Generalized Model Checking

Patrice Godefroid

Bell Laboratories, Lucent Technologies

e GMC is an approach to verification via abstraction
(motivated by needs in software model checking).

e Talk based on [CAV'99, CONCUR'00, CONCUR'01, CAV'02,
VMCAI'03, EMSOFT'03, LICS'04, LICS'05] co-authored with
Glenn Bruns, Luca de Alfaro, Michael Huth and Radha Jagadeesan.

Page 1

Introduction: Model Checking
Reactive system:

e controls something;

e continually interacts with its environment.

Examples: telephone switch, airplane, power plant, pacemaker, device driver, etc.
Viewed as a FSM (automaton), often called state space.
Behavior described in terms of sequences of states/transitions.

Language for temporal properties: Temporal Logic
e Example: G(p = Fq) is an LTL formula.

Given a system M and a temporal-logic formula ¢,
“does M satisty ¢?7 = Model Checking

Currently, there are many model-checking tools around, including in industry
(hardware and software designs).

Page 2

Automatic Abstraction

Two main approaches to software model checking:

state—space exploration
Modeling languages Model checking

abstraction

(Bandera,Blast,JPF,SLAM,...) adaptation

state—space exploration
Programming languages Systematic testing
(VeriSoft,CMC,...)

Current automatic abstraction tools typically proceed as follows:

e Given a concrete program C, they generate an abstract program A such that
“A simulates C”.

e For any V-properties ¢, A = ¢ implies C | ¢.
Limitations:

e Restricted to V-properties (no existential properties).
o A £ ¢ does not imply anything about C'!

e Could the analysis be more precise for a comparable cost?

Page 3

A Solution: use 3-Valued Models [Bruns-G99]

Use richer models A that distinguish what is true, false and unknown (L) of C.

Example: partial Kripke structure (PKS) [Fitting92,Bruns-G99]

>0 p=true
e A Kripke structure where
propositions can be / \
true, false or _L. p=unknown O p=true

Example: Modal Transition System [Larsen-Thomsen88]
O,

o A LTS with ™ and ™% 2/
transitions such that
musf - \

= O o

Example: Kripke Modal Transition System [Huth-Jagadeesan-Schmidt01]

o A PKS with 2% and ™% transitions such that Z“¥C ™%

These models are all equally expressive |G-Jagadeesan03].

Other examples: extended transition systems [Milner81],...

Page 4

3-Valued Temporal Logics

Reasoning about 3-valued models requires 3-valued TL.
Example: 3-valued Propositional Modal Logic ¢ :=p | ¢ | ¢p1 A ¢o | AX ¢

Semantics: (extension of Kleene’s strong 3-valued PL)
(M, s) |= pl = L(s, p)
(M, 5) = =¢] = comp([(M, s) | ¢])

where comp maps true — false, false — true, and L+ L

(M s) = ¢1 A\ go] = min([(M, s) = ¢1], (M, s) = ¢2)

with min defined with false < L < true (“truth” ordering)

(true ifVs' s 2% & = [(M,s) = ¢] = true
(M, s) E AX @] =1 false if Is' : s 2% ' A (M, §') |= @] = false

t 1 otherwise

>0 p=true

o Ex: [(M,s) | p| = true / \

e Ex: [(M,s) E AXp| =1 p=unknown O p=true
O O

Page 5

Completeness Preorder

To measure the completeness of models (aka, refinement preorder, or abstraction™!.)

Let < be the “information” ordering on truth values in which 1 < true and
1 < false.

