval ³�¬L¹�� , thephasesin this interval areformedfrom all its timesteps.Wecall a
phasesuccessfulin interval ³*¬I¹�� if at leastoneof the kC��� � stealattemptsin thephasetargetsthe
dequecontainingÙ . Thenthis interval musthave lessthan

�
successfulphases.As before,the

probabilityof aphasebeingsuccessfulis at least x~� ± .
16

We have shown that for any �Ü�Ý� (here � is the lengthof theparallelschedule�Rr), thefirst� timestepsof the parallelexecution,representedby the parallelprefix ��r , musthave lessthanÞ �
successfulphases8. Sincea heavy prematurenodecanonly be executedafter a steal,each

phasemay result in lessthan ±�� heavy prematurenodesbeingstolenandexecuted.Further, for��t x?�P�P�P��� ­ , in eachinterval ³�� of ��r , another�ß¡àx heavy prematurenodesmay be executed
in the sametimestepthat ¥�� is executed.Since

­ � �
, if ��r hasa total of, say, � phases,the

numberof heavy prematurenodesin ��r is lessthan �I±���� �	� �*� . Becausetheentireexecution
musthave lessthan

Þ �
successfulphases,andeachphasesucceedswith probabilityat least x~�?± ,

theexpectednumberof total phasesbeforewe see
Þ �

successfulphasesis lessthan z � , that is,á¼Î �!Ð Ö z � . Therefore,the expectednumberof heavy prematurenodesin ��r is boundedbyá¼Î �I±��â� ��� ����Ð Ö �Çx~± � � ��� ���	tw������� ���
.

The high probability boundcanbe proved as follows. Supposethe executiontakesat leastx~± � �½ãplAÅÆ�Çx��?Ã � phases.Thenthe expectednumberof successfulphasesis at least äwt{z � �å lnÅ«�Çx~�?Ã � . Using the Chernoff bound[39, Theorem4.2] on the numberof successfulphasesË ,
andsettingæ°twz � �çãplnÅ«�Çx~��Ã � , weget9ÌèÍÆÎ Ë Ö ä�¡
æ0� ±'Ð Ö éSê�ëíì ¡
�+æ0� ± � J±�ä î
Therefore, ÌpÍ�Î �VË Ö Þ �	� Ð Ö é�ê�ëíì ¡�æ J � åx~± � ��ãplnÅ2�Çx~�?Ã � ît é�ê�ë ì ¡ïæ Jå �0�I±�æ,¡
ãplnÅ2�Çx~��Ã �·� î� Ô ´ dÈð¯ñLò¯dt Ô ´ d�ñLòt Ô ´�óEôºõÆ¹ ò�öø÷ ó7� ñLùûú7úiñLòÖ Ô ´ ò~öø÷ óA� ñLùiúnñLòt Ã
Becausetherecanbeatmost

Þ �
successfulphases,algorithmDFDequesrequiresx~± � ��ãèlAÅ��Çx~�?Ã �

or morephaseswith probabilityat most Ã . Recallthateachphaseconsistsof kC��� � stealattempts.
Therefore,��r has�	�¿���#� � ��lAÅÆ�ºx~�?Ã �È�·� heavy prematurenodeswith probabilityat least x×¡
Ã .
We cannow statea lemmarelatingthenumberof heavy prematurenodesin ��r with thememory
requirementof ��r .
Lemma 4.3 Let � be a dag with depth

�
, in which every nodeallocatesat most
 space, and

for which theserial depth-first executionrequires ��� space. Let �Rr bethe � -scheduleof length q
8Rememberthat the parallelprefix ü�ý , andhencethe classificationof nodesasprematureor non-premature,or

phasesassuccessful,dependsonthechoiceof this þ .
9Theprobabilityof successfor a phaseis not necessarilyindependentof previousphases;however, becauseeach

phasesucceedswith probabilityat least ÿ�B�� , independentof otherphases,wecanapplytheChernoff bound.

17

Pa

Pbwv

u

thread t

Figure 9: An examplescenariowhen a processor(��� in this example)may not executea contiguous
subsequenceof nodesbetweensteals.Theshadedregionsindicatethesubsetof nodesexecutedon eachof
thetwo processors,��� and ��� . Here,processor��� stealsthethread� andexecutesnode � . It thenforks a
child thread(containingnode�), putsthread� on its deque,andstartsexecutingthechild. In themeantime,
processor��� stealsthread� from thedequebelongingto ��� , andexecutesit until it suspends.Subsequently,� � finishedexecutingthechild thread,andwakesupthesuspendedparent� andresumesexecutionof � . The
combinedsetsof nodesexecutedonbothprocessorsformsacontiguoussubsequenceof 1DF-schedule.

generatedfor 	 by algorithmDFDeques(
). If for any � such that ��
���
�� , theprefix ��� of ���
representingthecomputationafter thefirst � timestepscontainsat most� heavypremature nodes,
thentheparallel spacerequirementof ��� is at most���������! #"%$'&(
*)����,+ . Further, thereareat most- �.�/�0 1"2$3&(
*)!���4+ activethreadsduring theexecution.

Proof: We canpartition ��� into thesetof non-prematurenodesandthesetof prematurenodes.
Since,by definition,all non-prematurenodesform someserialprefixof the1DF-schedule, theirnet
memoryallocationcannotexceed��� . We now boundthenetmemoryallocatedby thepremature
nodes.Considera stealthatresultsin theexecutionof a heavy prematurenodeon a processor5 .
Thenodesexecutedby 5 until its next steal,cannotallocatemorethan
 space.Becausethere
areat most � heavy prematurenodesexecuted,thetotal spaceallocatedacrossall processorsafter� timestepscannotexceed���3�.�6�7
 .

Themaximumnumberof activethreadsis atmostthenumberof threadswith prematurenodes,
plusthemaximumnumberof active threadsduringa serialexecution,which is

-
. Assumingthat

eachthreadneedsto allocateatleastaunitof spacewhenit is forked(e.g.,tostoreits registerstate),
at most
 threadswith prematurenodescanbeforked for eachheavy prematurenodeexecuted.
Therefore,thetotalnumberof active threadsis atmost

- �8�6�7
 .

Notethateachactive threadrequiresatmostaconstantamountof spaceto bestoredby thesched-
uler (not including its stackspace).We now extendthe analysisto handlelarge allocations(of
morethan
 space).

Handling large allocations of space. We hadassumedearlier in this sectionthat every node
allocatesatmost
 unitsof memory. Individualnodesthatallocatemorethan
 spacearehandled
as describedin Section3. The key idea is to delay the big allocations,so that if threadswith

18

higherprioritiesbecomeready, they will beexecutedinstead.Thesolutionis to insertbeforeevery
allocationof 9 bytes(9 :;
), a binary fork treeof depth <2=?>@&A9CBD
E+ , so that 9CBF
 dummy
threadsarecreatedat its leaves. Eachof the dummythreadssimply performsa no-opthat takes
onetimestep,but the threadsat the leavesof the fork treearetreatedasif it wereallocating

space;a processorgivesup its dequeandperformsa stealafter executingeachof thesedummy
threads.Therefore,by the time the 9CBF
 dummythreadsareexecuted,a processormayproceed
with theallocationof 9 byteswithout exceedingour spacebound.Recallthat in our costmodel,
an allocationof 9 bytesrequiresa depthof GH&A<2=?>I9C+ ; therefore,this transformationof the dag
increasesits depthby atmostaconstantfactor. Thetransformationtakesplaceat runtime,andthe
on-lineDFDequesalgorithmgeneratesa schedulefor this transformeddag. The final boundon
thespacerequirementof thegeneratedschedule,is statedbelow. Also, in Lemma4.3,eachnode
wasassumedto allocateat most
 space;sincetheexecutioncanneverhavea netnegativespace
allocation,thisassumptionrequiredthat
KJML7��� . Without this assumption,weneedto additionally
boundmemoryallocationfor verylarge
 ; wethereforeprovebelow atighterboundfor thespace
requirementwhen
N:O��� .
Theorem 4.4 (Upper bound on spacerequirement)
Considera nested-parallel computationwith depth

-
andserial,depth-firstspacerequirement��� .

