Lucent Technologies @
Bell Labs Innovations

Design and Analysis of
Communication Software

David L. Dill Patrice Godefroid
Stanford University Bell Laboratories

Bell Laboratories Page 1

October 18, 1999

Motivation Lucent Technologies @

» Communication software coordinates the information flow
between interconnected components in

— thetelephone network,

theinternet,

wireless networks (cell phones, pagers,...),

banking networks,
distributed databases (flight reservations,...),
— etc.

» Communication software is everywhere!

» Communication software is hard to develop and test!

Bell Laboratories Page 2

October 18, 1999

Overview Lucent Technologies @

» “Design and Analysis of Communication Software”:

— Part 1- The Software Development Process (Sep23)
* A Roadmap

— Part 2- Communication Software (Sep 23)
* An Introduction

— Part 3- Model-Checking Software using Veri Soft (Sep 30)
* A New Approach to Communication Software Analysis

— Part 4- Inside VeriSoft (Oct 14 & 21)

» The Research Behind The Tool

Part 5 - Project: Development and Testing of Simple Internet Phones

» Application of the Previous Concepts (Oct 28)
Bell Laboratories Page 3 October 18, 1999
Wh M f) Lucent Technologies @
y e H Bell Labs Innovations

* PhD in November 1994 (University of Liege, Belgium)

» Joined Bell Labs in December 1994.

» Bell Labsis part of Lucent Technologies.

» Research on program analysis, testing and verification.

» Developed several tools (parts of SPIN & VFSMvalid, VeriSoft).
» Applied these tools to industrial protocols and software.

» Exposed to technology-transfer and business issues.

* Why you?

Bell Laboratories Page 4 October 18, 1999

Logistics Lucent Tectnelogies @

* Thisisan experimental course (=“notes ready at last minute” ;-).

Please do not hesitate to ask questions!
L ectures open to the public, credits for the project (talk to Dave).

Lectures given on Thursday morning 9am-noon, Gates B12.

— Schedule, slides and other relevant info will be posted on the course web-
page: http://sprout.stanford.edw/comm.html

Project due at end of term; need account on Sun machines.

Emergency: god@bell-1abs.com

Bell Laboratories Page 5 October 18, 1999

Lucent Technologies @
Bell Labs Innovations

Part 1. The Software Devel opment Process

A Roadmap

Bell Laboratories Page 6 October 18, 1999

Overview Lucent Technologies @

» Main steps of the software development process.
» Main tools used for each of these steps in industry today.

» Moredetailed discussion on testing.

Bell Laboratories Page 7 October 18, 1999

The Waterfall Model Lucent Technologies @

Requirements
Specification and \
ARaySS
v
(What?)
Design \
v
(How?) Coding and
Unit Testing \
v
(Doiy Integration and
System Testing \
v
(Testiy Delivery and
Maintenance
Note: in real-life, steps overlap and have feedback loops!
(Shipit)

Bell Laboratories Page 8 October 18, 1999

St Lucent Technologies @
ws Bell Labs Innovations

» Requirements Specification and Analysis:

— Determine customer-visible features, feasibility study, development costs
and price of product.

— Determine “what to do”.

— Done by “system engineers”.

* Design:

— Determine high-level and detailed design of product that will meet the
requirements.

— Determine “how to doit”.

— Doneby “architects”.

Bell Laboratories Page 9 October 18, 1999

Steps (continued) Lucent Technologies @

» Coding and Unit Testing:

— Producesthe actual code that will be delivered to the customer, and test
individual modules in isolation.

— Doneby “developers’ (“programmers”).
* Integration and System Testing:

— Test the integration of individual modules and the whole system.
— Doneby “testers’. Note: testing implies running the code.

» Deélivery and Maintenance:

— Deliver the product to the customer and provide documentation, training,
field support, and bug fixes.

* “Product Manager”: manages the end-to-end process.

Bell Laboratories Page 10 October 18, 1999

Development Tools Lucent Technologies @

* What are the most common tools used at each step of the
development process today in the software industry?