Definition: The completeness preorder < is the greatest relation <C S x S such
that s, < s. implies the following:

oeVpe P LA(sa,p) < LC’(Scap>7
musg musg

o if 5, ™4 s, there is some s, € S¢ such that s, ™%¢ s

/ / /
~and s, X s,
. ma . ma
o if s, =X &' thereis some s’ € S4 such that s, —% 4 s’ and s < s’.
C
C c) a a a C

(Note: if no L and only =%, < is simulation.)
p=T p=F p=

sa (M. -) scC

Example:

P=0 =T

Page 6

Logical Characterization of Completeness Preorder

Theorem: Let ® denote the set of all formulas of 3-valued propositional modal
logic. Then

Sq =S iff (Vo € @ : [s, | @] < [sc | @)]).

Thus, models that are “more complete” with respect to < have more definite prop-
erties with respect to <.

Example:
p=T p=F p=T

P=0 p=T

Page 7

Completeness Preorder (Continued)

Corollary:
Let @ denote the set of all formulas of 3-valued propositional modal logic. Then

(Vo € : [(M1, 51) | ¢] = [(Ma, 52) | ¢]) ift

(s1 = s9 and s9 =< s7).

Note: If s; and sy are bisimilar, this implies s; < s9 and sy < 7,
but s1 < s9 and s < s does not imply s; and s2 are bisimilar! [Bruns-G99]

Example: sy and sj are not bisimilar, but cannot be distinguished by any formula
of 3-valued propositional modal logic.

SO o)
(truetrue) (true,true)

& R OL I LTS S G O L
(true, 1)) U (0,0) (Otrue) U (0,0)

(truetrue) (truetrue)

Page 8

3-Valued Model Checking

Problem: Given a state s of a 3-valued model M and a formula ¢,
how to compute the value [(M, s) = ¢| ?

Theorem: [Bruns-G00| The model-checking problem for a 3-valued temporal logic
can be reduced to two model-checking problems for the corresponding 2-valued logic.

STEP 1: complete M into two “extreme” complete Kripke structures, called the
optimistic and pessimistic completions:

e Extend P to P’ such that, for every p € P there exists a p € P’ such that
L(s,p) = comp(L(s,p)) for all sin S.

o M, = (S, Ly, ™%) with

of | true if L(s,p) =L
Lis.p) | >

L(s,p) otherwise
e M, = (S, L,, —%) with

e alse if L(s,p) =1
Lis.p) % ,0)

L(s,p) otherwise

Page 9

3-Valued Model Checking (Continued)

STEP 2: transform ¢ to its positive form T'(¢) with T'(—p) = p.

STEP 3: evaluate T'(¢) on M, and M, using traditional 2-valued model checking,
and combine the results:

true if (M,,s) =T(¢)
(M, s) = @] = false if (M,,s) [~ T(¢)

1 otherwise

This can be done using existing model-checking tools!

Corollary: 3-valued model checking has the same complexity as traditional 2-
valued model checking.

Page 10

Examples

Application:
Generation of a partial Kripke structure from a partial state-space exploration such
that, by construction, s < sy [Bruns-G99|.

Examples:

o [s1 = A(trueld p)| = true
o [so | A(truel p)] =L
o [s3 = A(trueld p)| = false

Page 11

New 3-Valued Semantics

Observation: One can argue that the previous semantics returns L more often
than 1t should...

Example: In a state s, where p =1 and g = true,

[sa = aAN(PVp) =L
while the same formula is true in every complete state s. such that s, < s,/

New 3-valued “thorough” semantics: [Bruns-G00]

true if (M',s") = ¢ for all (M',s") : s <
(M, s) E ¢ly =1 false if (M',s") & ¢ for all (M')s") s <
1 otherwise

S,

SI

Is model checking more expensive with this semantics?

YES! Indeed, in general, one needs to solve two

Generalized Model-Checking Problems

Page 12

Generalized Model Checking [Bruns-G00]

Definition: Given a state s of a model M and a formula ¢ of a temporal logic L,
is there a state s’ of a complete system M’ such that s < s’ and (M',s') = ¢ 7

This generalized model-checking problem is thus a generalization of both
satisfiability (all Kripke structures are potential solutions) and model checking
(a single Kripke structure needs to be checked).

