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Abstract

Three-valued models, in which properties of a system
are either true, false or unknown, have recently been ad-
vocated as a better representation for reactive program ab-
stractions generated by automatic techniques such as predi-
cate abstraction. Indeed, for the same cost, model checking
three-valued abstractions can be used to both prove and dis-
prove any temporal-logic property, whereas traditional con-
servative abstractions can only prove universal properties.
Also, verification results can be more precise with general-
ized model checking, which checks whether there exists a
concretization of an abstraction satisfying a temporal-logic
formula. Since generalized model checking includes satis-
fiability as a special case (when everything in the model is
unknown), it is in general more expensive than traditional
model checking. In this paper, we study how to reduce gen-
eralized model checking to model checking by a temporal-
logic formula transformation, which generalizes a trans-
formation for propositional logic known as semantic min-
imization in the literature. We show that many temporal-
logic formulas of practical interest are self-minimizing, i.e.,
are their own semantic minimizations, and hence that model
checking for these formulas has the same precision as gen-
eralized model checking.

1 Introduction

Abstraction is key to extend the scope of formal verifi-
cation to systems with infinite or very large state spaces,
as illustrated by recent work on software model checking
using predicate abstraction in tools such as SLAM [1] and
BLAST [14], among others. The relation between a con-
crete system and its abstraction is traditionally a simulation,
which allows the verification of universal properties only.

Recently, a new version of the “abstract-check-refine”
process of [1, 14] has been advocated [12]:

1. Abstract: compute a 3-valued abstraction
���

for
which properties of the concrete system

���
are either���	��


, ��
���� 
 or � (denoting “unknown”).
2. Check: given any temporal-logic formula � ,

(a) (3-valued model checking) check whether
� �

satisfies � ; if the result is
���	��


(��
���� 
 ) then stop,
the property is proved (resp. disproved) for

� �
;

if the result is � (unknown), go to Step 2(b).

(b) (generalized model checking) check whether
there exist concretizations

���
and
���

of
���

such that
���

satisfies � and
���

satisfies ��� ; if���
(resp.

���
) does not exist, � is proved (resp.

disproved) for
���

; otherwise go to Step 3.
3. Refine: refine

� �
(possibly using a counter-example

found in Step 2). Then go to Step 1.

This new procedure strictly generalizes the traditional
one in several ways: any temporal-logic formula can be
checked (not just universal properties), and all correctness
proofs and counter-examples obtained are guaranteed to be
sound (i.e., hold on

� �
) for any property. Remarkably,

Steps 1, 2(a) and 3 can be done with 3-valued models at the
same cost as with traditional conservative 2-valued mod-
els [4, 11, 12]. In contrast, generalized model checking
(Step 2(b)) can be more expensive than model checking [4],
since it includes satisfiability as a special case (when ev-
erything in the model is unknown), but it can also be more
precise. For instance, consider the program �

program P() �
x,y = 1,0;
x,y = 2*f(x),f(y);
x,y = 1,0;�

where x and y denote int variables, f : int ->
int denotes some unknown function, and the notation
“x,y = 1,0” means variables x and y are simultaneously
assigned values 1 and 0, respectively. Consider the LTL
formula � �"!$#&%('�)+*,#.-0/��1#.%�2 with the two predicates



#.-�� “is x odd?” and #&%�� “is y odd?”, and where ! means
“eventually” while ) means “always.” (See [8] for a defi-
nition of the temporal logics used in this paper.) As shown
in [12], model checking � against � returns the value “un-
known,” while generalized model checking can prove that
no concretization of program � (i.e., f) satisfies � .

In this paper, we study for which temporal-logic for-
mulas generalized model checking can improve precision
over model checking. More generally, we study how to
reduce generalized model checking for a model

�
and a

formula � to model checking
� � � ��� via a temporal-

logic formula transformation ���� ��� and independently
of any model

�
. This reduction generalizes a transforma-

tion for propositional logic [2] called semantic minimiza-
tion in [28]. We show that propositional modal logic and
the modal mu-calculus [22] ( 	�
 ) are closed under semantic
minimizations, but that the logics CTL, LTL and CTL* are
not. We study the complexity of computing semantic mini-
mizations, and show that the problem is as hard as the satis-
fiability problem. We then provide sufficient syntactic con-
ditions for the efficient identification of many semantically
self-minimizing temporal-logic formulas, i.e., formulas that
are their own semantic minimizations. We observe that, for
self-minimizing formulas, model checking has always the
same precision as generalized model checking, and show
that many temporal-logic formulas of practical interest are
self-minimizing.

Related Work Blamey studies partial-valued logics and
their applications to linguistics and model theory in [2]. In
particular, he shows in Theorem I.3.3 of [2] that all for-
mulas of propositional logic have (in the terminology of
[28] adopted in this paper) a semantic minimization. The
proof rests on the information-theoretic monotonicity of
van Fraassen’s super-valuational meaning [31], which cor-
responds to the thorough semantics in this paper.

Reps et al. [28] use BDD-based prime-implicant algo-
rithms for an efficient implementation of computing seman-
tic minimizations for formulas of propositional logic.

Temporal logics for which satisfiability is efficiently de-
cidable have been widely studied in the literature. We men-
tion work by Demri & Schnoebelen [6], Emerson et al. [9],
and Henzinger et al. [15]. In contrast, generalized model
checking for branching-time logics can be reduced to a sat-
isfiability problem of the form SAT *���� '�� 2 [4], where
�
� is the characteristic formula of a model

�
, and our

work can be viewed in this context as seeking to reduce sat-
isfiability checks SAT *�� � ' � 2 to model checks

� � � ���
independently of

�
and � � .

Outline of paper In Section 2 we review the notions of
partial models, their refinement, and their compositional
and thorough temporal-logic semantics. We define and
prove basic properties of semantic minimization for tem-
poral logics in Section 3. The existence of semantic mini-

mization for temporal logics without and with fixed points
is the subject of Sections 4 and 5, respectively. In Sec-
tion 6 we detect self-minimizing formulas using automata-
theoretic techniques, provide grammars that efficiently con-
struct such formulas, and show that these grammars are “op-
timal” and cover a wide range of specification patterns. Ap-
plications of self-minimization are briefly featured in Sec-
tion 7 and Section 8 concludes.