Then,for any
 :QP , the expectedvalueof the spacerequired to executethe computationon R
processorsusingalgorithmDFDeques(
), includingthespacerequiredto storeactivethreads,is���3�SGH&M 1"2$'&A
*)����T+U��R1� - + . Further, for any VW:XP , theprobability that thecomputationrequires���3�YGH&M 1"2$Z&(
*)����4+[��R#�\& - �8<%$'&T�7BFV�+]+]+ spaceis at least �_^8V .
Proof: Lemmas4.2and4.3hold for any prefix(snapshot)of theparallelcomputation.Therefore,
usingtheabovetransformationof thedagfor allocationslargerthan
 , it followsthattheexpected
amountof spacerequiredby theparallelcomputationis ���Z�`GH&A
a�,Rb� - + . Further, it followsthat
for any Vc:�P , theprobabilitythat thecomputationrequires���d�eGH&A
f��Rg�h& - �Y<%$d&,�7BFV!+4+]+ space
is at least �_^iV .

We now obtaina tighterboundwhen
 :j��� . Considerthecasewhena processor5 stealsa
threadandexecutesaheavy prematurenode.Thenodesexecutedby 5 beforethenext stealareall
premature,andform a seriesof oneor moresubsequencesof the1DF-schedule. Theintermediate
nodesbetweenthesesubsequences(in depth-firstorder)areexecutedonotherprocessors(e.g.,see
Figure9). Theseintermediatenodesoccurwhenotherprocessorsstealthreadsfrom the deque
belongingto 5 , andfinishexecutingthestolenthreadsbefore5 finishesexecutingall theremain-
ing threadsin its deque.Subsequently, when 5 ’s dequebecomesempty, the threadexecutingon5 maywake up its parent,sothat 5 startsexecutingtheparentwithout performinganothersteal.
Therefore,the setof nodesexecutedby 5 beforethe next steal,possiblyalongwith premature
nodesexecutedonotherprocessors,form a contiguoussubsequenceof the1DF-schedule.

Assumingthatthenetspaceallocatedduringthe1DF-schedulecanneverbenegative,thissub-
sequencecannotallocatemorethan ��� unitsof netmemory. Therefore,if thereare � heavy prema-
turenodes,thenetmemoryallocationof all theprematurenodescannotexceed�k�l #"%$�&(
*)!���4+ , and
thetotal spaceallocatedacrossall processorsafter � timestepscannotexceed�����8�W�m #"%$�&(
*)����T+ .
Therefore,usingLemma4.2,theaboveexpectedandhighprobabilityspaceboundsfollow.

We now show that theabove spaceboundis tight (within constantfactors)in the expectedcase,
for algorithmDFDeques.

19

Theorem 4.5 (Lower bound on spacerequirement)
For any ���n:oP , Rp:oP ,
 :qP , and

- rtsDu <%=?>ZR , there existsa nestedparallel dag with a
serial spacerequirementof ��� anddepth

-
, such that the expectedspacerequiredby algorithm

DFDeques(
) to executeit on R processors is vc&(���d�8 1"2$'&A
*)����4+[��R#� - + .
Proof: Considerthedagshown in Figure10. Theblacknodesdenoteallocations,while thegrey
nodesdenotedeallocations.The dagessentiallyhasa fork treeof depth <%=?>�&wRxB s + , at the leaves
of which exist subgraphs10. Theroot nodesof thesesubgraphsarelabelled y3�!)�y@zm)m{m{m{|)�y�} , where~i� R@B s . The leftmostof thesesubgraphs,	c� , shown in Figure10 (b), consistsof a serialchain
of � nodes. The remainingsubgraphsare identical,have a depthof

s �#��� , andareshown in
Figure10 (c). The amountof spaceallocatedby eachof the black nodesin thesesubgraphsis
definedas � � #"%$�&(
*)����4+ . Sinceweareconstructingadagof depth

-
, thevalueof � is setsuch

that
s �6����� s <2=?>�&�RxB s + � - . Thespacerequirementof a 1DF-schedulefor thisdagis ��� .

We now examinehow algorithmDFDeques(
) would executesucha dag. One processor
startsexecutingthe root node,andexecutesthe left child of the currentnodeat eachtimestep.
Thus,within <%=F>@&wRxB s + � <2=?> ~ timesteps,it will have executednode y'� . Now considernode y�} ;
it is guaranteedto beexecutedonce <%=F> ~ successfulstealstarget theroot thread.(Recallthat the
right child of a forking node,that is, thenext nodein the parentthread,mustbeexecutedeither
beforeor whentheparentthreadis next stolen.)Becausetherearealways ~�� RxB s processorsin
this examplethatareidle andattemptstealstargeting R dequesat thestartof every timestep,the
probability R��2�2�A� ö thatastealwill targetaparticulardequeis givenbyR��2�2�A� ö r �_^ � �_^ �RU� ���lzr �_^iLD� �(�lz: ��
Wecall a timestep� successfulif somenodealongthepathfrom theroot to y�} getsexecuted;this
happenswhenastealtargetsthedequecontainingthatnode.Thus,after <%=?> ~ successfultimesteps,
nodey�} mustgetexecuted;afterthat,wewill considereverysubsequenttimestepto besuccessful.
Let � be the numberof successfultimestepsin the first � s <%=?> ~ timesteps.Then,the expected
valueis givenby �*� �[� r � s <%=?> ~ �]R����%�A� ör u <2=?> ~
UsingtheChernoff bound[39, Theorem4.2] on thenumberof successfultimesteps,wehave�I� � �.�����_^ �u��n� �*� �[����
 �� ¢¡�£¤^�� �uZ� z � �n� �[�s ¥

10All logarithmsdenotedas ¦¨§�© areto thebase2.

20

GGGGGG
 p/2

G
G0

u1 u2 unu3

lo
g

(p
/2

)
lo

g
(p

/2
)

subgraphs

(a)

subgraph G0 :

de
pt

h
d

+S1

- S1

...

node w

...

...
+A

+A

+A
+A

d threads forked

subgraph G :

de
pt

h
 2

d
+

1

- A

- A

- A
- A

(b) (c)

Figure10: (a) Thedagfor which theexistentiallower boundholds. (b) and(c) presentthedetailsof the
subgraphsshown in (a). Theblacknodesdenoteallocationsandgrey nodesdenotedeallocations;thenodes
aremarkedwith theamountof memory(de)allocated.Here, ª`«i¬c­w®�¯±°#²4³ ��´ .

21

Therefore, �µ� � �8�e<%=?> ~ �¶
 �� ¢¡E·¸^g¹º»<%=F> ~x¼� �� ¢¡�£¤^g¹º � <2$ ~<2$ s3¥� LD� �¾½ ô¾z]¿ öø÷ }� ~ � �]½ ô¾z � �~� s� � �~ À = � R rOu
Recallthat ~e� RxB s . (Thecaseof Re� u

canbeeasilyhandledseparately.) Let Á¢Â be the event
that node y�Â is not executedwithin the first � s <%=F> ~ timesteps.We have showed that

�I� � Á¢}7�b�& s B � +��'&,�7B ~ + . Similarly, we canshow that for each � � �?)m{m{0{|) ~ ^p� , �µ� � Á¢Â%�Ã�N& s B � +���&,�7B ~ + .
Therefore,

�µ� �ÅÄ } � ÁhÂ2��� s B � . Thus,for � � �?)m{m{0{0) ~ , all the y�Â nodesgetexecutedwithin thefirst� s <%=F> ~ timestepswith probabilitygreaterthan �ÆB � .
Eachsubgraph	 has� nodesat differentdepthsthatallocatememory;thefirst of thesenodes

cannotbe executedbeforetimestep<2=?> ~ . Let Ç be the first timestepat which all the y�Â nodes
have beenexecuted.Then,at this timestep,thereareat least &A�Ã�X<2=?> ~ ^SÇ4+ nodesremainingin
eachsubgraph	 that allocate � byteseach,but have not yet beenexecuted.Similarly, node È
in subgraph	Ã� will not beexecutedbeforetimestep&A�b�e<2=?> ~ + , that is, another&(�Ã�X<2=?> ~ ^.Ç4+
timestepsafter timestepÇ . Therefore,for the next &A�H�É<%=?> ~ ^ÊÇ4+ timestepsthereare always~ ^O� � &wRxB s +[^O� non-emptydeques(outof a totalof R deques)duringtheexecution.Eachtime
a threadis stolenfrom oneof thesedeques,a blacknode(from Figure10 (c)) is executed,andthe
threadthensuspends.BecauseR@B s processorsbecomeidle andattempta stealat thestartof each
timestep,we canshow that in theexpectedcase,at leasta constantfractionof the RxB s stealsare
successfulin every timestep.Eachsuccessfulstealresultsin � � #"%$3&(����)!
E+ units of memory
being allocated. Considerthe casewhen Ç � � s <%=?> ~ . Then, using linearity of expectations,
over the �H^Ë�?�d<2=?> ~ timestepsafter timestepÇ , the expectedvalueof the total spaceallocated
is �����jvc&A�Ì�7RK�3&A�Í^Î�?�d<2=?> ~ +4+ � �����jvc&A�Î�DRK�'& - ^�<%=?>3Rx+4+ . (