SAT MC
sl 2

,’:N
| |
\ //

O p=false

p=true / \ p=false

40
Theorem: The satisfiability problem for a temporal logic L is reducible (in linear-
time and logarithmic space) to the generalized model-checking problem for L.

Thus, GMC is as hard as satisfiability. Is it harder?

Page 13

Branching-Time Temporal Logics

Theorem: (CTL) Given a state sg of partial Kripke structure M = (S, L, R) and
a CTL formula ¢, one can construct an alternating Biichi word automaton Ay sy ¢
over a 1-letter alphabet with at most O(]S| - 29U¢D) states such that

(H(Mlvsé):Sojsaand(M/736>):¢>iﬁ£< (M,s0),9)7&(0

Corollary: if such a M’ exists, there exists one with at most || - 20U¢) states.

Theorem: The generalized model-checking problem for a state sy of a partial
Kripke structure M = (S5, L,R) and a CTL formula ¢ can be decided in time
O(|S]? - 200D,

Theorem: The generalized model-checking problem for CTL is EXPTIME-complete.

Theorem: (Summary) Let L denote propositional logic, propositional modal logic,
CTL, or any branching-time logic including CTL (such as CTL* or the modal u-
calculus). The generalized model-checking problem for the logic L has the same
complexity as the satisfiability problem for L.

Page 14

Linear-Time Temporal Logics

Theorem: (LTL) Given a state sg of partial Kripke structure M = (S, L, R)
and an LTL formula ¢, one can construct an alternating Bichi word automaton
A(s.5,),6 Over a L-letter alphabet with at most O(|S] - 21%!) states such that

(I(M', 55) = s = s and (M, 5p) |= ¢) it L{A(u1,9),0) 7 0-

Theorem: The generalized model-checking problem for a state sy of a partial
Kripke structure M = (5, L, R) and an LTL formula ¢ can be decided in time
O(|S|? - 2219l).

Theorem: The generalized model-checking problem for linear-time temporal logic
is EXPTIME-complete.

For LTL, generalized model checking is thus harder than satisfiability and model
checking! [Bruns-G00]

(both of these problems are PSPACE-complete for LTL)

Note: similar phenomenon for “realizability” and “synthesis” for LTL specifications
|Abadi-Lamport-Wolper89, Pnueli-Rosner89).

Page 15

Summary on Complexity in |¢|

Model Checking: (3-valued semantics)

e MC can be reduced to two 2-valued MC problems.
e MC has the same complexity as 2-valued MC.

Generalized Model Checking: (thorough 3-val. sem.)

e For BTL, GMC has the same complexity as satisfiablity.
e For LTL, GMC is harder than satisfiablity and MC.

Logic MC SAT GMC
PL Linear NP-Complete NP-Complete
PML Linear PSPACE-Complete | PSPACE-Complete
CTL Linear EXPTIME-Complete | EXPTIME-Complete
p-calculus NPNco-NP EXPTIME-Complete | EXPTIME-Complete
LTL PSPACE-Complete| PSPACE-Complete | EXPTIME-Complete

Page 16

Complexity of GMC in |M|

Upper bound: can be done in quadratic time in | M| [Bruns-GO00).

Theorem: |G-Jagadeesan(2| Checking emptiness of nondeterministic Biichi tree
automata is reducible (in linear time and logarithmic space) to GMC for LTL (or
CTL) properties represented by nondeterministic Buichi word (resp. tree) automata.

Bad News: (Lower bound) The best algorithm known for checking emptiness of
nondeterministic Biichi tree automata A requires quadratic time in | A| in the worst
case |Vardi-Wolper86].

Good News: better complexity for GMC and properties recognizable by nonde-
terministic co-Bichi word /tree automata, i.e., persistence properties (e.g., LTL
formulas of the form & Op).

Theorem: |G-Jagadeesan02] GMC for persistence properties can be solved in time
linear in |M|.