2 Partial Kripke Structures and Refinement

Let �
�������� be a finite set of atomic propositions. We
endow a set � ���	��
�� � � ��
���� 
 � of truth values with two partial
orders: the information ordering ��� , where � is the least
element and

���	��

and ��
���� 
 are maximal elements: ��������	��
�� ��
���� 
 ; and the truth ordering � � with a strict chain

��
���� 
�� � � � � ���	��
 . We identify the models of interest.

Definition 1 1. A partial Kripke structure [3]
� �

*! �#"$� 
+2 consists of a finite nonempty set of states  ,
a total transition relation

"&%  (') , and a labelling
function 
*�+ ,'-�
�.�/� ���	��
0� � � ��
�� � 
 � ; 
 *21 � #�2 is the
truth value of # at state 1 . We refer to

�
as a “model”

if this is convenient. A pointed model * � � 1 2 is a model�
with a distinguished start state 1 . The tree structure

of * � � 1 2 is called a 3-valued labelled tree.

2. For models
�43 � *! 3 �#" 3 � 
 3 2 with 5 �76 �98 the com-

pleteness preorder [3] is the greatest relation : %
 <;�'= �> such that 10;?:@1A> implies

(a) B #�C)�
�D�+
 ; *!1 ; � #�2E� � 
 > *21 > � #�2 ,
(b) B0*21F; � 1G� ; 2EC " ;�H *21A> � 1A�> 2IC " >��+1A�; :-1A�> , and

(c) B *!1 > � 1G�> 2EC " > H *21 ; � 1A� ; 2IC " ; �+1A�; :-1A�> .
The partiality in models resides in labels 
 *21 � #�2 � �

and the completeness preorder states that such labels may
be completed into

���	��

or ��
���� 
 in a co-inductive manner.

(See [13, 3] for other ways to model partiality.) This par-
tiality leads to two ways of checking properties written in
propositional modal logic (PML), whose syntax is

�)�J��� # � ��� � �0' � ��KML � (1)

where # ranges over �N� . We write � ; /+� > for � *���� '+��� > 2 ,
��;O� �
> for *�����; / �
> 2 , ��;OP �
> for *���;O� �
>&2�' *��
>��
��;.2 , and Q L � for � KML ��� subsequently.

A compositional semantics exploits algebraic structure
on � ��
���� 
�� � �&���	��
 � : Kleene’s negation [21] R 
TS * ��
�� � 
 2 ����	��


, R 
TS * ���	��
 2 � ��
�� � 
 , and R 
TS * � 2 � � ; a maximumU 
GV in the truth ordering � � (where U 
WV *!X 2 � ��
���� 
 2 ;
and a minimum UZY R in the truth ordering. We define the
truth value [ * � � 1 2 � � �+\ of this compositional semantics at
state 1 in model

�
as in [3]:

2



[ * � � 1 2 � � #A\ � 
 *!1 � #�2 (2)

[ * � � 1 2 � � ���N\ � R 
TS * [ * � � 1 2 � � �+\ 2
[ * � � 1 2 � � ��;�' �N> \ � UZY R 3 � ;�� >M[ * � � 1 2 � � � 3 \
[ * � � 1 2 � � KML �+\ � U 
GV ��� � ���
	���
 [ * � � 1 � 2 � � �+\��

Similar 3-valued semantics can be defined for more ex-
pressive logics, e.g., LTL, CTL, CTL* and 	�
 [4].

A second, non-compositional semantics is based on the
completeness preorder. Since a Kripke structure is a par-
tial Kripke structure whose labeling function 
 satisfies

�� ; * ������2 � ��� , we define � [ � � 1W\ as the set of pairs
*�� ��� 2 where � is a Kripke structure with distinguished
state

�
and * � � 1 2 : *�� ��� 2 . Elements of � [ � � 1 \ are called

the completions of * � � 1 2 [4]. The generalized model-
checking (GMC) problem asks whether there exists a com-
pletion of a given partial Kripke structure that satisfies a
given temporal-logic property. It is worth noticing that
GMC generalizes both model checking (when the model is
complete) and satisfiability (when the model is * ��� � 1 � 2 ,
with a sole state 1 � , sole transition *21 � � 1 � 2 C "

, and

 *!1 � � #�2 � � for all # C �
� satisfying * ��� � 1 � 2 : *�� ��� 2
for all *�� ��� 2 ). The GMC problem is in turn used to define
the non-compositional thorough interpretation [4]. Subse-
quently we write TL for any temporal logic (PML, LTL,
CTL, etc.) with a semantics over 2-valued Kripke struc-
tures.

Definition 2 Let * � � 1 2 be a pointed model and �DC��� .

1. The decision problem of generalized model checking
[4] !#"%$ * � � 1 � � 2 returns “

���	��

” if there is a com-

pletion of * � � 1 2 satisfying � , and “��
���� 
 ” otherwise.

2. The thorough interpretation [4] [ * � � 1 2 � � �+\�& has
value “

���	��

” if all *�� ��' 2EC(� [ � � 1W\ satisfy � ; “��
���� 
 ”

if no *�� ��' 2IC)� [ � � 1W\ satisfies � ; and � otherwise.

Kleene’s alignment operator [21] *���� ��
���� 
M� � �&���	��
 ��'
� ��
���� 
�� � �&���	��
 ��� � ��
�� � 
�� � �.���	��
 � returns ��
���� 
 if both
arguments are ��
���� 
 , returns

���	��

if both arguments are��+-,/.

, and returns � otherwise. For any formula � of a
branching-time temporal logic (we write BTL for any such
logic subsequently), this operator connects the thorough in-
terpretation to the GMC problem as

[ * � � 1 2 � � �+\0&1� R 
TS *�!#"%$ * � � 1 � ��� 2 21*2!#"%$ * � � 1 � � 2
for all pointed models * � � 1 2 . (The formalization for LTL
is omitted due to lack of space and is slightly different as
[ * � � 1 2 � � �+\0& is captured by one instance of !#"%$ [12].)