- rtsDu <%=F>'R ensuresthat&(�Ã^e�?�d<%=F> ~ +�:OP .)
Weshowedthatwith constantprobability(:Ê�7B �), all the y�Â nodeswill beexecutedwithin the

first � s <%=?> ~ timesteps.Therefore,in theexpectedcase,thespaceallocated(at somepoint during
theexecutionafterall y�Â nodeshavebeenexecuted)is vc&¤���3�. #"%$�&¤����)!
E+[��& - ^8JAÏÆÐ7Rx+k��Rx+ .
Corollary 4.6 (Lower bound usingwork stealing)
For any ���b:ÎP , R8:ÎP , and

-ÑrQsDu <%=F>�R , there existsa nestedparallel dag with a serial space
requirementof ��� anddepth

-
, such thattheexpectedspacerequiredto executeit usingthespace-

efficientworkstealerfrom[13] on R processors is vc&¤���[��R#� - + .
Thecorollary follows from Theorem4.5 andthe fact that algorithmDFDequesbehaveslike the
space-efficient work-stealingschedulerfor
 �tÒ . Blumofe andLeiserson[13] presentedan
upperboundon spaceof RÓ����� usingrandomizedwork stealing.Their resultis not inconsistent

22

with the above corollary, becausetheir analysisallows only “stack-like” memoryallocation11,
which is morerestrictedthanourmodel.For suchrestricteddags,their spaceboundof Rg�Ô��� also
appliesdirectly to DFDeques(Ò). Our lower boundfor
 �ËÒ is alsoconsistentwith theupper
boundof RK��� by SimpsonandBurton [51], where � is the maximumspacerequirementover
all possibledepth-firstschedules.In this example, � � ���Õ� - , sincethe right-to-left depth-first
schedulerequires���[� - space.

4.3 Time bound

We now prove the time boundrequiredfor a parallel computationusingalgorithmDFDeques.
This time bounddoesnot include the schedulingcostsof maintainingthe relative orderof the
deques(i.e.,insertinganddeletingdequesin thegloballist of dequesÖ), or findingthe 9H×wØ deque.
Elsewhere[40], wedescribehow theschedulercanbeparallelized,andthenprovethetimebound
including theseschedulingcosts. We first assumethat every actionallocatesat most
 space
(where
 is thememorythresholdusedby theDFDequesalgorithm)andprove the time bound.
Wethenrelaxthisassumptionandprovide themodifiedtimeboundat theendof thissubsection.

Lemma 4.7 Considera parallel computationwith work Ù and depth
-

, in which every action
allocatesat most
 space. Theexpectedtimeto executethis computationon R processors using
theDFDeques(
) schedulingalgorithmis GH&(ÙiB�RÚ� - + . Further, for any VW:SP , thetimerequired
to executethecomputationis GH&(ÙiB�RÛ� - �8<%$3&,�7BFV!+4+ with probabilityat least �_^8V .
Proof: Considerany timestep� of the R -schedule;let ~ Â bethenumberof dequesin Ö at timestep� . We first classifyeachtimestep� into oneof two types(A andB), dependingon thevalueof ~ Â .
We thenboundthetotalnumberof timesteps�ZÜ and �'Ý of typesA andB, respectively.

TypeA: ~ Â r R . At thestartof timestep� , let therebe �Þ
.R stealattemptsin this timestep.Then
theremainingR#^`� processorsarebusyexecutingnodes,thatis, at leastR#^`� nodesareexecuted
in timestep� . Further, at mostRg^8� of theleftmostR dequesmaybeempty;therestmusthave at
leastonethreadin them.

Let ßÛà be the randomvariablewith value1 if the á?×wØ non-emptydequein Ö (from the left
end)getsexactly onestealrequest,and0 otherwise.Then,

�*� ßÛà�� � �I� � ßÛà � �0� � &A�FB�Rx+U�h&T�/^�7B�R@+,â � � . Let ß betherandomvariablerepresentingthetotalnumberof non-emptydequesthatget
exactly onestealrequest12. Becausethereareat least � non-emptydeques,theexpectedvalueofß (assumingthat R r�s) is givenby�n� ß*� r âãà4äZ� �*� ßbà!�� �6� �R �\&,�_^ �R + â � �

11Their modeldoesnot allow allocationof spaceon a globalheap.An instructionin a threadmayallocatestack
spaceonly if thethreadcannotpossiblyhavea living child whentheinstructionis executed.Thestackspaceallocated
by thethreadmustbefreedwhenthethreadterminates.

12For simplicity, weonly countthedequesthatgetexactlyonerequest,insteadof any non-zeronumberof requests.

23

r � zR �\&T�_^ �R + �r � zR �\&T�_^ �R +[� �Lr � zs ��R#�7L
Recallthat R6^C� nodesareexecutedby thebusyprocessors.Therefore,if å is therandomvariable
denotingthetotalnumberof nodesexecutedduringthis timestep,then�*� åÛ� r &wR#^i�F+3� � zs L]Rr Rs Læèç � � � À = � �D) �*� R1^iåÛ��
 R#^ Rs L� R�&,�W^ �s L +
Thequantity &wRÍ^eåé+ mustbenon-negative; therefore,usingtheMarkov’s inequality[39, Theo-
rem3.2],weget �µ� � &wR#^8åb+è:�R�&T�_^ �u L +,�¶� �*� &wR#^8åé+¾�Rgê0�è^ �ë,ì0í
 ê0�è^ �z ì íê0�è^ �ë,ì íæèç � � � À = � �F) �I� � åQ� Ru L �¶� ¹�ÆPî ç�ï î "2ð0) �µ� � å r Ru L �¶: ��ÆP

We will call eachtimestepof typeA successfulif at leastRxB u L nodesgetexecutedduringthe
timestep.Thentheprobabilityof thetimestepbeingsuccessfulis at least �7B¢�ÆP . BecausethereareÙ nodesin theentirecomputation,therecanbeat most

u LÚ�DÙiB�R successfultimestepsof typeA.
Therefore,theexpectedvaluefor ��Ü is atmost

u P?L_�ÔÙiB�R .
The analysisof the high probability boundis similar to that for Lemma4.2. Supposethe

executiontakesmorethan
º P?L7ÙiB�R/� u PI<%$3&,�7BFV!+ timestepsof typeA. Thentheexpectednumberñ

of successfultimestepsof typeA is atleast
º L7ÙiB�R3� u <2$'&,�7BFV!+ . If ò is therandomvariabledenoting

the total numberof successfultimesteps,thenusingthe Chernoff bound[39, Theorem4.2], and
settingó � u P?L7ÙiB�RÛ� u Pµ<2$3&,�7BFV!+ , weget13�I� � òj�Sñô^8ó\B¢�ÆPÔ��� �� ¢¡E£ ^8&Aó\B¢�ÆP�+ zs ñ ¥

13As with the proof of Lemma4.2, we can usethe Chernoff boundherebecauseeachtimestepsucceedswith
probabilityat least ÿ�õ�ÿ4ö , evenif theexactprobabilitiesof successesfor timestepsarenot independent.