* Warnings:

— Thelist that followsis not exhaustive and is also based on the experience
of the speaker.

— Only general-purpose tools are considered, not application-specific tools
(for GUI, web, databases,...).

— Names of commercial products are used only as examples, for illustration
purposesonly.

Bell Laboratories Page 11 October 18, 1999

Toolsfor Requirements Lucent Technologies @
Specification-and-Analysis
* MSWord and PowerPoint...

— Requirements are often imprecise, ambiguous and incompl ete.
— Thiscan be done partly on purpose...

* “Formal Notations’:

— Use-cases, state-machines, Message Sequence Charts, tables, decision
trees,...

— Less ambiguous than English text.

— Enable simple automatic analysis of specification (check for consistency).
— Canonly cover asubset of the requirements.

— Inpractice, used in conjunction with English text.

Bell Laboratories Page 12 October 18, 1999

Toolsfor Design Lucent Tethnologies @

* MSWord and PowerPoint...
— with diagrams, tables, state-machines, M essage Sequence Charts, ...

» Modeling Languages: (for design and high-level coding)
— UML, SDL, ObjecTime, VFSM,...

— Lessambiguous than English text.

Enable automatic analysis.

Can be executed.

Automatic code generation of atemplate of the implementation.

Bell Laboratories Page 13 October 18, 1999

Toolsfor Coding et oS @

» Defect Tracking & Resolution Managers:
— Track problem reports and the status of their resolution.
— Record “history” of the system.

— Also used by testers and during maintenance.

* Version Control Systems:

— Controls and coordinates the various versions of the software (SCCS,...).

» Code Browsers and Editors:

— help navigate through the code,
— and through the history of the code.

— Help compares different versions of the code (diff).

Bell Laboratories Page 14 October 18, 1999

Tools for Coding (Continued) Lucent Tethnologies @

» Compilers:
— Translate (higher-level) source language to (lower-level) target language.
— Report syntax errors.

e Linkers:

— Combine mutually referencing object-code fragments; report errors at
module interface.

» Code Reviewers (= Static Analyzers):

— examine source code, detect programming errors, provide suggestions on
code structure and style (advanced type checkers, Lint,...).

— Automated tools for detecting semantic errors through (local) symbolic
execution (Prefix,...).

— Colleagues!
Bell Laboratories Page 15 October 18, 1999
H Lucent Technologies @
Tool S for Tal ng Bell Labs \nnov«gsuons
» Debuggers:

— Requires code instrumentation (usually during compilation).
— Control and examine code execution.

* Memory Analyzers:

— Detect memory leaks and overflows:
» memory leak = memory allocated, no more reachable but not freed.

» memory overflow: access to unauthorized memory address
(unallocated/uninitialized memory, array out-of-bounds,...).

— Parse and instrument source or binary code to check properties at run-time.

Bell Laboratories Page 16 October 18, 1999

Tools for Testing (Continued) e ok @

» Performance Analyzers (Profilers) and Code Coverage Tools:

— Count number of occurrences of executions of program statementsor
procedures.

— Report time spent in each part of program during execution.

— Parse and instrument source or binary code to record run-time information.

» Languages and platforms for test automation:

— Example: expect...

» Capture/Replay Tools:

— Record/replay actions performed during manual testing at standard
interface (e.g., GUI/web testing).

Bell Laboratories Page 17 October 18, 1999

Tools for Testing (Continued) e o @

* Load Generators:

— Simulate environment (e.g., traffic) through standard interface.

» Test Case Generation from Specification:
— Generate sets of tests from higher-level specification of 1/0 behavior.
— Easier test management, better coverage.

* Test Management Tools:
— Process: help record test plans, track and report the status of testing project.
— Code: store and execute test code, compare and store results.

— Used by the testing organization only.

Bell Laboratories Page 18 October 18, 1999

More on Testing Lucent Tethnologies @

* Why test? “To find errors.”

— “The process of executing a program with the extent of finding errors.”
[Myers,1979]

* Whatisan“error"? “Any problem visible to the customer.”
— Programming errors, conflicts with requirements, unexpected behaviors,
features too hard to use, etc.
* When to stop testing?