A similar decomposition for the compositional seman-
tics for U C �43 �-5 � , �13 � 5

, and � 5 ��3 is [4]
6 * � � 1 2 � �87 # iff 
 *!1 � #�2 � ���	��


6 * � � 1 2 � �#9 # iff 
 *!1 � #�2������
�� � 

6 * � � 1 2 � �;: ��� iff * � � 1 2��� �#<=: �
6 * � � 1 2 � �;: �('?> iff * � � 1 2 � �;: � and * � � 1 2 � �;:@>
6 * � � 1 2 � �;: KML � iff H *!1 ��A � 1?� 2 C " , * � � 1A� 2 � �;: �

where
� �B7 (

� �C9 ) is a pessimistic (optimistic) interpretation
as it maps all � -labelings in

�
to ��
���� 
 (respectively,���	��


) [4]. In [18], the superscript D is written E with the
intent that * � � 1 2 � �#F � means � is asserted to hold in
all completions of * � � 1 2 , while the superscript G is writ-
ten H and * � � 1 2 � �#I � states that � may be consistent
in some completion of * � � 1 2 . For all

�
, 1 , and � , we

have [ * � � 1 2 � � �+\ � * * � � 1 2 � � 7 � 2�* * * � � 1 2 � � 9 � 2
by [4, 19]. The semantics [ * � � 1 2 � � �+\ is sound with re-
spect to [ * � � 1 2 � � �+\ & [4]:

B1* � � 1 2 � �O�<[ * � � 1 2 � � �+\ �O�@[ * � � 1 2 � � �+\ & � (3)

So if [ * � � 1 2 � � �+\ discovers that all (value
���	��


), re-
spectively no (value � 
���� 
 ), completions of * � � 1 2 satisfy
� , this is indeed so. However, the converse does not hold,
as illustrated by the following example.

Example 1 Let � be
KML #?; ' * KML #W> / � KML #W> 2 , which is

neither a tautology nor unsatisfiable. Let
�

have one state
1 , one transition *21 � 1 2OC " , 
 *21 � # > 2 � � , and 
 *21 � # ; 2 ����	��


. Then [ * � � 1 2 � � �+\ � � but [ * � � 1 2 � � �+\0&1� ���	��
 .
Thus, the compositional semantics [ * � � 1 2 � � �+\ can be

less precise than the thorough semantics [ * � � 1 2 � � �+\�& .
But computing [ * � � 1 2 � � � \ & is generally more expen-
sive. Indeed, computing [ * � � 1 2 � � �+\ can be reduced
to two standard model checking problems while comput-
ing [ * � � 1 2 � � �+\ & may require solving two GMC prob-
lems [4, 12]. For PL, PML and CTL, model check-
ing can be solved in linear time, while GMC is NP-
complete, PSPACE-complete and EXPTIME-complete (re-
spectively) [4], which match the complexity of the satisfia-
bility problems for these respective logics. For LTL, GMC
is EXPTIME-complete [4], while model checking and sat-
isfiability are “only” PSPACE-complete.

3 Semantic Minimization

We ask for which temporal-logic formulas � the analysis
[ * � � 1 2 � � �+\ is as precise as [ * � � 1 2 � � � \�& , for all pointed
models * � � 1 2 . If this is not the case, we ask whether this
loss of precision can be restored through a change of � into
a new formula ��� , uniformly for all * � � 1 2 , without chang-
ing the compositional semantics. Such a new formula ��� is
called a semantic minimization of � in [28], in the context
of PL. We generalize this concept to temporal logics.

Definition 3 Let � be a formula of BTL.

3



1. An optimistic semantic minimization �19 of � is a for-
mula of BTL such that, for all pointed models * � � 1 2 ,

* � � 1 2 � � 9 � 9 iff !#"%$ * � � 1 � � 2 � (4)

2. A pessimistic semantic minimization � 7 of � is a for-
mula of BTL with, for all pointed models * � � 1 2 ,

* � � 1 2 � � 7 � 7 iff R 
TS *0!#"%$ * � � 1 � ��� 2 2/� (5)

3. A semantic minimization of � is a pair *�� 7 � �/9.2 of for-
mulas of BTL such that � 7 and �/9 are pessimistic and
optimistic semantic minimizations of � , respectively.

4. Formula � is optimistically (pessimistically) self-
minimizing iff � is an optimistic (pessimistic) semantic
minimization of itself (respectively). We say that � is
semantically self-minimizing if it is both optimistically
and pessimistically self-minimizing.

5. We write � � > to state that � and > share no #$C �
� ,
and write ��� ( ��� ) if the negation normal form of � is
known to be an existential (resp., universal) one.

Below we use � � > for proving the self-minimization of
some patterns. E.g. if � � > C.�
� and � �� > , then � � >
and � � ��� � ��� . By (3) we may establish that � is opti-
mistically (pessimistically) self-minimizing by proving the
only-if-part of (4) (the if-part of (5), respectively) only. If �
has a semantic minimization *�� 7 � �/9 2 , all thorough checks
of � can be reduced to two compositional checks such that
this reduction is independent of the pointed model:

B � � 1<��[ * � � 1 2 � � � \ & � * * � � 1 2 � � 7 � 7 2�*+* * � � 1 2 � � 9 � 9 2/�
In particular, [ * � � 1 2 � � �+\0& �&[ * � � 1 2 � � �+\ whenever � is
semantically self-minimizing.

To illustrate the nature of the problem of finding
pessimistic and optimistic semantic minimizations for
temporal-logic formulas, we now present some formulas
and their semantic minimizations. We write *���� 2�7 � ���/9
for “the negation of an optimistic semantic minimization of
� is a pessimistic semantic minimization of ��� ” etc.

Proposition 1 Let � � > �����
	 C BTL. Then

1. *���� 207 � ���/9 and *���� 2�9 � ��� 7 ,

2. *��0'(> 207(� � 7 ')> 7 and *�� /)>+2�9 � �/9�/(> 9 ,
3. * KML � 2�9 � KML �/9 and * KML � 2�7 � KML � 7 , and

4. * Q L � 2�9 � Q L �/9 and * Q L � 2�7(� Q L � 7 .
5. If � � � > � and

� � � 	 � , then * � � / 	 � 207 � � 7� / 	 7� and
*���� '(>�� 2�9 � �/9� ')> 9� .

Example 2 Semantically self-minimizing are all # C �
�
and literals (by Proposition 1(1)). By item 2, all # /��1#
are optimistically self-minimizing but do not meet the as-
sumptions of item 5 and are indeed not pessimistically self-
minimizing. So # ' �1# is pessimistically but not opti-
mistically self-minimizing by item 1. By items 4 and 5,
Q L # ; � KML �1# > is semantically self-minimizing.

The absence of the dual of item 2 above for formulas
with shared atomic propositions makes the notion of seman-
tic minimization non-trivial in general. Semantic minimiza-
tions are invariant under 2-valued equivalence.

Proposition 2 Let � and � � be semantically equivalent over
2-valued models. If > is an optimistic (pessimistic) seman-
tic minimization for � , then > is also an optimistic (pes-
simistic) semantic minimization for ��� (respectively).