24

Therefore, �I� � ò�� u L7ÙiB�R���� L � �]÷ �lz¾�¾�lø� �� ¢¡E£l^ ó zs P?P�&Aó¢BFù»^ u <2$3&,�7BFV!+4+ ¥
 �� ¢¡E£l^ ó zs P?P»�7ó\B?ù ¥� LD� � � ë �� LD� ìlú �±� � öø÷ ó2�(� ù¸û
 LD� öø÷ ó2�(� ù¸û� V
We have shown that the executionwill not completeeven after

º P?L7ÙiB�RE� u PI<%$3&,�7BFV!+ type A
timestepswith probabilityatmost V . Thus,for any VW:SP , �ZÜ � Gg&¤ÙiB�RU�1<2$�&,�7BFV!+4+ with probability
at least �_^8V .
Type B: ~ ÂÛ�ÌR . We now considertimestepsin which the numberof dequesin Ö is lessthanR . As with the proof of Lemma4.2, we split type B timestepsinto phasessuchthat eachphase
hasbetweenR and

s Rô^�� stealattempts.We canthenusea potentialfunctionargumentsimilar
to thededicatedmachinecaseby Arora et al. [3]. Composingphasesfrom only typeB timesteps
(ignoringtypeA timesteps)retainsthevalidity of theiranalysis.Webriefly outlinetheproofhere.
Nodesareassignedexponentiallydecreasingpotentialsstartingfrom theroot downwards.Thus,
a nodeat a depthof � is assigneda potentialof

� z·ó õ �\ü û , andin the timestepin which it is about
to beexecutedon a processor, a weightof

� z·ó¿õ �\ü û � � . They show that in any phaseduringwhich
betweenR and

s R1^�� stealattemptsoccur, thetotal potentialof thenodesin all thedequesdrops
by a constantfactor with at leasta constantprobability. Sincethe potentialat the start of the
executionis

� zºõ � � , theexpectedvalueof thetotalnumberof phasesis GH& - + . Thedifferencewith
our algorithmis thata processormayexecutea node,andthenput up to 2 (insteadof 1) children
of the nodeon the dequeif it runsout of memory;however, this differencedoesnot violate the
basisof their arguments.Sinceeachphasehas ýÞ&wR@+ stealattempts,theexpectednumberof steal
attemptsduring type B timestepsis GH&�R - + . Further, for any VC:þP , we canshow that the total
numberof stealattemptsduring timestepsof type B is GH&�Rô�x& - ��<2$d&T�ÆBFV!+]+4+ with probabilityat
least �è^8V .

Recallthat in every timestep,eachprocessoreitherexecutesa stealattemptthat fails, or exe-
cutesanodefromthedag.Therefore,if ÿÃ���%�A� ö is thetotalthenumberof stealattemptsduringtypeB
timesteps,then�'Ý is atmost &¤Ùþ�gÿÃ���%�A� ö +4B�R . Therefore,theexpectedvaluefor �'Ý is Gg&¤ÙiB�RU� - + ,
andfor any VH:aP , the numberof timestepsis GH&¤ÙiB�R1� - ��<%$3&T�7BFV�+]+ with probabilityat least�_^8V .

The total numberof timestepsin the entireexecutionis ��Ün�Ê�'Ý . Therefore,the expected
numberof timestepsin the executionis GH&(ÙiB�Rg� - + . Further, combiningthe high probability
boundsfor timestepsof typeA andB, (andusingthefactthat

�I� � ß��ÓåÛ�3
 �I� � ß*�¢� �µ� � åÛ�), we
canshow that for any Vé:pP , the total numberof timestepsin theparallelexecutionis GH&(ÙiB�RÞ�- �.<2$3&T�ÆBFV!+]+ with probabilityat least �_^8V .

25

To handleeachlarge allocationof 9 units (where 9 :
), recall that we add �¸9CBF
�� dummy
threads;thedummythreadsareforkedin abinarytreeof depthýÞ&A<%=F>@&A9CBF
E+4+ . Becauseweassume
a depthof ýÞ&M<%=?>I9C+ for every allocationof 9 bytes,this transformationof the dagincreasesits
depthby at mosta constantfactor. If � � is the total spaceallocatedin theprogram(not counting
thedeallocations),thenumberof nodesin thetransformeddagis at most Ù �e� � BF
 . Therefore,
usingLemma4.7,themodifiedtimeboundis statedasfollows.

Theorem 4.8 (Upper bound on time requirement)
The expectedtime to executea parallel computationwith Ù work,

-
depth,and total space

allocation � � on R processorsusingalgorithmDFDeques(
) is GH&¤ÙiB�RÛ�S� � B�R@
a� - + . Further,
for any VÛ:jP , thetimerequiredto executethecomputationis Gg&¤ÙiB�Ré�O� � B�R@
 � - �S<2$3&,�7BFV!+4+
with probabilityat least �_^8V .
In a systemwhereevery memorylocationallocatedmustbezeroed,� � � Gg&¤ÙÉ+ . Theexpected
time boundthereforebecomesGg&¤ÙiB�Rô� - + . This time bound,althoughasymptoticallyopti-
mal [14], is not aslow asthetimeboundof ÙiB�Rb�YGH& - + for work stealing[13].

Trade-off betweenspace,time, and schedulinggranularity . As the memorythreshold
 is
increased,the schedulinggranularityincreases,sincea processorcanexecutemore instructions
betweensteals.In addition,thenumberof dummythreadsaddedbeforelargeallocationsdecreases.
However, thespacerequirementincreaseswith
 . Thus,adjustingthevalueof
 providesatrade-
off betweenrunningtime(or schedulinggranularity),andspacerequirement.

5 Experimentswith Pthreads

Weimplementedthescheduleraspartof anexistinglibrary for PosixstandardthreadsorPthreads[30].
The library is the native, user-level Pthreadslibrary on Solaris2.5 [46, 53]. Pthreadson Solaris
aremultiplexedat the userlevel on top of kernelthreads,which act like virtual processors.The
original schedulerin the Pthreadlibrary usesa FIFO queue. Our experimentswereconducted
on an8 processorEnterprise5000SMPwith 2GB mainmemory. Eachprocessoris a 167MHz
UltraSPARC with a512kB L2 cache.

Having to supportthe generalPthreadsfunctionality preventsevena user-level Pthreadsim-
plementationfrom beingextremelylightweight. For example,a threadcreationis two ordersof
magnitudemoreexpensive thana null function call on the UltraSPARC. Therefore,the useris
requiredto createPthreadsthatarecoarseenoughto amortizethecostof threadoperations.How-
ever, with a depth-firstscheduler, threadsat this granularityhad to be coarsenedfurther to get
goodparallelperformance[42]. We show thatusingalgorithmDFDeques, goodspeedupscanbe
achievedusingPthreadswithout this additionalcoarsening.Thus,theusercannow fix thethread
granularityto amortizethreadoperationcosts,andexpectto getgoodparallelperformancein both
spaceandtime.

ThePthreadsmodelsupportsa binaryfork andjoin mechanism.We modifiedmemoryalloca-
tion routinesmalloc andfree to keeptrackof thememoryquotaof thecurrentprocessor(or

26

kernelthread)andto fork dummythreadsbeforeanallocationif required.Our schedulerimple-
mentationis a simpleextensionof algorithmDFDequesthatsupportsthe full Pthreadsfunction-
ality (includingblocking14 mutexesandconditionvariables)by maintainingadditionalentriesinÖ for threadssuspendedonsynchronizations.Ourbenchmarksarepredominantlynestedparallel,
andmake limited useof mutexesandconditionvariables.For example,thetree-building phasein
Barnes-Hutusesmutexesto protectmodificationsto thetree’scells.However, theSolarisPthreads
implementationitself makesextensiveuseof blockingsynchronizationprimitivessuchasPthread
mutexesandconditionvariables.

Sinceour executionplatform is an SMP with a modestnumberof processors,accessto the
readythreadsin Ö wasserialized. Ö is implementedasa linked list of dequesprotectedby a
sharedschedulerlock. We optimizedthe commoncasesof pushingandpoppingthreadsonto a
processor’s currentdequeby minimizing locking time. A stealrequiresthe lock to be acquired
moreoftenandfor a longerperiodof time.

In theexistingPthreadsimplementation,it is notalwayspossibleto placea reawakenedthread
on the samedequeas the threadthat wakes it up; therefore,our implementationof DFDeques
is anapproximationof the pseudocodein Figure5. Further, sincewe serializeaccessto Ö , and
supportmutexes and condition variables,settingthe memorythreshold
 to infinity doesnot
producethesamescheduleasthespace-efficient work-stealingschedulerintendedfor fully strict
computations[13]. Therefore,we canusethis settingonly asa roughapproximationof a pure
work-stealingscheduler.