— Intheory, when full coverageisreached!

— Coverage can be defined versus regquirement, formal 1/0 spec, code or
state-space.

— In practice, test until shipment date!

Bell Laboratories Page 19 October 18, 1999

Tools for Testing: Summary et e rees @

» Three main types of tools for testing:

— 1. Code Inspection:
* analyses (parses) the code to find programming errors.

— 2. Code Instrumentation:
* analyses (parses) source code or binary code and inserts code (such as
assertions) to check properties at run-time.

— 3. Code Execution:
* help generate, execute and eval uate tests performed by running the code in
conjunction with a representation of its environment.

» Type 2 and 3 are complementary.

* In practice, Type 1 also complementary with Types 2 and 3.

Bell Laboratories Page 20 October 18, 1999

Testing World Lucent Technologies @

Level 1: Manual Testing

— Most testing organizations; some tests cannot be automated.

Level 2: Automated Testing
— Automated test execution and evaluation.
— Advantage: automated regression testing.

Level 3: Automatic (Static) Test Generation
— Automated test generation from higher-level spec.

— Advantage: easier test management, better coverage.

Level 4. Automatic Dynamic Test Generation
— VeriSoft! See later...

Bell Laboratories Page 21 October 18, 1999

Some References Lucent Technologies @

» Software Engineering: A Practitioner’s Approach, R.S. Pressman,
McGraw-Hill.

» Fundamentals of Software Engineering, C. Ghezzi, M. Jazayeri
and D. Mandrioli, Prentice-Hall.

» Software Testing in the Real World, E. Kit, AddisonWedey.

» Surviving the Challenges of Software Testing, W.E. Perry and
R.W. Rice, Dorset House.

Bell Laboratories Page 22 October 18, 1999

Summary of Part 1 Lucent Technologies @

* Main stepsin the software devel opment process.
— Requirements, Design, Coding, Testing, Maintenance.

* Tools used in each of these steps.

» Taxonomy of tools used for testing.

— Code Inspection, Instrumentation and Execution.

Bell Laboratories Page 23 October 18, 1999

Lucent Technologies @
Bell Labs Innovations

Part 2: Communication Software

An Introduction

Bell Laboratories Page 24 October 18, 1999

Overview

Lucent Technologies @
Bell Labs Innovations

» Specificity of communication software.

» Specific tools.

* A new approach: model checking software.

Bell Laboratories

Page 25 October 18, 1999

What is Communication Software? e Einoedss @

¢ Coordinates the information flow between interconnected

components.

A

<

R

Y

B

»

%

» Each component can be viewed as a reactive system (continually
interacts with its environment).

» Examples. telephone, internet, wireless, banking,...

Bell Laboratories

Page 26 October 18, 1999

Originality Lucent Technologies @

e Communication software is software!

— Sameoverall development process and general-purpose tools (see Part 1).

» Developing communication software is harder!

— Many possible sequences of interactions between components
(coordination problems, race conditions, timing issues,...).

» Testing communication software is harder!
— Traditional testing provides poor coverage.

» Debugging communication software is harder!

— Scenarios |eading to errors can be hard to reproduce.

Bell Laboratories Page 27 October 18, 1999

Why Harder? Lucent Technologes @

» Implementation looks nondeterministic due to concurrency
(scheduling) and real-time (processing speed):
— “Nondeterministic” means “unpredictable’; it is an abstraction.

— Same sequence of inputs does not imply same sequence of outputs.

* Fundamentally, parallel composition is not “compositional”:

Given 2 functions f(x) and g(x), f(g(x)) is easy to understand.
— Example: if f(x)=(x+1)/2 and g(x)=(x-1)/3, f(g(x))=(((x-1)/3)+1)/2
Given 2 functions f(x) and g(x), f(x)|lg(x) can be very different from f or g!

Example:

X=X+1 | |x=x-1
_ I _ =7
X=x/2 Xx=x/3
v v

Bell Laboratories Page 28 October 18, 1999

Tools for Dealing with Concurrency ™" & @

» Debuggers for concurrent/distributed systems:

— Control and track the execution of more than one process/thread.