The formulas of propositional logic (PL) are obtained
from the grammar for PML by dropping the clause forKML � in (1). Models are 3-valued functions 
*� �N� �
� ��
�� � 
M� � �.���	��
 � . We write ��
�� for the set of all such mod-
els and

8 
�� for the set of those models that do not have � in
their image (where we occasionally identify 
.C 8 
�� with
its characteristic set 
B� ; * ���	��
 2 ). For PL, the completeness
preorder of Definition 1(2) between models 
 and 
 � is the
point-wise one: 
O:-
 � iff for all #�C=�
� , 
 *�#�2E� � 
 ��*,#�2 .

Blamey [2] shows that the compositional semantics
in (2) applied to models for PL is functionally complete
for all functions ��� � ��
�� � 
M� � �.���	��
 ���4� � ��
���� 
M� � �.���	��
 �
( ��� 6 ) that are monotone with respect to the information
ordering � � . As � � [ 
 � � � \ & is monotone in that way,
one can secure the following, implicit in Theorem I.3.3 of
[2] and more explicit in [28], in our terminology.

Proposition 3 ([2, 28]) Every formula � of PL has an opti-
mistic semantic minimization � 9 in PL and, by Prop. 1(1),
a pessimistic semantic minimization � 7 in PL as well.

4 Semantic Minimization for PML

We now generalize Proposition 3 from PL to PML. This
proof relies on the bounded modal depth of PML formulas
and determines the model complexity of GMC for PML.

To prove the existence of semantic minimizations, we
use automata-theoretic techniques. We refer to [24] for no-
tions of automata theory that will be used.

Theorem 1 Every formula of PML has a semantic mini-
mization in PML.

Proof: (Sketch) Given a formula � C�� "  , we describe
how to construct an optimistic semantic minimization �19�C
� "  . (The case for pessimistic semantic minimizations is
similar as � 7 � � *���� 2 9 by Proposition 1(1).) The idea of
the construction is simple: define a tree automaton ���� that
accepts a 3-valued labeled tree ��� iff there exists a 2-valued
tree � such that ���0:�� and � satisfies � ; and then translate
this automaton back into a PML formula � 9 .

To construct ���� , we first build a nondeterministic tree
automaton � � � * 8 
 � �"!)�  � 1$# �"%N�'& 2 that accepts exactly
the computation trees satisfying � [24, 26]. � � has

8 
 �

4



for input alphabet, a set  of states (which may contain� * 8�� ��� � � 	 2 states), an initial state 1 # C  , a finite set!�� � of arities, a transition function
% *!1 � E ��' 2 %  ��

for each 1 C  , E C 8 
�� and
' C !

, and an acceptance
condition

&
. Given � � , we define the desired nondeter-

ministic tree automaton ���� � * � 
�� �'!)�  � 1 # ��% � �"& 2 that
accepts exactly the 3-valued computation trees of partial
Kripke structures for which there exists a 2-valued Kripke
structure completion satisfying � . For any E�� C ��
�� the
transition function

% � of � � � is defined as

% � *!1 � E � � ' 2 � 	

F�
�� F
% *21 � E � ' 2/� (6)

By construction and definition of the completeness preorder
: , it is immediate that ���� accepts a 3-valued tree ��� iff
there exists a 2-valued tree � such that � � :�� and � is
accepted by � � . As � C � "  , � � cannot distinguish
trees at depths greater than

� � � . By construction, this prop-
erty carries over to ���� , and allows for re-encoding ���� as a
� 9�C � "  of modal depth

� * � � � 2 .
We illustrate the construction of ���� and �/9 . Below,

“
% *!1 # � E ��' 2 � ���	��
 ” means “

% *!1 # � E � ' 2+� �$*!1 � � � � � � 1 � 2 �
with 1 � C &

and
% *21 � � E ��' 2 � �$*21 � � � � � � 1 � 2 � ” ( 1 � is

an accepting sink state), while “
% *!1 # � E � ' 2 ����
���� 
 ” means

“
% *!1 # � E ��' 2 � �$*!1 � � � � � � 1 � 2 � , 1 � �C &

, and
% *!1 � � E � ' 2 �

�$*!1 � � � � � � 1 � 2 � ” ( 1 � is a non-accepting sink state).

Example 3 (Tautology in PL) Let � � # / �1# and �N� �
� #M� . For � � ,

% *!1 # � � #M� � ' 2�� ���	��
 and
% *!1 # � ��� � ' 2�� ���	��
 .

Thus, by definition, ���� is such that
% � *!1 # � � # �� ��� � ' 2 ����	��


. Thus, � 9 is semantically equivalent to
���	��


.

Example 4 (Non self-minimizing PML formula)
Consider the PML formula � � KML #F; ' Q L *��1#A; /�#W> 2 ,
whose sub-formulas are neither tautologies nor un-
satisfiable. Now � � is such that, for any E C 8 
�� ,% *21 # � E � ' 2 � �$*21 ; � � � � � 1 � 2

� 1 3 �.1 � and 1�
 � 1 � � B��)�� 59�
(intuitively, 1?� takes care of the

KML
case, while 1?� � cor-

responds to the default Q L case);
% *!1F� � E � ' 2 � ���	��
 if

E *�# ; 2 � E *,# > 2 � ���	��
 , and
% *21A� � E � ' 2 � ��
���� 
 otherwise;

while
% *21A� � � E ��' 2 � ���	��
 if E *�# ; 2+� ��
���� 
 or E *,# > 2 � ���	��
 ,

and
% *21A� � � E ��' 2 � ��
���� 
 otherwise. Therefore, ���� is such

that
% � *21 # � E � � ' 2�� �$*21 ; � � � � � 1 � 2

� 1 3 � 1A� and 1�
 �
1G� ��B�� ���59� ; % � *!1A� � E � ��' 2 � ���	��
 if E � *,# ; 2��� ��
�� � 
 and
E � *,# > 2 �� ��
�� � 
 , but

% � *!1 � � E � � ' 2 � ��
�� � 
 otherwise;% � *!1A� � � E�� � ' 2 � ���	��
 if E �$*,#A;.2,�� ���	��
 or E � *�#W> 2,�� ��
���� 
 ,
and

% � *!1A� � � E � ��' 2 � ��
���� 
 otherwise. We thus obtain
� 9 � KML *�#A; ' #G>&2 ' Q L *��1#A; /�#G> 2 . (Indeed, � is not
self-minimizing: for instance, for

�
with sole state 1

and sole transition *21 � 1 2 such that 
 *21 � #0; 2 � � and

 *!1 � # > 2 � ��
���� 
 , we have [ * � � 1 2 � � � \ � � while
[ * � � 1 2 � � �+\0&1����
���� 
 ; note * � � 1 2��� �C9+�/9 as expected.)