We first list the benchmarksusedin our experiments.Next, we comparethe spaceandtime
performanceof the library’s original scheduler(labelled“FIFO”) with an asynchronous,depth-
first scheduler[42] (labelled“ADF”), andthe new DFDequesscheduler(labelled“DFD”) for a
fixed valueof the memorythreshold
 . We alsouseDFDeques(Ò) asan approximationfor a
work-stealingscheduler(labelled“DFD-inf ”). To studyhow the performanceof the schedulers
is affectedby threadgranularity, we presentresultsof the experimentsat two different thread
granularities.Finally, we measurethetrade-off betweenrunningtime,schedulinggranularity, and
spacefor algorithmDFDequesby varying the valueof the memorythreshold
 for oneof the
benchmarks.

5.1 Parallel benchmarks

Thebenchmarkswereeitheradaptedfrom publicly availablecoarsegrainedversions[25, 44, 52,
56], or written from scratchusing the lightweight threadsmodel [42]. The parallelismin both
divide-and-conquerrecursionandparallel loopswasexpressedasa binary treeof forks, with a
separatePthreadcreatedfor eachrecursivecall. Threadgranularitywasadjustedby serializingthe
recursionnearthe leafs. In the comparisonresultsin Section5.2, mediumgranularityrefersto
thethreadgranularitythatprovidesgoodparallelperformanceusingthedepth-firstscheduler[42].
Evenatmediumgranularity, thenumberof threadssignificantlyexceedsthenumberof processors;
thisallowssimplecodingandautomaticloadbalancing,while resultingin performanceequivalent
to hand-partitioned,coarse-grainedcodeusing the depth-firstscheduler[42]. Fine granularity
refersto thefinestthreadgranularitythatallowsthecostof threadoperationsin asingle-processor

14We usetheterm“blocking” for synchronizationthatcausesthecalling threadto block andsuspend,ratherthan
spinwait.

27

Benchmark Inputsize Mediumgrained Finegrained

total FIFO ADF DFD total FIFO ADF DFD

Vol. Rend. ���	��
 vol, �
���	� img 1427 195 29 29 4499 436 36 37

DenseMM ÿ]ö������}ÿ4ö��	� doubles 4687 623 33 48 37491 3752 55 77

SparseMVM 30K nodes,151Kedges 1263 54 31 31 5103 173 51 49

FFTW �����	��� 177 64 13 18 1777 510 30 33

FMM ���¼ÿ]ö�� , 5 mpl terms 4500 1314 21 29 36676 2030 50 54

BarnesHut ���íÿ4ö|ö�� , Plmrmodel 40893 1264 33 106 124767 3570 42 120

DecisionTree 133,999instances 3059 82 60 77 6995 194 138 149

Figure11: Input sizesfor eachbenchmark,total numberof threadsexpressedin theprogramat medium
andfine granularities,andmax. numberof simultaneouslyactive threadscreatedby eachschedulerat both
granularities,for ° = 50,000bytes.“DFD-inf ” createsat mosttwice asmany threadsas“DFD” for Dense
MM, andatmost15%morethreadsthan“DFD” for theremainingbenchmarks.

executionto beup to 5% of the serialexecutiontime15. Theparallelbenchmarksarebriefly de-
scribedbelow.

1. Volume Rendering. This applicationwasadaptedfrom theSplash-2volumerenderingbench-
mark [56, 52]. A ray is castfrom the viewing positionthrougheachpixel in the imageplane;
parallelismis exploitedacrossthesepixels. We createa separatePthreadto handleeachsetof
tiles in theimage,wherea tile is

u��Ku
pixels. Thegranularityis variedby limiting thenumber

of tiles in eachset.Rayscastthroughtilesclosetogetherin theimagearelikely to accessmuch
of thesamevolumedata,thereforeprocessingsuchtiles on thesameprocessorprovidesgood
locality. Eachthreadprocessesupto 100pixel tilesof therenderedimageatmediumgranularity,
andup to 5 tilesat finegranularity.

2. DenseMatrix Multiply . We usea recursive, divide-and-conqueralgorithm to multiply two
densematrices.Eachmatrix is split into four quadrants;thequadrantsaremultipliedrecursively,
andtheresultingmatricesareaddedto getthefinal result.Matrix additionis alsoimplemented
in arecursive,divide-and-conquerfashion.A new threadis forkedto executeeachrecursivecall.
Serialmatrixmultiply is performedat theleavesof therecursiontreewhenthematrix sizefalls
below a specifiedblock size.Suchhierarchicalmatrix multiply algorithmshave beenshown to
achieve high performancedueto their goodcachingbehavior [1, 24, 43]. Themediumgrained
versionusesblocksof size � u�� � u , while thefinegrainedversionuses

� s � � s
blocks.

3. SparseMatrix Vector Multiply . This codeto multiply a sparse,unsymmetricmatrix with a
densevectorwasadaptedfrom theSpark98kernels[44]. Thesparsematrix is generatedfrom
a finite elementmeshusedto simulatethemotionof thegroundafteranearthquake in theSan
Fernandovalley [5, 4]. Eachthreadcalculatesthe productfor a contiguoussetof rows of the
matrix; with a sufficiently large numberof threads,the load is automaticallybalanced.Since
therowsof thematrixareorderedby agraphpartitioner, neighboringrowsmayaccesscommon

15The exceptionwas the densematrix multiply, which we wrote for !��"! blocks,where ! is a power of two.
Therefore,fine granularityinvolvedreducingtheblock sizeby a factorof 4, andincreasingthenumberof threadsby
a factorof 8, resultingin 10%additionaloverhead.

28

data. At mediumgranularity, 64 threadsare forked to performthe multiplication, while 256
threadsareforkedatfinegranularity.

4. FastFourier Transform. WeusedthePthreads-basedcodefrom theFFTWlibrary [25], which
is typically fasterthanall otherpublicly availablecodeto computeone-andmultidimensional
complex discreteFourier transforms(DFTs). The codeimplementsthe Cooley-Tukey algo-
rithm [19]; a new threadis forked to performeachrecursive transformuntil a user-specified
numberof threadshave beencreated.We use64 threadsto computethe 1D FFT at medium
granularity, and512threadsatfinegranularity.

5. Fast Multipole Method. This multithreadedcodeimplementsthe uniform FMM [28], an ÿ -
bodyalgorithmthatcalculatesforcesbetweenÿ bodiesin GH&Aÿ*+ time. Althoughevery phase
in thecomputationwasparallelized,weonly variedthegranularityof themosttime consuming
phase,thetop-down traversal.For eachcell, wefork aseparatethreadto calculateits interaction
with a fixed numberof its neighbors(the cells on its interactionlist). At mediumgranularity,
eachthreadcalculates50interactionsof acellwith itsneighboringcells,whileatfinegranularity,
eachthreadcomputes5 suchinteractions.

6. Barnes-Hut. Thecodefor this Gg&(ÿ�<2=?>µÿ*+'ÿ -bodyalgorithm[6] wasadaptedfrom theSplash-
2 benchmarksuite[56]. All the original load balancingcodewasremovedsinceour simpler,
rewritten versionis automaticallyload balancedby the Pthreadslibrary. As with FMM, we
varied the granularitywithin the most time consumingphase,which is the force calculation.
We rewrotethis phaseto recursively traversedown theoctreeby forking a new threadfor each
subtree,andterminatingthe forking aftera fixednumberof levels. After that, the forceon all
theparticlesin eachsubtreeis calculatedby a separatethread.Sinceparticlesclosetogetherin
thetreearelikely to requirecommondatafor forcecalculation,thisprovidesgoodlocality. The
granularityis adjustedby varyingthecut-off level at which parallelrecursionis terminated.At
mediumgranularity, eachthreadcomputesthe forceson particlesin up to 4 leaf cells (that is,
eachsubtreecontains4 leaveson average),while at fine granularity, eachthreadhandlesone
leaf cell.

7. DecisionTreeBuilder. This dataclassificationprogramimplementsa top-down, divide-and-
conquertree building algorithm ID3 [47], with C4.5-like additionsto handlecontinuousat-
tributes[48]. A new threadis forked to executeeachrecursive call. Theresultingdivide-and-
conquerdag is highly irregular and datadependent,whereeachstageof the recursionitself
involvesa paralleldivide-and-conquerquicksortto split theinstances.We useda speechrecog-
nition datasetwith 4 continuousattributesanda true/falseclassificationastheinput. Thethread
granularityis adjustedby settinga thresholdfor the numberof instances,below which the re-
cursionis executedserially. The thresholdswere set to 2000 and 200 for mediumand fine
granularities,respectively.

Figure11 lists thetotal numberof threadsexpressedin eachbenchmarkat boththethreadgranu-
larities.

