Recording the Reasons for Design Decisions

Colin Potts and Glenn Bruns

MCC Software Technology Program

Abstract: We outline a generic model for representing de-
sign deliberation and the relation between deliberation and
the generation of method-specific artifacts. A design his-
tory is regarded as a network consisting of artifacts and
deliberation nodes. Artifacts represent specifications or
design documents. Deliberation nodes represent issues, al-
ternatives or justifications. Existing artifacts give rise to
issues about the evolving design, an alternative is one of
several positions that respond to the issue (perhaps calling
for the creation or modification of an artifact), and a justi-
fication is a statement giving the reasons for and against
the related alternative. The model is applied to the devel-
opment of a text formatter. The example necessitates
some tailoring of the generic moedel to the method adopted
in the development, Liskov and Guttag’s design method.
We discuss the experiment and the method-specific exten-
sions. The example development has been represented in
hypertext and as a Prolog database, the two representa-
tions being shown to complement each other. We conclude
with a discussion of the relation between this model and

other work, and the implications for tool support and
methods.

Problem Statement

A software development method supports two aspects of
designing: it provides a series of representations and
analyses for different kinds of artifacts (i.e. design docu-
ments), and heuristic support for design deliberation (de-
ciding what artifacts to derive, and why). Methods differ
greatly, both in the rigor of their artifacts and analyses,
and in the richness of their heuristics. Most methods, how-

ever, provide some degree of support for both aspects of
designing.

The use of a method involves the production of intermedi-
ate artifacts - artifacts prior to executable code. These may
include informal documents describing the functional

0270-5257/88/0000/0418801.00 © 1988 {EEE

418

specification of the system, architectural sketches, detailed
designs, pseudo-code, structure diagrams, or formal speci-
fications. The progression of a single development project
can be regarded as a graph, in which the nodes are arti-
facts and the links are derivation paths (Figure 1). One
interpretation of Figure 1 would be that three detailed de-
signs are derived from and comply with a single architec-
tural design. Traceability is the problem of recording and
maintaining information about these derivations: specifi-
cally, an object in an earlier artifact (e.g. a required fea-
ture) must be demonstrably implemented by the objects
contained in some later artifacts (e.g. modules), although
a sequence of derivations may distribute a unitary object
throughout the design. Conversely, objects in later artifacts
must be traceable back to the point in the design history at
which the information they embody was introduced. An
example of this model of software development is trans-
formational implementation [Broy and Pepper, 1981]. This
is an extreme example in that the artifacts have formal
semantics and the derivation rules are strictly defined, but
less formal methods may also have the same basis. In JSD
[Jackson, 1983], for example, the artifacts are more het-
erogeneous than in transformational implementation, they
do not have a formal semantics (although some analysis is
possible), there are fewer of them, and the derivations do
not preserve correctness. Nevertheless, the progression
from one stage to the next is relatively smooth and easy to
understand.

Intermediate artifacts help document the design decisions
made during a multi-phased development process. Early
design artifacts can be much more useful to maintainers
than the final code, in which the effects of an early design
decision may have become difficult to trace. Without such
a record a maintainer may repeat mistakes that were made
by the original designer but not documented or may undo
earlier decisions that are not manifest in the code. But
although intermediate artifacts may help document design
decisions, they can only do so in an indirect fashion. A

Recommended by: W. Riddle

Designf/implementation
—.—.—’

Design
H Artifact| oo
vos Design
Artifact \
Design
Artifact) P ¢
/f
Design
Artifact Psos

Figure 1: Schematic model of derivation of design
artifacts

design artifact typically documents the results of a phase of
designing, not the process followed.

The recording of design results (the nodes in Figure 1) and
the recording of process (the arcs) are different develop-
ment functions with different purposes. Many development
tasks (especially implementing subsequent modifications)
may require access to both kinds of information, but oth-
ers do not. This suggests the need for two kinds of design
documentation: documentation of the process (deliberation
or rationale) and documentation of design results (arti-
facts). Recording rationale independently from artifacts
has two advantages: the designer need not hunt inside an
artifact for explanatory comments that may not be there,
and considerations which impinge on many artifacts are
recorded in one place (Figure 2). When the intermediate
artifacts are viewed, either electronically or in the form of
printed documents, it may be valuable for the rationale to
be inserted into the artifact as a set of annotations. Con-
ceptually, however, the rationale is separate: the artifact
records the design; the rationale records the decisions
made in producing the design.

Designlimplementation
—_—

Design
Artifact-Bm-oee
» [?
eee Deslign
Artifact
\ Rationale Desian |-3oms 0
rita
?
Design Ratlonaie
Artifact
P se»

Rationale

Figure 2: Schematic model of design deliberation and
artifact synthesis.