Note: persistence properties include all safety (O p) and guarantee (<& p) proper-
ties. (Do not include O < p.)

Page 17

Application: Automatic Abstraction

Idea: Given a concrete system C', if C' = ¢ cannot be decided, generate a (smaller)
abstraction A and check A = ¢ instead.

Example: predicate abstraction

e Let Yy,...,%, be n predicates on variables of C'.
e Abstract states are vectors of n bits b;.

e A concrete state c is abstracted by an abstract state

[C] :<b1,...,bn) ift V1 gzgnbzzzpz(c)

State of the art: A is a traditional 2-valued model with
(Cl — Cg) = ([61] — [02]).

In other words, A simulates C'. Remember, this implies:

o If ¢ is a V-property, A E ¢ implies C' [¢,
e but A [~ ¢ does not imply anything about C'

Page 18

Automatic Abstraction Revisited

Observation: A should really be a 3-valued model!
For instance, A can be represented by a modal transition system.
Abstraction relation:
1. (Cl — CQ) = ([Cl] —?may [CQD
2. (Ve; € lal - Je; = ¢j A ej € [d]) = ([a] —must [@])
By construction, A < C'.

Computing an MTS A using (1)+(2) can be done at the same computational cost
(same complexity) as computing a “conservative” abstraction (simulation) using (1)
alone: (2) can be built by dualizing all the steps necessary to build (1).

This is shown for predicate and cartesian abstraction in [G-Huth-JagadeesanO1].

Page 19

Automatic Abstraction Process

Traditional iterative abstraction procedure:

1. Abstract: compute M4 that simulates M.
2. Check: given a universal property ¢, check M4 = ¢.

o if M4 = ¢: stop (the property is proved: Mg | ¢).
o if M4 £ ¢: go to Step 3.

3. Refine: refine M 4. Then go to Step 1.
New procedure for automatic abstraction: (3 improvements)

1. Abstract: compute M4 such that M4 < M¢ (same cost as above [GHJ01))
2. Check: given any property ¢,

1. (3-valued model checking) compute [M4 = ¢].
o if My = ¢] = true or false: stop .
o if M, = ¢| =L, continue.
2. (generalized model checking) compute [M4 = ¢;.
o if My = ¢|; = true or false: stop .
o if [My [¢l =L, go to Step 3.

3. Refine: refine M 4. Then go to Step 1.

Page 20

Example

Predicate abstraction with p : “is x odd?” and ¢ : “is y odd?” such that My < Cy:

program C2() { =
x,y = 1,0, [Teh
x,y = 2*1(x),1(y);
x,y = 1,0; 2 () (p=F.o=n)
i
2 () (p=T.q=F)
M2

For ¢p = CqAD(pV =q), [(Ma,s2) = o] =L, but [(My, s2) = ¢of¢ = false
(i.e., there does not exist a concretization of (Ms, s9) that satisfies ¢9).

Thus, GMC is more precise than MC in this case.

(Same for the safety property ¢), = Og A O(pV —q).)

Page 21

Precision of GMC Vs. MC

How often is GMC more precise than MC? See |G-Huth, LICS’05]:

e Studies when it is possible to reduce GMC(M, ¢) to MC(M, ¢').

o ¢ is called a semantic minimization of ¢.

e Shows that PL (already known), PML, and u-calculus are closed under semantic
minimization, but not LTL, CTL or CTL*.

e [dentifies self-minimizing formulas, i.e., ¢’s for which GMC(M, ¢) = MC(M, ¢)

o semantically (using automata-theoretic techniques, EXPTIME-hard in |¢|
for p-calculus) and

o syntactically (sufficient criterion only, linear in |¢|).
e Fix (syntactic): Any formula that does not contain any atomic proposition in
mixed polarity (in its negation normal form) is self-minimizing.
e Note: the converse is not true (e.g., (—q1 V ¢2) A (—¢qa V q1) is self-minimizing).
e For any self-minimizing formula, GMC and MC have the same precision.

e Good news: many frequent formulas of practical interest are self-minimizing,
and MC is as precise as GMC for those.