For PL, our tableaux-based procedure for computing �19
is simpler than that of [2] and [28], although it may gen-
erate larger formulas. In the worst case, the size of �19 and
� � � can be exponentially larger than the size of � . This is
unavoidable as computing � 9 for � is at least as hard as the
GMC problem for � , which itself is as hard as satisfiabil-
ity for � [4]: computing � 9 is NP-hard in

� � � for PL and is
PSPACE-hard in

� � � for PML.
Theorem 1 also reveals the model complexity of the

GMC problem for PML.

Corollary 1 The generalized model checking problem for
PML is in ALOGTIME in the size of the model.

Proof: Theorem 1 provides a reduction from the GMC
problem for a PML formula � to the model checking prob-
lem for a PML formula � 9 , independently of any model

�
.

Thus, since model checking for PML is in ALOGTIME in
the size of

�
(e.g., [5]), so is GMC.

5 Semantic Minimization for Fixed Points

Unlike for PML, we now show that CTL, LTL and CTL*
are not closed under semantic minimizations.

As noted in [10] through a correspondence between
GMC and module checking [23], !#" $ * � � 1 � � 2 is
PTIME-hard in the size of the model

�
whenever � ranges

over CTL formulas. A more direct proof can be obtained by
reducing the monotone circuit value problem, known to be
PTIME-complete, for a circuit � to the GMC problem for a
partial Kripke structure

���
defined from � and for a CTL

formula of the form QO[ * KML # ; 2�� *�# ; � # > 2T\ . This reduction
in turn implies the following.

Theorem 2 The existence of an optimistic semantic mini-
mization in CTL or CTL* for QO[ * KML # ; 2��+*,# ; �"# > 2T\<C $ �� 
implies NLOGSPACE = PTIME.

In other words, not all CTL and CTL* formulas (since
CTL* includes CTL) have semantic minimizations in CTL*,
unless NLOGSPACE = PTIME. The same result holds for
LTL since GMC for LTL can also be shown to be PTIME-
hard in the size of the model using a reduction from the
monotone circuit value problem [10].

In the case of 	�
 , we can prove a result similar to the
PML case. To obtain 	�
 we extend the grammar of PML
with clauses � for recursion variables and 	������ for (least
fixed-point) recursion. For a 3-valued semantics, valuations�

map variables � to pairs * � 7 *�� 2
� �
9 *�� 2 2 of subsets of

states. For closed � , the 3-valued semantics [ � � �+\�� of [4]
computes a pair *,� � � 2 of subsets of  such that � � �F1-C
 � * � � 1 2 � �87 �<� and � �.�?1@C  � * � � 1 2��� �#9 �<� .
Theorem 3 Every formula of 	�
 has a semantic minimiza-
tion in 	�
 .

5



Proof: (Sketch) The proof is similar to that of Theorem 1.
For �)C 	�
 , build a nondeterministic parity tree automaton
� � that accepts exactly the infinite trees satisfying � [24,
26]. Then, using a construction similar to (6), one obtains
a nondeterministic parity tree automaton � � � that accepts a
3-valued tree ��� iff there exists a 2-valued tree � such that
� �F:�� and � is accepted by � � . This automaton ���� can
then be re-encoded as a 	�
 formula � 9 [27].

A corollary of the previous theorem (and of Proposi-
tion 2) is that all CTL, LTL and CTL* formulas have seman-
tic minimizations in 	�
 (since 	�
 semantically includes
CTL, LTL and CTL*). Since computing a semantic mini-
mization is at least as hard as GMC, which has itself the
same complexity (EXPTIME-complete) as satisfiability in
the case of 	�
 [4], computing � 9 is EXPTIME-hard in

� � �
for � in 	�
 .

Thanks to Theorem 3, we can now prove the following
result, which strengthens Theorem 2.

Theorem 4 The optimistic semantic minimization of the
CTL formula � � QO[ * KML # ; 2�� *,# ; � # > 2 \ is the 	�
 formula
� 9 � 	�� ; � *�# ; �"# > 2 /)[ 	�� > � Q L � ; ' KML *�# ; ' *�# > / � > 2 2T\ ,
which is not expressible in CTL*.

Proof: (Sketch) Using the construction of the proof
of Theorem 3, we obtain an automaton ���� such that% � *!1 # � E�� � ' 2 � ���	��
 if E � *�#A; 2��� ���	��
 or E � *,#G> 2@�� �/E � 1 . ,
and

% � *!1 # � E�� � ' 2 � �$*21?; � � � � � 1 � 2
� 1 3 � 1A� and 1 
 �

1 # B�� �� 5#� otherwise;
% � *21G� � E � � ' 2 � ���	��
 if E � *�#A;&24��

� 
���� 
 and E � *�# > 2������
���� 
 , % � *!1A� � E � � ' 2 ����
���� 
 if E � *,# ; 2 �
� 
���� 
 , and

% � *21A� � E�� � ' 2 � � *!1 ; � � � � � 1 � 2
� 1 3 �.1A� and 1�
 �

1 #�B�� �� 5#� otherwise. � � � can then be re-encoded as � 9 ,
which can be shown not to be expressible in CTL*.

Going beyond 	�
 , we note that a semantic minimization
for all formulas of first-order logic over a binary relation

"
and unary relations # cannot exist due to a decidability gap:
* � � 1 2 � �#9 �/9 is decidable whereas !#"%$ * � � 1 � � 2 is not.

6 Semantic Self-Minimization

6.1 Checking for Self-Minimization

We now present a procedure for checking whether any
� C 	�
 is optimistically self-minimizing. The procedure
consists of comparing the automaton ���� defined in the pre-
vious section with an automaton ��� � ���"� that accepts exactly

all the 3-valued trees ��� for which ��� � �#9 � holds. Such a
� � � � � � with transition function

% 9 can be defined as an alter-

nating parity tree automaton �CF����� with transition function%
(with

� * � � � 2 states) that accepts exactly the computation
trees satisfying � [24], except that

% 9 satisfies
6 % 9�*,# � E � � ' 2 � *�E � *,#�2����� 
���� 
 2 for all #ZC)�
� , and

6 % 9�*��1# � E � � ' 2 � *�E��$*,#�2��� ���	��
 2 for all #�C=�N� .