419

Acrtifacts in a design language can be subjected to a range
of formal analyses, and tools such as structure editors and
consistency checkers can be developed even for relatively
informal languages. Deliberation, on the other hand, is
currently supported only by method manuals and training
courses. Although this is unsatisfactory, it is not necessary
to go to the opposite extreme by attempting to formalize
the micro-structure of design deliberation or to implement
intelligent design automation tools. Encoding design exper-
tise and domain-specific knowledge may be desirable
long-term goals, but much can be done immediately to
support design deliberation with more modest semi~-formal
representations.

Overview

In this paper we outline a generic model for representing
design deliberation and its relation to the derivation of
method-specific artifacts. We apply the model to a ‘vivi-
section’ of Liskov and Guttag’s [1986] design of a text
formatter. In so doing, we treat the design process as a
network consisting of deliberation and artifact nodes. We
have represented Liskov and Guttag’s design process as a
hypertext network and as a Prolog database. We discuss
this experiment and the extensions needed to provide
method-specific tools to represent deliberation and arti-
facts.

We have adopted an issue-based model of deliberation.
This is summarized in the entity-relationship diagram of
Figure 3. The model has been influenced by Rittel’s IBIS
method for policy decision making [Rittel and Webber,
1973] and Conklin’s [1986] proposed Design Journal. Ex-
isting artifacts, including requirements documents, give
rise to issues about the evolving design. For example, if the
artifact is an informal specification of a text formatter, the

Attribute

Ne

ALTERNATIV

Oselected

ARTIFACT

‘ramiﬁcation

JUSTIFICATION

Figure 3: Data model for design deliberation

D i—weeee
eos — o D
D Lo oo
D
Key: f——3 soo

— .
IE] derives alternative

artifact isstie justification

Figure 4: Expanded schematic model of design

deliberation and artifact synthesis

issue may arise ‘how is the input text going to be read?
An alternative is one of several positions that respond to
the issue. For example, the alternative ‘we need a proce-
dure to read lines’ is one possible response to the above
issue. Not all alternatives directly suggest the need to cre-
ate new artifacts; many reflect the need to modify or re-
fine existing artifacts, or state that no design changes need
to be made. A justification is a statement giving the reasons
for and against selecting the related alternative; for exam-
ple, ‘we should read the input line-by-line because there
are two kinds of lines (text lines or command lines), which
must be treated differently’.

A skeletal example of the deliberation process at work is
shown in Figure 4, which is obtained by exploding the ‘de-
liberation’ nodes of Figure 2 according to our data model.

To be put into practice, this approach must be specialized
for a particular design context; that is, a particular design
method, application domain, or set of solution technolo-
gies. The specialization of the model for a specific method
is illustrated in the next section.

Example

We illustrate how deliberation can be integrated into an
existing design method by discussing a worked example in
some detail. In doing so, we try to point out what is spe-
cific to that example and what is generic. The example is
the development of a simple text formatter as documented
by Liskov and Guttag [1986, Chapter 13].

Example Method

Liskov and Guttag’s book is an exposition of an approach
to software design based on information hiding. Hence-
forth, the method will be abbreviated as L&G’. In L&G,
design artifacts take the form of abstractions with well-
defined interfaces and hidden bodies. Depending on the
stage of development and the amount known about an ab-
straction these properties may be defined formally or in-
formally; for example, a data abstraction may be defined
formally as an algebraic specification, and a procedural
specification may be defined in terms of formally stated
preconditions and postconditions. On the other hand, the
artifacts may have a formal structure, while their contents
are specified informally; for example, the operations of a
data abstraction, and the preconditions and postconditions
of a procedural specification can both be defined by infor-
mal text.

In addition to the specialization of the artifact types, the
data model of L&G includes one new object type: an appli-
cation domain task. A task is anything performed by a pro-
cedural abstraction. L&G includes heuristics for inventing
suitable abstractions to accomplish tasks. For example, the
‘read input’ task of the text formatter (the formatter being
a high-~level procedural abstraction) could be encapsulated
in a variety of ways:

® an input document buffer data abstraction;

® the input document could be read incrementally
in application-sized chunks (for example, line-
by-line) with a procedural abstraction hiding the
details of character input;

e there might be no encapsulation of the task, the

text formatter reading the text by direct calls to

primitive input operations.
In our terminology, making such a decision amounts to
resolving an encapsulation issue. Encapsulation issues arise
often during an L&G development: many of the decisions
documented by Liskov and Guttag are resclutions of issues
of this type. An encapsulation issue is a special class of
issue that is concerned only with the possible encapsula-
tions of a concept (e.g. a task) within an abstraction arti-
fact (e.g. a procedure). Rules apply to encapsulation issues
that do not apply to issues in general: for example, an
encapsulation issue is raised for every task. The enlarged
data model, incorporating specialized artifact and issue
types and the method-specific task object type is shown in
Figure 5.