» Toolsfor detecting run-time coordination problems:

— Detect race conditions (simultaneous writes in same address) and
coordination problems (deadlocks) at run-time.

— Instrument the execution of processes/threads while minimizing the impact
on timing.

— Record scheduling information (“trace”) for faithfully replaying multi-
process scenarios leading to errors.

— Generate a consistent representation (snapshot) of the state of a distributed
system.

— Example: Eraser, Assure (for Java)

Bell Laboratories Page 29 October 18, 1999

Tools for Dealing with Real-Time "™ B @

Schedulability Analyzers:

— Analyze aset of real-time scheduling constraints (coming from architecture
and properties to satisfy) and generate a schedule if there exists one.

Worst-Case Execution-Time Analyzers:
— Determine WCET of fragments of code.

Performance modeling tools:

— Analyze performance of an architectural model (queuing theory, stochastic
processes,...)

e FEic.

Bell Laboratories Page 30 October 18, 1999

AnOther ApproaCh Formal Lucent Technologies @
\erification
* What is Verification? 4 e ements define a verification framework:

Specification
(what we want)

Design Verification

Implementation
(what we get)

- r

Verification: to check if all possible behaviors of the implementation
are compatible with the specification

* Whiletesting can only find errors, verification can also prove
their absence (=exhaustive testing).

» Examples of Approaches. Theorem Proving and Model Checking.

Bell Laboratories Page 31 October 18, 1999

Theorem Provi ng Lucent Technologies @

Goal: automate mathematical (logical) reasoning.

Verification using theorem proving:

Implementation represented by alogic formulal.

Specification represented by alogic formula S.

Does“l impliesS” hold?

Proof is carried out at syntactic level.

This framework is very generd.

— Many programs and properties can be checked thisway.

However, most proofs are not fully automatic.

A theorem prover israther a proof assistant-and-a proof checker.

Bell Laboratories Page 32 October 18, 1999

Model Checking Lucent Tethnologies @
» Model Checking is more restricted in scope but is fully automatic.

» Vaerification using model checking:
— Implementation represented by afinite state machine M (called state space)

— Specification represented by atemporal-logic formula f.
» Example: Linear-time Temporal Logic (LTL)
— Specify properties of infinite sequences 0, s1, S2,... of states
— Tempora operatorsinclude: G (aways), F (eventualy) and X (next).
— Example: G(p ->Fq)
9D]]

: :

— Does“M satisfiesf” hold? (Hencethe term “ model checking”...)
» For LTL, do al infinite computations of M satisfy f?

— Proof is carried out at semantic level, via state-space exploration.

Bell Laboratories Page 33 October 18, 1999

Model Checking Procedure for LTL "™ Eimieis @

* Property: Every LTL formulaf can be trandated into afinite
automaton on infinite words A(f) (Buchi automaton) such that
A(f) accepts exactly the infinite sequences satisfying f.

— Example: automaton accepting GFp Not p
Not

-

p

* Model Checking Procedure: (“automata-theoretic approach”)
— 1. Build A(Not f) (the size of A(Not f) is at worst exponential in |Not f|).
— 2. Compute the product automaton of the state space and A(Not f).
— 3. Check that the product automaton is empty (linear-time complexity).

Bell Laboratories Page 34 October 18, 1999

State-Space of A Concurrent System™" & @

» The state space of a concurrent system is a graph representing the
joint behavior of all its components.

» Each node represents a state of the whole system.

» Each path represents a scenario (sequence of actions) that can be
executed by the system.

» Many properties of a system can be checked by exploring its state
space: deadlocks, dead code,... and model-checking.

Bell Laboratories Page 35 October 18, 1999

Remark Lucent Technologies @

» Using alogic is not mandatory.
— Many verification frameworks do not use (temporal) logics.
— Logicisapowerful theoretical tool (characterizes classes of properties).

— Logic can be very useful in practice too (concise and expressive).

Bell Laboratories Page 36 October 18, 1999

The State Explosion Problem Lucent Technologies @

» Main limitation: “state explosion” problem!