29

5.2 Comparisonresults

In all the comparisonresults,we usea memorythresholdof
 � ùFP¢)!P?P?P bytesfor “ADF” and
“DFD” 16. Eachactive threadis allocateda minimum 8kB (1 page)stack. Therefore,the space-
efficient schedulerseffectively conserve stackmemoryby creatingfewer simultaneouslyactive
threadscomparedto the original FIFO scheduler(seeFigure 11). The FIFO schedulerspends
significantportionsof time executingsystemcalls relatedto memoryallocationfor the thread
stacks[42]; thisproblemis aggravatedwhenthethreadsaremadefinegrained.

The8-processorspeedupsfor all thebenchmarksat mediumandfine threadgranularitiesare
shown in Figure12. To concentrateon the effect of the scheduler, and to ignore the effect of
increasedthreadoverheads(up to 5% for all exceptdensematrix multiply) at the fine granular-
ity, speedupsfor eachthreadgranularityarewith respectto the single-processormultithreaded
executionat thatgranularity. Thespeedupsshow thatboth thedepth-firstschedulerandthe new
DFDequesscheduleroutperformthelibrary’soriginalFIFOscheduler. However, at thefinethread
granularity, the new schedulerprovidesbetterperformancethan the depth-firstscheduler. This
differencecanbeexplainedby thebetterlocality andlowerschedulingcontentionexperiencedby
algorithmDFDeques.

Wemeasuredtheexternal(L2) cachemissratesfor eachbenchmarkusingon-chipUltraSPARC
performancecounters.Figure1, which lists the resultsat the fine threadgranularity, shows that
ourschedulerachievesrelatively low cachemissrates(i.e.,resultsin betterlocality).

Threeout of the seven benchmarksmake significantuseof heapmemory. For thesebench-
marks,we measuredthehigh watermarkfor heapmemoryallocationusingthethreeschedulers.
Figure14 shows that algorithmDFDequesresultsin slightly higherheapmemoryrequirement
comparedto thedepth-firstscheduler, but still outperformstheoriginalFIFOscheduler.

TheCilk runtimesystem[26] usesaprovablyspace-efficientwork stealingalgorithmto sched-
ule threads17. Figure13 comparesthespaceperformanceof Cilk with thedepth-firstandDFDe-
quesschedulersfor thedensematrixmultiply benchmark(at thefine threadgranularity).Thefig-
ureindicatesthatDFDequesrequiresmorememorythanthedepth-firstscheduler, but lessmemory
thanCilk. In particular, similar to thedepth-firstscheduler, thememoryrequirementof DFDeques
increasesslowly with thenumberof processors.

5.3 Measuring the tradeoff betweenspace,time, and schedulinggranularity

We studiedthe effect of the sizeof memorythreshold
 on the runningtime, memoryrequire-
ment,andschedulinggranularityusingDFDeques(
). Eachprocessorkeepstrackof thenumber
of timesa threadfrom its own dequeis scheduled,andthe numberof timesit hasto performa
steal.Theratio of thesetwo counts,averagedover all theprocessors,is our approximationof the
schedulinggranularity. The trade-off is bestillustratedin the densematrix multiply benchmark,
which allocatessignificantamountsof heapmemory. Figure15 shows theresultingtrade-off for

16In thedepth-firstscheduler, thememorythreshold� is thememoryquotaassignedto eachthreadbetweenthread
preemptions[42].

17BecauseCilk requiresgcc to compilethebenchmarks(whichresultsin slowercodefor floatingpointoperations
comparedto the native cc compiler on UltraSPARCs), we do not show a direct comparisonof running times or
speedupsof Cilk benchmarkswith ourPthreads-basedsystemhere.

30

 Medium-Grain

 Fine-Grain
 0

 2

 4

 6

 8

 FIFO ADF DFD

(a)VolumeRendering

 0

 2

 4

 6

 8

 FIFO ADF DFD

 0

 2

 4

 6

 8

 FIFO ADF DFD

(b) DenseMatrix Multiply (c) SparseMatrix Multiply

 0

 2

 4

 6

 8

 FIFO ADF DFD

 0

 2

 4

 6

 8

 FIFO ADF DFD

(d) FastFourierTransform (e)FastMultipole Method

 0

 2

 4

 6

 8

 FIFO ADF DFD

 0

 2

 4

 6

 8

 FIFO ADF DFD

(f) BarnesHut (g) DecisionTreeBuilder

Figure 12: Speedupson 8 processorswith respectto single-processorexecutionsfor the threesched-
ulers (the original “FIFO”, the depth-first“ADF”, and the new “DFD” or DFDeques) at both medium
andfine threadgranularities,with ° = 50,000bytes. Performanceof “DFD-inf ” (or DFDeques(# ´), be-
ing very similar to that of “DFD”, is not shown here. All benchmarkswerecompiledusingcc -fast
-xarch=v8plusa -xchip=ultra -xtarget=native -xO4.

31

0

10

20

30

40

50

1 2 3 4 5 6 7 8

M
E

M
O

R
Y

$

PROCESSORS

Cilk
DFD
ADF

Input size

Figure13: Variationof thememoryrequirementwith thenumberof processorsfor densematrix multiply
usingthreeschedulers:depth-first(“ADF”), DFDeques(“DFD”), andCilk (“Cilk”).

 Medium-Grain Fine-Grain

 0

 40

 80

 120

 160

 200

 240

 FIFO ADF DFD DFD-inf

 0

 0.5

 1

 1.5

 2

 2.5

 3

 FIFO ADF DFD DFD-inf

 0

 10

 20

 30

 40

 50

 60

 FIFO ADF DFD DFD-inf

(a)DenseMatrix Multiply (b) FastMultipole Method (c) DecisionTreeBuilder

Figure14: High watermarkof heapmemoryallocation(in MB) on8 processorsfor benchmarksinvolving
dynamicmemoryallocation(% = 50,000bytesfor “ADF” and“DFD”), atboththreadgranularities.“DFD-
inf” is ourapproximationof work stealingusingDFDeques(&).

0

1

2

3

4

5

6

1e+02 1e+04 1e+06

T
im

e
(s

ec
)

K (bytes)

0

20

40

60

80

1e+02 1e+04 1e+06

M
em

or
y

(M
B

)

'

K (bytes)

0

5

10

15

20

1e+02 1e+04 1e+06

S
ch

ed
. g

ra
nu

la
rit

y

'

K (bytes)

(a)Runningtime (b) MemoryAllocation (c) Schedulinggranularity

Figure15: Trade-off betweenrunningtime,memoryallocationandschedulinggranularityusingalgorithm
DFDequesasthe memorythreshold% is varied,for the densematrix multiply benchmarkat fine thread
granularity.

32

0

0.02

0.04

0.06

0.08

0.1

0.12

0 40 80 120 160

S
ch

ed
ul

in
g

G
ra

nu
la

rit
y

Memory Threshold K (KB)

WS
DFD
ADF

400

800

1200

1600

2000

0 40 80 120 160

M
em

or
y

(K
B

)

(

Memory Threshold (KB)

WS
DFD
ADF

(a)Schedulinggranularity (b) Memory

Figure16: Simulationresultsfor a divide-and-conquerbenchmarkwith 15 levelsof recursionrunningon
64 processors.The memoryrequirementandthreadgranularitydecreasegeometrically(by a factorof 2)
down therecursiontree.Schedulinggranularityis shown asapercentageof thetotalwork in thedag.“WS”
is thespace-efficientwork-stealingscheduler, “ADF” is thespace-efficientdepth-firstscheduler, and“DFD”
is ournew DFDequesscheduler.

thisbenchmarkat thefine threadgranularity. As expected,bothmemoryandschedulinggranular-
ity increasewith) , while runningtimereducesas) is increased.

6 Simulating the schedulers

To comparealgorithmDFDequeswith a work-stealingscheduler, we built a simplesystemthat
simulatesthe parallelexecutionof synthetic,nested-parallel,divide-and-conquerbenchmarks18.
Our implementationsimulatesthe executionof the space-efficient work-stealingscheduler[13]
(labeled“WS”), thespace-efficient,asynchronousdepth-firstscheduler[41] (“ADF”), andournew
DFDequesscheduler(labeled“DFD”).