Example Application

We have chosen Liskov and Guttag’s text formatter devel-
opment, because they provide an excellent and (appar-
ently) thorough account of the design deliberations in-

420

GENERIC

T summary

I summary O—— TASK
ISSUE BEHAVI- ‘
ORAL
ISSUE

alternative

NATIVE

requires
modifies
effects

ARTIFACT

|
|
A:iency I
!

DATA
ABS'II'RAC-

SPEC

———0 summary

JUSTIFI-
CATION

Figure 5: Data mode! for L&G

volved in designing using L&G. In fact, because of their
pedagogical objectives the example is sanitized: it contains
no mistakes or abandoned design paths, and the delibera-
tions that are documented are those that Liskov and Gut-
tag feel make the final design easy to understand and
modify, not those that may really occur during a design
process.

The formatter is a simplified version of the UNIX1 text
formatter nroff. It reads documents that contain embedded
command lines. A command line starts with a period and
is followed by a command name. There are only a few
commands, and the syntax for commands is very simple.
The output of the formatter is the document formatted ac-
cording to the commands embedded in the input file, and
according to built-in parameters specifying the page
length, margin widths, and so forth.

Liskov and Guttag give an implementation of the format-
ter consisting of about 300 lines of CLU. Thus the exam-
ple is small but non-trivial.

1 UNIX is a trademark of AT&T Bell Laboratories

421

have_doc_buffer

do_line (12)

problem_orienu!ion@

(11)

formatter

(&)

Key:
—_— <f>

derives task alternative

ENONG

artifact issue jumtification

Figure 6: Expanded schematic model of design

deliberation and artifact synthesis

Text formatter development

An overview of the part of the design process we consider
is shown in Figure 6. Compared with the more schematic
Figure 4, Figure 6 is populated with concrete, L&G-spe-
cific nodes. Some of these nodes are numbered: the num-
bers refer to later figures depicting the nodes’ contents.

Some deliberation has taken place prior to the point at
which we start our analysis in this paper of Liskov and
Guttag’s design. Artifacts have been synthesized that docu-
ment the requirements, and issues arising out of these
have been posted. We start our analysis with the identifica-
tion of the primary abstractions of the problem. This is a
standard L&G issue that is always addressed early in the
design.

According to Liskov and Guttag there is one primary ab-
straction in the text formatter - the formatter procedure.
Liskov and Guttag’s specification for this procedure is
given in Figure 7. We have changed their notation slightly
to make every artifact and deliberation node have a record
structure in which the fields correspond to the relations (or
their inverses) and the attributes of the data model. The
changes are purely notational and the deliberation nodes
and artifacts are faithful to Liskov and Guttag’s design.

The rest of this section contains examples of the nodes
types specified by the data model.

formatter = PROC (ins, outs, errs: stream) SIGNALS

(badarg(string))

MODIFIES:
ins, outs, errs

EFFECTS:
If ins is not open for reading, or outs or errs is not open
for writing, badargs(s) is signaled, where s identifies an
argument that was opened improperly (e.g. badarg
“‘input stream”)). Otherwise format proceeds as
described in the text [i.e. Liskov and Guttag(1986) pp.
271-273], taking input from ins and producing output on
outs and error messages on errs. Ins, outs and errs are
closed before returning.

TASKS:
read_input
interpret_input
produce_output

EFFICIENCY:
Where n is the number of characters in ins, time is
O(n), space added (the storage for outs) is O(n) and
temporary space is much less than n.

Figure 7: Procedure specification for fomatter

Having identified the major abstractions, L&G proceeds by
identifying the principal tasks accomplished by a proce-
dural abstraction and considers how these are encapsu-
lated. Some may require the invention of ‘helper abstrac-
tions’; others may be accomplished by refining the specifi-
cation of abstractions already existing in the design. In the
formatter example, three task nodes have been created
and corresponding encapsulation issues have been raised
addressing each task.