Page 22

3-Valued Abstractions for Open Systems

Open system: system interacting with its environment.

Module Checking (ModC) [Kupferman-Vardi96]: given an open system M
and a formula ¢, does M satisty ¢ in all possible environments?

Example: (vending machine)
is it always possible for M to eventually serve tea?

boil ()

e MC(M, AGEF tea) = true
e ModC(M, AGEF tea) = false!

coffee tea

Generalized Module Checking (GModC) [G03]: given A and ¢, does there
exist a concretization C' of A such that C satisfies ¢ in all possible environments?

Two simulataneous games here: one with the environment, one with _L values...

Yet, GModC can be solved at the same cost as GMC (for LTL and BTL) [G03].

Page 23

3-Valued Abstractions for Games

Study abstractions of games where moves of each player can now be abstracted,
while preserving winning strategies of both players [de Alfaro-G-Jagadeesan04]:

e An abstraction of a game is now a game where each player has both may and
must moves (yielding may/must strategies).

e Completeness preorder is now an alternating refinement relation, logically
characterized by 3-valued alternating p-calculus |Alur-Henzinger-Kupferman02].

e [f must transitions are allowed to be nondeterministic [Larsen-Xinxin90], then
the abstraction is as precise as can be, i.e., the framework is complete (see also
[Namjoshi03, Dams-Namjoshi04]):

“Given any infinite-state system C' and property ¢ € p-calculus, if C satisfies
@, then there exists a finite-state abstraction A such that A satisfies ¢.”

Example: [Namjoshi03]

O var X;) /,"L\/ . -7
actions (-) x:=x-1; (+) x:=x+1; % ety ,’O '
o property: EF(P) with P= (x> 0) ‘/\ ~ \/Q
P=F P=T

e The construction of abstraction is now compositional (cf. |G-Huth-Jagadeesan01]).

Page 24

Conclusions

3-Valued models and logics can be used to check any property, while guaranteeing
soundness of counter-examples.

Generalized Model Checking means checking whether there exists a concretization
of an abstraction that satisfies a temporal logic formula.

It can be used to improve precision of automatic abstraction, for a reasonable cost:

e Cost can be higher in the size of the formula...
but only worst-case and formulas are short.

e Cost can be higher (quadratic) in the size of the model...
but is the same (linear) for persistence properties (includes safety).

In an “abstract-check-refine” procedure, GMC is only polynomial in the size of the
abstraction, and may prevent the unnecessary generation and analysis of possibly
exponentially larger refinements of that abstraction.

In practice, use first a syntactic formula check for self-minimization:
MC has then the same precision as GMC (often the case).

Page 25

Other Related Work

“Mixed transition systems” [Dams-Gerth-Grumberg94]

e Intuitively, a mixed transition system is an MTS without the constraint 2% C ™%

e Hence, more expressive than 3-valued models: some mixed T'S cannot be refined
into any complete system.

e Still, their goal is very similar (i.e., design may/must abstractions for MC).
“Extended transition systems” [Milner81]

o XTS = LTS 4+ “divergence predicate”

e In [Bruns-G99], it is shown that 3-valued Hennessy-Milner Logic logically char-
acterizes the “divergence preorder” [Milner81,Walker90)].

e Close correspondence with Plotkin’s intuitionistic modal logic (inspired Bruns-
GO0 reduction from 3-val to 2-val MC).

3-Valued logic for program analysis: [Sagiv-Reps-Wilhelm99] shape graphs, first-
order 3-valued logic, “focussing” ... (roughly inspired the beginning of this work
but technical details are fairly different — e.g., no 3-valued abstraction on control)

Conservative abstraction for the full mu-calculus: [Saidi-Shankar99)

Page 26