We presentresultsfor one of the syntheticbenchmarkshere19, in which both the memory
requirementandthethreadgranularitydecreasegeometricallydown therecursiontree.A number
of divide-and-conquerprogramsexhibit suchproperties.Schedulinggranularitywasmeasuredas
the averagenumberof actionsexecutedby a processorbetweentwo steals. Figure16 shows
that work stealingresultsin high schedulinggranularityandhigh spacerequirement,the depth
first schedulerresultsin low schedulinggranularityandlow spacerequirement,while DFDeques
allowsschedulinggranularitytobetradedwith spacerequirementbyvaryingthememorythreshold
) .

7 Summary and Discussion

Depth-firstschedulersare space-efficient, but unlike work-stealingschedulers,they requirethe
userto explicitly increasethethreadgranularitybeyondwhat is requiredto amortizebasicthread

18To model irregular applications,the spaceandtime requirementsof a threadat eachlevel of the recursionare
selecteduniformly at randomwith thespecifiedmean.

19Resultsfor otherbenchmarksanda detaileddescriptionof the simulatorcanbe found in the author’s disserta-
tion [40].

33

 Medium-Grain Fine-Grain

 0

 2

 4

 6

 8

 FIFO ADF DFD Cilk

Figure17: Speedupsfor the tree-building phaseof BarnesHut (for 1M particles). The phaseinvolves
extensive useof lockson cellsof the treeto ensuremutualexclusion. The Pthreads-basedschedulers(all
exceptCilk) supportblockinglocks.“DFD” doesnotresultin a largeschedulinggranularitydueto frequent
suspensionof thethreadson locks; therefore,its performanceis similar to thatof “ADF”. Cilk [26] usesa
purework stealerandsupportsspinwaiting locks.For this benchmark,thesingle-processorexecutiontime
onCilk is comparablewith thaton thePthreads-basedsystem.

costs. In contrast,algorithm DFDequesautomaticallyincreasesthe schedulinggranularityby
executingneighboring,fine-grainedthreadson thesameprocessorto yield goodlocality andlow
schedulingcontention.In theory, for nested-parallelprogramswith a largeamountof parallelism,
algorithmDFDequeshasa lower spaceboundthanwork-stealingschedulers.We showedthat in
practice,it requiresmorememorythanadepth-firstscheduler, andlessmemorythanwork stealing.
DFDequesalsoallowstheusertocontrolthetrade-off betweenspacerequirementandrunningtime
(or schedulinggranularity). BecausealgorithmDFDequesallows moredequesthanprocessors,
it canbe easilyextendedto supportblocking synchronizations.For example,experimentswith
a benchmarkthat makesa significantuseof locks indicatethat DFDequeswith blocking locks
resultsin betterperformancethanawork stealerthatusesspin-waiting locks(seeFigure17).

SincePthreadsarenot very lightweight, serializingaccessto the setof readythreads* did
not significantlyaffect theperformancein our implementation.However, serialaccessto * can
becomea bottleneckif threadsareextremelyfine grained,andrequirefrequentsuspensiondueto
memoryallocationor synchronization.To supportsuchthreads,theschedulingoperations(such
asupdatesto *) needto beparallelized[40].

Eachprocessorin DFDequestreatsits dequeasa regular stack. Therefore,in a systemthat
supportsvery lightweight threads,the algorithmshouldbenefitfrom stack-basedoptimizations
suchaslazy threadcreation[27, 38]; thesemethodsavoid allocatingresourcesfor a threadunless
it is stolen,therebymakingmostthreadcreationsnearlyascheapasfunctioncalls.

IncreasingschedulinggranularitytypicallyservestoenhancedatalocalityonSMPswith limited-
size,hardware-coherentcaches.However, ondistributedmemorymachines(or software-coherent
clusters),executingthreadswherethedatapermanentlyresidesbecomesimportant.A multi-level
schedulingstrategy mayallow thethreadimplementationto scaleto clustersof SMPs.For exam-
ple, theDFDequesalgorithmcouldbedeployedwithin a singleSMP, while someschemebased
ondataaffinity is usedacrossSMPs.

An openquestionis how to automaticallyfind theappropriatevalueof thememorythreshold
) , whichmaydependonthebenchmark,andonthethreadimplementation.Onepossiblesolution
is for theuser(or theruntimesystem)to set) to anappropriatevalueafter runningtheprogram
for a rangeof valuesof) on smallerinput sizes.Alternatively, it maybepossiblefor thesystem

34

to keepstatisticsto dynamicallyadjust) to anappropriatevalueduringtheexecution.

Acknowledgements

This researchwasconductedwhile the authorwasat Carnegie Mellon University, andwassup-
portedby ARPA ContractNo. DABT63-96-C-0071. Guy Blelloch, RobertBlumofe, Bwolen
Yang,andtheanonymousrefereesprovidedvaluablefeedbackon previousversionsof this paper.
WealsothankAdamKalai andAvrim Blum for usefuldiscussions.

References
[1] A. Aggarwal, B. Alpern,A. Chandra,andM. Snir. A modelfor hierarchicalmemory. In Proceedings

of the19th AnnualACM Symposiumon Theoryof Computing, pages305–314,New York City, NY,
May 1987.

[2] T. E.Anderson,E.D. Lazowska,andH. M. Levy. Theperformanceimplicationsof threadmanagement
alternatives for shared-memorymultiprocessors.PerformanceEvaluationReview, 17:49–60,May
1989.

[3] N. S.Arora,R. D. Blumofe,andC. G. Plaxton.Threadschedulingfor multiprogrammedmultiproces-
sors.In ACM symp.Parallel AlgorithmsandArchitectures, 1998.

[4] H. Bao, J. Bielak, O. Ghattas,L. F. Kallivokas,D. R. O’Hallaron, J. R. Shewchuk, andJifengXu.
Large-scaleSimulationof ElasticWave Propagationin HeterogeneousMediaon ParallelComputers.
ComputerMethodsin AppliedMechanicsandEngineering, 152(1–2):85–102,January1998.

[5] H. Bao,J. Bielak,O. Ghattas,D. R. O’Hallaron,L. F. Kallivokas,J. R. Shewchuk,andJ.Xu. Earth-
quake GroundMotion ModelingonParallelComputers.In Supercomputing’96, November1996.

[6] J.E. BarnesandP. Hut. A hierarchical+-,/.1032546.87 forcecalculationalgorithm.Nature, 324(4):446–
449,December1986.

[7] F. BellosaandM. Steckermeier. Theperformanceimplicationsof locality informationusagein shared-
memorymultiprocessors.J. Parallel andDistributedComputing, 37(1):113–121,August1996.

[8] G. Blelloch, P. Gibbons,Y. Matias,andG. Narlikar. Space-efficient schedulingof parallelismwith
synchronizationvariables.In Proc.ACM Symp.on Parallel AlgorithmsandArchitectures, pages12–
23,1997.

[9] G.E.Blelloch,S.Chatterjee,J.C.Hardwick,J.Sipelstein,andM. Zagha.Implementationof aportable
nesteddata-parallellanguage.J. Parallel andDistributedComputing, 21(1):4–14,April 1994.

[10] G. E. Blelloch, P. B. Gibbons,andY. Matias. Provably efficient schedulingfor languageswith fine-
grainedparallelism. In Proc. ACM symp.Parallel Algorithmsand Architectures, pages1–12,Santa
Barbara,California,July 17–19,1995.

[11] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson,and K. H. Randall. An analysisof dag-
consistentdistributedshared-memoryalgorithms. In Proc. ACM Symposiumon Parallel Algorithms
andArchitectures, pages297–308,June1996.

35

[12] R. D. Blumofe,C. F. Joerg, B. C. Kuszmaul,C. E. Leiserson,K. H. Randall,andY. Zhou. Cilk: An
efficientmultithreadedruntimesystem.J. Par. andDistr. Computing, 37(1):55–69,August1996.

[13] R.D. BlumofeandC.E.Leiserson.Schedulingmultithreadedcomputationsby work stealing.In Proc.
Symp.Foundationsof ComputerScience, pages356–368,1994.

[14] R. P. Brent. Theparallelevaluationof generalarithmeticexpressions.J. ACM, 21(2):201–206,April
1974.

[15] F. W. BurtonandM. R. Sleep.Executingfunctionalprogramsonavirtual treeof processors.In Proc.
ACMConf. onFunctionalProgrammingLanguagesandComputerArchitecture, pages187–194,1981.