For any other state 1 not corresponding to # or �1# ,% 9 *!1 � E � � ' 2 may be defined as
% *!1 � E ��' 2 in �;F����� [24] with

any E such that E �0:CE since transitions for all such E in �CF�����
are of the same form.

By construction and (3), 
 * � � � 2 % 
 * � � � � � � 2 , where

 * � 2 denotes the language (set of 3-valued trees) accepted
by automaton � . Checking whether � is optimistically self-
minimizing then reduces to checking whether


 * � � � � � � 2 % 
 * � � � 2 � (7)

This semantic test is exact but expensive since the sizes
of the automata involved can be exponential in

� � � as pre-
viously discussed. In the next subsections, we study partial
but much cheaper tests based on syntactic characterizations
of self-minimizing formulas. Note that any syntactic char-
acterization is bound to be incomplete since a linear syn-
tactic check on a formula cannot be as precise as the ex-
ponential semantic check in (7) of that formula. Such tests
can be used for optimizing the abstract-check-refine process
described in Section 1 by eliminating Step 2(b) for formu-
las that are detected to be self-minimizing, since Step 2(a) is
guaranteed to have the same precision as Step 2(b) for those
formulas.

6.2 Self-Minimization and Monotonicity

We start with a simple syntactic criterion that is sufficient
to identify self-minimizing formulas, and is much cheaper
to check than the exact procedure of Section 6.1. This cri-
terion is closely related to reduction results of satisfiability
to model checks for monotone/positive fragments of logics.

Proposition 4 Let � be a closed formula of 	�
 such that no
#)C �
� occurs in the negation normal form of � in mixed
polarity. Then � is semantically self-minimizing.

Since PL, PML, CTL, LTL, and CTL* embed into 	�

by preserving the polarity of atomic propositions, this re-
sult also applies to these temporal logics. The syntactic
condition in Proposition 4 is sufficient but not necessary,
as shown by the next example.

Example 5 The formula *��1# ; / # > 2 ' *��1# > / # ; 2 , the “iff”
connective # ; P # > , is semantically self-minimizing but
contains atoms with mixed polarity. Its 2-valued semantics
is not formally monotone, so any formula of 	�
 equivalent
to it requires some atom of mixed polarity in its negation
normal form.
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6.3 Temporal Patterns of Self-Minimization

We now offer grammars and patterns that certify formu-
las to be semantically self-minimizing and are beyond the
scope of Proposition 4. A grammar should be “optimal” in
that constraints of clauses cannot be relaxed without mak-
ing them unsound. We build up such grammars and discuss
how they adjust to the case of semantic minimization.

In Figure 1 we write ��� and ��� for syntactic categories
that generate only formulas that are pessimistically (re-
spectively, optimistically) self-minimizing. The clause �
(for “Monotone”) is syntactically checkable and sound as
it stands for any formula of 	�
 meeting the assumptions
of Proposition 4. The clauses in Figure 1 for propositional
connectives,

KML
and Q L are sound due to Proposition 1.

As for the clause � in Figure 1, for each pointed model
* � � 1 2 there is a formula � � � � ��	 C 	�
 with

B1*�� ��� 2 � *�� ��� 2 � � 7 � � � � ��	 iff * � � 1 2 : *�� ��� 2 (8)

by [17] and [13]. In [17] it is shown, for modal transition
systems, that * � � 1 2 : *�� ��� 2 iff � [ � ��� \ % � [ � � 1W\ for all
pointed models (the if-part being non-trivial); and that this
is equivalent to, in our terminology, all � � � � ��	 being pes-
simistically self-minimizing. By [13], these results also ap-
ply to our models so � , ranging over all such � � � � ��	 , is
a sound ground clause for ��� . As for the soundness of �
for ��� , !#"%$ *�� ��� � � � � � ��	 2 holds iff � [ � ��� \�� � [ � � 1W\ ��
��� . But if *�� ��� 2 � �#9 � � � � ��	 holds, the parity game of
that model check determines a common refinement witness
showing � [ � ��� \	�(� [ � � 1 \ �� ��� by Theorem 3 of [16].

Next we convey the main ideas and techniques of our
soundness proofs for temporal operators other than

KML
and

Q L for mode
5
, the ideas and proofs for mode 3 being dual.

These proofs exploit three facts: we may assume * � � 1 2 to
be an infinite, 3-valued, labelled tree; *�� � ' 2 to be a labelled
tree if *�� ��' 2 C � [ � �  \ satisfies some � C.	�
 ; and the
equations (9) and (10) below to hold for the judgments

� � 9
and

� �87 , not just for 2-valued satisfaction. We use CTL*
connectives as syntactic sugar in 	�
 .

For unary temporal operators � we need to show that
� � �/9 implies �1*�� 2�9 � �1*�� 2 . For � being Q ! or

K ! , we
do this by completing the infinite, 3-valued, labelled tree
* � � 1 2 in any way up to a witness state for � , whose subtree
is replaced with a completion satisfying � (which exists as
� � � 9 ). For Q ! this technique applies to all paths, for

K !
to some path and all other paths are completed arbitrarily.

The clause for
K ) � � requires a different approach. We

take a witness path for * � � 1 2 � �C9 K ) � � and infer that all
states 1 3 on that path 
 have completions satisfying

� � , as� � � � 9� . We then identify those states 1 3 with the initial
states of these completions and “glue” these completions
as new paths into

�
. The syntactic form of

� � ensures
that the glued completions are still witnesses for

� � in the

��� �J��� � � � � ����� � ��� '
��� � ��� ��� /���� ���KML ��� � Q L ��� � K )���� � Q�)����
Q !���� � � QO[ ��� ��� ����� ��� \

�	� �J��� � � � � ����� � �	� /���� � �	� ��� '���� ���KML ��� � Q L ��� �@K !��	� � Q !	���K )����'� �@K [ ���'�����	� \ � � 
 � *����12
Figure 1. ��� ( ��� ) generates pessimistically (op-
timistically) self-minimizing formulas (resp.);
� ranges over monotone formulas of 	�
 , �
over formulas in (8);

�
and B ( H ) are as in Def-

inition 3(5);
�  ranges over finite subsets of

��� ; and
� 
 � *�� 2 is as in Definition 4.

resulting model. Moreover, the larger model is a completion
of * � � 1 2 since we keep the “backbone” of

�
and add only

completion paths. This construction will not succeed for
formulas of the form Q ) � � or Q�) � � as all paths of glued
completions would still be obliged to satisfy ) � , not just

�
.