X1=1 J X2=1 J ------ Xn=1 J 2" states!
n! interleavings!

— State-space exploration is fundamentally hard (NP, PSPACE or worse).

— Divide-and-conquer approaches:
* abstraction: hide/approximate details.

» compositionality: check first local properties of individual components, then
combine these to prove correctness of the whole system.

— Algorithmic approaches:
» “symbolic verification”: represent state space differently (BDDs,...).

* state-space pruning techniques: avoid exploring parts of the state space
(partial-order methods, symmetry methods,...).
» Etc.

Bell Laboratories Page 37 October 18, 1999

Summary et T e @

» Systematic State Space Exploration is smple:
— easy to understand,
— easy toimplement,

— easy to use: automatic!

* Main limitation: “state explosion” problem.

* Used in many tools: CAESAR, COSPAN, MURPHI, SMV,
SPIN, etc.

— Differ by specification language, implementation language, comparison
criterio, and/or verification algorithms,

— but al based on systematic state-space exploration.

Bell Laboratories Page 38 October 18, 1999

Formal Verification vs. Testing e s @

» Experiments with these tools show that model checking can be
very effectivel

— They can detect subtle design errors.

 In practice, formal verification is actually testing because of
approximations:

when modeling the system,

when modeling the environment,

when specifying properties,

when performing the verification.

» Therefore “bug hunting” is really the name of the game!

Bell Laboratories Page 39 October 18, 1999

Applications: Hardware Lucent Technologies @

» Hardware verification is a booming application of model
checking and related techniques.

— Thefinite-state assumption is not unrealistic for hardware.

— Thecost of errors can be enormous (e.g., Pentium bug).
— The complexity of designsisincreasing very rapidly (system onachip).

» However, model-checking still does not scale very well.
— Many designs and implementations are too big and complex.
— Hardware description languages (Verilog, VHDL,...) are very expressive.

— Using model checking properly requires experienced staff.

e Quid for Software?

Bell Laboratories Page 40 October 18, 1999

Applications. Software Models e o @

» Anaysis of software models. (e.g., SPIN)
— Analysis of communication protocols, distributed algorithms.
— Models specified in extended FSM notation.
— Restricted to design.

» Analysis of software models that can be compiled: (e.g., SDL,
VFSM)

— Same as above except that FSM can be compiled to generate the core of the
implementation.

— More popular with software devel opers since reuse of “model” ispossible.

— Analysisstill restricted to “FSM part” of the implementation.

Bell Laboratories Page 41 October 18, 1999

Applications. Software Lucent Technologies @

e Quid for software?
— General-purpose programming languages (e.g., C, C++, Java),
— Real size (e.g., hundred thousand lines of code).

* Two main approaches for software model checking:

Modeling languages » Model checking

abstraction adaptation

Programming languages » VeriSoft

Bell Laboratories Page 42 October 18, 1999

Model Checking Software Lucent Tethnologies @

» Static analysis for automatic model extraction: (e.g., ?)
Language dependent +often need additional restrictions (heavy machinery).

Abstraction is not a panacea: it always introduces unrealistic behaviors.

Need to map scenarios leading to errors back to the code.

Technology not ready yet, active area of research.

» Systematic state-space exploration for arbitrary code: VeriSoft

Controls the execution of concurrent processes by intercepting systems
callsrelated to communication.

Automatically drive the entire system through many scenarios.
— Provide acomplete state-space coverage up to some depth only.

VeriSoft isnot apanacea either, but it is available today!

Bell Laboratories Page 43 October 18, 1999

V eri Soft et T ogies @
e What isit?

* How doesit work?

» Existing Industrial Applications?

» Comparison with Testing?

» Challenges?

* How to useit?

... Seeyou next week!

Bell Laboratories Page 44 October 18, 1999

Summary of Part 2 Lucent Technologies @

» Developing, testing and debugging communication software is
hard.

» Alternative approach: formal verification and model checking
(=systematic state-space exploration).

* Model checking software.

Bell Laboratories Page 45 October 18, 1999