[16] R. Chandra,A. Gupta,andJ.L. Hennessy. Datalocality andloadbalancingin COOL. In Proc.ACM
symp.Principles& Practiceof Parallel Programming, pages239–259,1993.

[17] K. M. ChandyandC. Kesselman.Compositionalc++: compositionalparallelprogramming.In Proc.
Intl. Wkshp.on LanguagesandCompilers for Parallel Computing, pages124–144,New Haven,CT,
August1992.

[18] S.A. Cook.A taxonomyof problemswith fastparallelalgorithms.InformationandControl, 64:2–22,
1985.

[19] J. W. Cooley andJ. W Tukey. An algorithmfor themachinecomputationof complex fourier series.
Mathematicsof Computation, 19:297–301,Apr. 1965.

[20] T. H. Cormen,C. E. Leiserson,andR. L. Rivest.Introductionto algorithms. MIT PressandMcGraw-
Hill BookCompany, 6thedition,1992.

[21] D. E. Culler andG. Arvind. Resourcerequirementsof dataflow programs. In Proc. Intl. Symp.on
ComputerArchitecture, pages141–151,1988.

[22] D. R. Engler, G. R. Andrews, andD. K. Lowenthal.Filaments:Efficient supportfor fine-grainparal-
lelism. TechnicalReport93-13,Universityof Arizona.Dept.of ComputerScience,1993.

[23] R. Feldmann,P. Mysliwietz, andB. Monien. Studyingoverheadsin massively parallelmin/max-tree
evaluation(extendedabstract).In ACM Symp.Parallel AlgorithmsandArchitectures, pages94–103,
1994.

[24] Frigo, Leiserson,Prokop, andRamachandran.Cache-oblivious algorithms. In FOCS:IEEE Sympo-
siumonFoundationsof ComputerScience(FOCS), 1999.

[25] M. Frigo andS. G. Johnson.The fastestfourier transformin thewest. TechnicalReportMIT-LCS-
TR-728,MassachusettsInstituteof Technology, September1997.

[26] M. Frigo, C. E. Leiserson,andK. H. Randall. The implementationof theCilk-5 multithreadedlan-
guage.In Proc.ACM Conf. on ProgrammingLanguage DesignandImplementation, pages212–223,
1998.

[27] S.C.Goldstein,K. E.Schauser, andD. E.Culler. Enablingprimitivesfor compilingparallellanguages.
In WorkshoponLanguages,Compilers,andRun-TimeSystemsfor ScalableComputers, May 1995.

[28] L. Greengard.Therapidevaluationof potentialfieldsin particlesystems. TheMIT Press,1987.

36

[29] High PerformanceFortranForum.High performancefortranlanguagespecificationvertion1.0,1993.

[30] IEEE. InformationTechnology–PortableOperatingSystemInterface(POSIX)–Part1: SystemAppli-
cation:ProgramInterface(API) [C Language].IEEE/ANSIStd1003.1,1996Edition.

[31] V. Karamcheti,J.Plevyak,andA. A. Chien. Runtimemechanismsfor efficient dynamicmultithread-
ing. J. Parallel andDistributedComputing, 37(1):21–40,August1996.

[32] R. KarpandY. Zhang.A randomizedparallelbranch-and-boundprocedure.In Proc.Symp.Theoryof
Computing, pages290–300,1988.

[33] D. A. Kranz,R. H. Halstead,Jr., andE. Mohr. Mul-T: A High-PerformanceParallelLisp. In Proc.
ProgrammingLanguage DesignandImplementation, Portland,Oregon,June21–23,1989.

[34] E.P. MarkatosandT. J.LeBlanc.Locality-basedschedulingin shared-memorymultiprocessors.Tech-
nicalReport94,Inst for ICS-FORTH, Heraklio,Crete,Greec,1993.

[35] EvangelosMarkatosandThomasLeBlanc.Locality-basedschedulingin shared-memorymultiproces-
sors.TechnicalReportTR93-0094,ICS-FORTH, Heraklio,Crete,Greece,1993.

[36] P. H. Mills, L. S. Nyland, J. F. Prins,J. H. Reif, andR. A. Wagner. Prototypingparallelanddis-
tributedprogramsin Proteus.TechnicalReportUNC-CH TR90-041,ComputerScienceDepartment,
Universityof NorthCarolina,1990.

[37] T. Miyazaki,C. Sakamoto,M. Kuwayama,L. Saisho,andA. Fukuda.Parallelpthreadlibrary (PPL):
user-level threadlibrary with parallelismandportability. In Proc. Intl. ComputerSoftware andAppli-
cationsConf. (COMPSAC), pages301–306,November1994.

[38] E. Mohr, D. Kranz,andR. Halstead.Lazy taskcreation:A techniquefor increasingthegranularityof
parallelprograms.IEEETrans.onParallel andDistributedSystems, 1990.

[39] R. Motwani and P. Raghavan. RandomizedAlgorithms. CambridgeUniversity Press,Cambridge,
England,June1995.

[40] G. J. Narlikar. Space-Efficient Schedulingfor Parallel, MultithreadedComputations. PhD thesis,
Carnegie Mellon University, 1999.AvailableasCMU-CS-99-119.

[41] G. J.NarlikarandG.E. Blelloch. Space-efficient implementationof nestedparallelism.In Proc.ACM
SIGPLANSymp.PrinciplesandPracticeof Parallel Programming, pages25–36,June1997.

[42] G. J.Narlikar andG. E. Blelloch. Pthreadsfor dynamicandirregularparallelism.In Proc.of Super-
computing’98, November1998.

[43] Girija J.NarlikarandGuyE. Blelloch. Pthreadsfor dynamicparallelism.TechnicalReportCMU-CS-
98-114,ComputerScienceDept.,CarnegieMellon University, April 1998.

[44] D. O’Hallaron. Spark98:Sparsematrix kernelsfor sharedmemoryandmessagepassingsystems.
TechnicalReportCMU-CS-97-178,Schoolof ComputerScience,Carnegie Mellon University, 1997.

[45] J.Philbin,J.E., O. J.Anshus,andC. C. Douglas.Threadschedulingfor cachelocality. In Intl. Conf.
Architectural Supportfor ProgrammingLanguagesandOperatingSystems, pages60–71,1996.

37

[46] M. L. Powell, S. R. Kleiman, S. Barton, D. Shah,D. Stein, and M. Weeks. SunOSmulti-thread
architecture.In Proc.Winter1991USENIXTechnicalConferenceandExhibition, pages65–80,Dallas,
TX, USA, January1991.

[47] J.R. Quinlan.Inductionof decisiontrees.Machinelearning, 1(1):81–106,1986.

[48] J.R. Quinlan.C4.5: Programsfor MachineLearning. MorganKaufmann,SanMateo,CA, 1993.

[49] Jr. R. H. Halstead. Multilisp: A languagefor concurrentsymbolic computation. ACM Trans.on
ProgrammingLanguagesandSystems, 7(4):501–538,1985.

[50] C. A. Ruggieroand J. Sargeant. Control of parallelismin the manchesterdataflow machine. In
G. Kahn, editor, Functional Programming Languages and ComputerArchitecture, pages1–16.
Springer-Verlag,Berlin, DE, 1987.

[51] D. J. SimpsonandF. W. Burton. Spaceefficient executionof deterministicparallelprograms.IEEE
TransactionsonSoftware Engineering, 25(3),May/June1999.

[52] J.P. Singh,A. Gupta,andM. Levoy. Parallelvisualizationalgorithms:Performanceandarchitectural
implications.IEEEComputer, 27(7):45–55,July1994.

[53] D. SteinandD. Shah. Implementinglightweightthreads.In Proc.Summer1992USENIXTechnical
ConferenceandExhibition, pages1–10,SanAntonio,TX, 1992.USENIX.

[54] M. T. VandevoordeandE. S.Roberts.WorkCrews: anabstractionfor controllingparallelism.Intl. J.
Parallel Programming, 17(4):347–366,August1988.

[55] B. Weissman.Performancecountersandstatesharingannotations:aunifiedapproachto threadlocal-
ity. In Intl. Conf. onArchitectural Supportfor ProgrammingLanguagesandOperatingSystems, pages
262–273,October1998.

[56] S.C. Woo,M. Ohara,E. Torrie,J.P. Singh,andA. Gupta.TheSPLASH-2programs:Characteriation
andmethodologicalconsiderations.In Proc. Intl. Symp.ComputerArchitecture, pages24–37,June
1995.

38