The clause for
K [ � ���1> \ blends the techniques used for !

and ) above: the ) -technique for the invariant
� � up until

> is true, where we complete according to ! .
Theorem 5 1. Let � � > �"� � C 	�
 be optimistically self-

minimizing. Then
K !$� , Q ! � , K ) � � , and

K [ � � �1> \ are
optimistically self-minimizing.

2. Let � � > ��� � C 	�
 be pessimistically self-minimizing.
Then

K )1� , Q )1� , and Q ! � � are pessimistically self-
minimizing. If in addition,

� � � > and > � > � , then
QO[ > � � � � \ is pessimistically self-minimizing as well.

Even for PL, genuine completeness of grammars for
��� and ��� cannot be hoped for. If # ; P # > from Ex-
ample 5 is presented in conjunctive (disjunctive) normal
form, it is generated by ��� ( ��� 2 and not by ��� (respectively,
��� ). Also, the relaxation of any constraints in non-ground
clauses makes the grammars in Figure 1 unsound. One can-
not remove

�
from the clause for / in ��� since D /�� D

would otherwise be derivable but is not pessimistically self-
minimizing. A dual comment applies to the ' clause of �	� .
From the proof constructions it is also evident that we can-
not omit the annotations B and H in the clauses of ��� and
��� that mention them. From Theorems 2 and 4, we can-
not expect an �	� clause for Q � (note that both arguments of
QO[ * KML # ; 2��+*,# ; �"# > 2T\ are in ��� ).
Remark 1 The absence of an ��� clause for Q � , and an

K �
clause for ��� , has to do with the semantic equivalences

� K [ ���1> \ � QO[�)1� > / � > �1��� ' � > \ (9)

� QO[ ���1> \ � K )1� > / K [ � > �1���0' � > \ (10)

which also hold for
� �C9 and

� �87 . We sketch proof attempts
for self-minimization and reasons for their failures.
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6 For
K � and ��� , let all *�� ��' 2 C � [ � � 1 \ satisfyK [ ��� > \ . “Proof” by contradiction: * � � 1 2��� � 7 K [ ���1> \

means * � � 1 2 � �C90� K [ ���1> \ so * � � 1 2 � �#9ZQO[ )1� >�/
� > �1��� '�� > \ . But QO[ A /���\�� * Q A / ��� 2 is not
valid.

6 For Q�� and �	� , let * � � 1 2 � �C9 QO[ ���1> \ . Then
* � � 1 2 � �#9 ��� QO[ ��� > \ so * � � 1 2 � � �B7 K )1� > /K [ � > � ��� '�� > \ . Even if � � > , we only get some
*�� ; � ' ; 2 C � [ � � 1W\ satisfying � K )�� > and some
*�� > � ' > 2IC2� [ � � 1W\ satisfying � K [ � > � ��� ' � > \ . But
a proof would need the same completion in both cases.

The asymmetry in �	� and ��� may only be apparent:� 
 � * ��� 2 has a logical dual, mediated through the clauses
for negation, which could be made explicit; and the

�
in

the Q � clause for ��� , forced upon us by an inductive proof
using (10), may not be necessary. Although one cannot re-
lax constraints for inductive clauses of Figure 1 any more,
one can define new inductive clauses that constrain the in-
teraction contexts of such clauses, ad infinitum. We limit
ourselves to specifying one such example, a generalization
of a construct implicit in clause � .

Definition 4 [20] Let � be a finite set of formulas in 	�
 .
Then

� 
 � *�� 2 is defined as *�� � ��� KML � 2 ' * Q L
	 � 2 .
The 2-valued meaning of

� 
 � *�� 2 is “all formulas in �
are true at some successor state and all successor states sat-
isfy some formula in � .” This pattern corresponds to check-
ing whether a game with “continuation” � cannot be lost
with the next exchange of moves. Combining

� 
 � *�� 2 with
greatest fixed points expresses all instances of � by [17]
and [13]. We prove soundness of clause

� 
 � * ��� 2 for �	� .
Theorem 6 Let � be a finite set of optimistically self-
minimizing formulas in 	�
 . Then

� 
 � *�� 2 � � 
 � *�� 2 9 .
A clause

� 
 � *�� 2 for a finite set � of pessimistically self-
minimizing formulas is unsound in general, given the dis-
junction under Q L in

� 
 � *�� 2 . The soundness of this dis-
junction for ��� for the formulas � � � � � 	 that logically char-
acterize refinement has been shown in [17].

Mode D is used for proving properties. Fortunately, the
pessimistic self-minimization of many popular specification
patterns can be certified by our ��� and ��� . We illustrate this
with results for “weak until,” stimulus-response chains, and
the “globally true before

+
” pattern. The temporal operator

“weak until,” QO[ ��
 > \ , is often required in model checking
instead of the ordinary “until” QO[ � � > \ . The semantics of
“weak until” is QO[ *���� >+21/ )1�+\ . So > can be false forever
as long as � is true forever, e.g. as in “The elevator door
remains open until a service button is being pressed.”

Corollary 2 1. Let � � and > � be pessimistically self-
minimizing and � � � > � . Then QO[ ����
 > ��\ is pes-
simistically self-minimizing.

2. Let D�� � #$� � 1 � ��� � C 	�
 with D�� � #$� , D � � 1 � , D�� � � � ,
#$� � 1 � , #$� � � � , and 1 � � � � . E.g. � D�� � # � � 1 � ��� � � %
�
� and

� � D � � # � � 1 � ��� � � � ��� . Then the Globally-1-
Stimulus-2-Response Chain pattern “ 1 � ��� � respond
to D � after # � ” is pessimistically self-minimizing.

3. Let � � be optimistically and > � pessimistically self-
minimizing. Then “globally, > � becomes true before
� � ” is pessimistically self-minimizing.

Some more complex patterns may require an exten-
sion of ��� and ��� with constrained interactions of existing
clauses. Indeed, the proof for “globally, > � becomes true
before � � ” uses duality and a semantic equivalence, an ab-
sorption law not expressed in ��� and ��� .

Finally, ��� and ��� are sound if interpreted for seman-
tic minimization, the proofs require more or less cosmetic
changes only over those for self-minimization. One then
has to interpret the clauses of Figure 1 as follows: the clauseK !��	� states that

K ! �/9 � * K ! � 2�9 for all �DC 	�
 , etc.

6.4 Distributive Formulas and Self-Minimization

Janin & Walukiewicz [20] show that all modal mu-
calculus formulas have normal forms (“distributive formu-
las” [20]) with linear-time satisfiability checks. We cus-
tomize their definitions to our setting and prove that many
distributive formulas are optimistically self-minimizing.

Definition 5 Distributive formulas are those formulas of
	�
 (extended with the constant � ) generated by
! �J� ��� � # � � � ! / ! � ! ;1' ����� ' ! �

��� �8� !
where # C4�
� ;

� C(�G	 ��� � and, for
� ��� ! , � occurs posi-

tively and not in any context � ' 	 or
	 ' � in !

; � �.6 and
each

! 3
in

! ; '?� � � ! � is either a literal ( # or �1# ) or of the
form

� 
 � *��02 for a finite set � of distributive formulas, and
at most one of the

! 3
is of the form

� 
 � *�� 2 .
Example 6 Let � be #�' KML �1# . Since

KML
is expressible via� 
 � * � 2 [20], � is a distributive formula. For �
� � � #M� and� � * �?1�� � �$*21 � 1 2 � � 
 *21 � #�2 � � 2 we have * � � 1 2 � �C90� .

But there is also some *�� ��' 2 of * � � 1 2 satisfying � , with
states

'
and

' � , transitions * '���' � 2 and * ' � � ' � 2 , and label-
ings 
�� * '�� #�2 � ���	��
 and 
��0* ' � � #�20� � 
���� 
 . Below we
prove that such formulas are optimistically self-minimizing.

By [20] and [13], every formula of 	�
 is semantically
equivalent to some distributive formula

!
. Without loss of

generality, we may assume that all
! � ! ; ' ����� ' !

�
are satisfiable (otherwise replace

!
with � ) and that their

monomials of literals mention literals at most once.
We recall the syntactic unfoldings of fixed-points, where

� [ ��� � \ denotes the formula resulting from substituting all
free occurrences of � in � by

�
:
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	 # � �8� � � � 	 � � ; �8� � � � [ ���F	 � �����+\ * � � � 2� # � �8��� � ��� �
� � ; �8��� � � [ ���

�
� �8� �+\ * � � � 2/�

Theorem 7 All closed distributive formulas without great-
est fixed points are optimistically self-minimizing.

For greatest fixed points, let * � � 1 2 � � 9 � �8� ! . Then
* � � 1 2 � �#9 � � ��� ! for all � � 6 . Induction would imply
!#"%$ * � � 1 ��� � �8� ! 2 for all � ��6 . But the latter is only
sometimes sufficient for concluding !#"%$ * � � 1 � � ��� ! 2 .
For example, we can express

K ) � � as
� �8� � � ' KML * � 2 and

our proof for clause
K )���� � can be interpreted as construct-

ing a witness to !#"%$ * � � 1 � � ��� � � ' KML *�� 2 2 from “incre-
mental” witnesses of all !#"%$ * � � 1 � � � �8� � � '

KML * � 2 2 .
Theorem 7 can derive only the soundness of some

clauses for ��� and ��� . For example,
K ! � can be written

as 	������ / KML * � 2 and expressed as a distributive formula
meeting the assumptions of Theorem 7 as

KML
and Q L are

derived from
� 
 � *�� 2 [20]. But

K [ � � > \ has fixed-point char-
acterization 	��8� > / *�� ' KML * � 2 2 which would generally
need a non-trivial conversion into a distributive format.

The proofs of Theorem 7 also reveal that one could
extend the grammar for �	� with certain least fixed-point
clauses that have as side condition that all their finite un-
foldings are generated by �	� as well.

7 Applications of Self-Minimization

We briefly look at specification patterns used in practice
and discuss whether they are semantically self-minimizing.

Some instances of � are found in the classification of
frequently-used temporal-logic patterns of [7]: (Absence)
Q�)+*�#D� Q )+*�� D 2 2 , (Universality) Q�) *�#=� Q ) D 2 , (Exis-
tence)

K ! D , (Response) Q )+* D � Q ! 1 2 , (Response Chain)
Q�)+* D � Q ! *21 ' Q L * Q ! � 2 2 2 , etc., where D � # � 1 ��� CD�
� .

The model checker LTSA [25] uses labeled transition
systems and LTL over a finite set of actions ��� � containing. + + G + . Two core patterns are a safety property )1� .-+-+ G + and
a liveness property ) ! 	 ��� � . The embeddings of )1� .-+ + G +
and ) ! 	 ��� � into 	�
 are in � .

Self-minimizing temporal-logic formulas also occur in
program and data-flow analysis. We mention two data-flow
analyzes captured as model checking problems [29]:

5 1A
 5�� . - � K !�� F � F
	� :�9���
 �
�
, 1 . -
� ���

5 1 ! . E�� - � Q�)�� F � F�	��� ��� 
 � *��
. ��� ' ��� G��$-���� 2/�

Formula 5 1A
 5�� . - says “variable � is live at the current
program point,” where

, 1 . - C �
� ( � G�� - C �
� ) denotes
that variable � is used (respectively, modified) at a pro-
gram point. Formula 5 1 ! . E�� - says “ � is dead at a program
point,” where

. ��� is true at the end point of a program only.

The patterns 5 1A
 5�� . - and 5 1 ! . E��$- can be expressed in 	�

directly and shown to be instances of � .

Symbolic trajectory formulas [30], used in hardware ver-
ification, can be defined by the grammar � �J� � # � �1# �
� '�� � � � � � Q L � where # C �
� and

�
ranges

over boolean formulas from �
� . If all
� � � � of � are

such that
� � �
� , then � is pessimistically self-minimizing,

including for the models used in [30] which are symbolic
trace presentations of certain partial Kripke structures.

8 Conclusions

We studied in this paper for which temporal-logic formu-
las model checking has the same precision as generalized
model checking, independently of any model. We identi-
fied those formulas as semantically self-minimizing, char-
acterized them using automata on 3-valued trees, and pro-
vided syntactic conditions for efficiently recognizing many
of these, including many instances of frequently-used spec-
ification patterns. We also studied how to reduce the gener-
alized model checking problem (including satisfiability as
a special case) for a formula � to regular model checking
of a formula ��� obtained solely from � , thus independently
of the model. We proved the existence of such ��� for ev-
ery � in propositional modal logic (rendering the complex-
ity of generalized model checking in the size of the model
for this logic) and in the modal mu-calculus, extending a
previously-known similar result for propositional logic. We
also showed that, in contrast, the logics LTL, CTL, and
CTL* are not closed under semantic minimizations.
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