One of the tasks, read_input, is documented in Figure 8,
and its corresponding encapsulation issue, read_in-
puts_encapsulation_level, is shown in Figure 9.

read_input = TASK
DONE-BY:

format
SUMMARY:

formatter reads input

Figure 8: A task node.

read_inputs_encapsulation_level = ISSUE
CONCERNING:
read_input
SUMMARY:
How should the format task read_input be encapsulated?
ALTERNATIVES:
read_input_inline
have_doc_buffer
make_do_line_abstraction

Figure 9: An issue node

422

make_do_line_abstraction = ALTERNATIVE
SELECTED
SUMMARY':
Make a do_line procedural abstraction to process each
input line.
RESPONSE-TO:
read_inputs_encapsulation_level
ARTIFACT:
do_line

Figure 10: A design alternative node

problem_orientation = JUSTIFICATION
CONCERNING:

make_do_line_abstraction
SUMMARY:

1. The problem is line—oriented (lines are either text or
commands)

2. Reading the entire document into a buffer contravenes
one of formatter's efficiency constraints on
temporary space.

Figure 11: A justification node

Liskov and Guttag consider three alternative ways to en-
capsulate the read_input task; to accomplish it inline
within the formatter itself (that is, the implementation of
formatter should directly call primitive character input op-
erations), to read the entire document into a buffer, or to
have a new abstraction, do_line, read the document one
line at a time. The third alternative, the one calling for a
do_line procedure, is chosen (Figure 10). Its justification
is given in Figure 11. In response to this chain of delibera-
tion, a new artifact is created - the procedure specification
for do_line (Figure 12). Formatter will call this procedure
whenever it needs to read and process the next line in the
input document.

do_line = PROC (ins: stream, d: doc, errs: stream) SIGNALS
(all_done)

REQUIRES:
can_read(ins) & can_write(errs) & d has not been
terminated.

MODIFIES:
ins, errs, d.

EFFECTS:
If ins is empty, signals all_done. Otherwise processes
one input line from ins to d as defined in the
specification of formatter, writing error messages on
errs. The entire line is processed including the end of
line character.

EFFICIENCY:
The time and space taken to scan and parse a line
should be proportional to the number of characters in
the line.

Figure 12: A procedure specification (do_line)

Turning to the issue produce_outputs_encapsulation_level
(refer back to Figure 6), we see that three alternatives are
considered, each calling for the synthesis of a data ab-
straction encapsulating a body of text: make_page_ab-
straction; make_line_abstraction; and, make_doc_ab-
straction. The decision is made that the entire document is
the best abstraction for producing output. The justification
given is that this is the choice that makes the rest of the
design most immune to plausible future modifications;
likely future modifications (perhaps by comparison with
other text formatters) include new commands to format
bodies of text that straddle page boundaries. As a result of
this decision a doc data abstraction is created.

Detection and recording of ramifications

The third issue, interpret_inputs_encapsulation_level, ap-
pears similar to the input and output issues. The reason-
able alternatives for the encapsulation of interpretation of
inputs are fairly constrained given the decisions concern-
ing the encapsulation of input and output task. Only one
alternative is seriously entertained - do_line_interprets_
and_calls_doc_ops (Figure 13). That is, do_line will inter-
pret the input, formatting text lines and interpreting com-
mand lines, and will do this by means of appropriate op-
erations in doc. Liskov and Guttag do not consider alterna-
tives or justify this decision other than to say that it is a
simple solution.

Several ramifications are noted by Liskov and Guttag (see
Figure 13). All three of the artifacts produced so far are
potentially in need of modification. For example, the input
to do_line, the behavior of formatter and the operations
contained within doc have all been constrained by this de-
cision.

do_line_interprets_and_calls_doc_ops = ALTERNATIVE
SELECTED
CONCERNING:
interpret_inputs_encapsulation_level
SUMMARY:
do_line interprets input and calls appropriate doc
operations to format text.
RAMIFICATIONS:
do_line must be passed a doc object.
formatter creates output.
formatter finishes output.
doc has create op.
doc has terminate op.

Figure 13: An alternative with ramifications.

423

Select 2 f11e ar butun.

V)
(e @D Gy man e

wtendein e format_te_batch

orsat_ is_inor

JU_problem_or jentation
Sl daatien
ke_do_line_sbetraction

TA_read_input, BA_ine_at_aol
,..L A Fead_input _inlt _"i,l

Lo - minputzintine: 5. ine. .A0d post,
- e e

i IJnlJl’utl_.mnpluhtlnﬂ.ln;uly o L
SIA have_doo_buffer satie Dddo linsomites 4
TA_interpret_input. \
S n—a?‘.u- i J]
i i ion_level .
s"""""""w“'::’_'i"’m-"*"'__,m il AU does_do_ inewrite_g
perfenrm "

DA_do_lina TTriarprote_snd_oslla.doo, -
—-— ST

DAmaks._page_sbatraction Tt

/M_n\a.su.ahtuntw\?‘“" =
mu-n\-—. o roltagstien

et DA aaks] Lne_sbstraction

- wanettm
_produoe swtputs_smospeul ation_level.

_nodifiable

Key to node prefixes:

DA_ Deslgn alternative

DS_ Data abstraction spec.
IS__ Issue

JU_ Justification
PS_ Procedure spec.
TA_ Task

Figure 14: Planetext browser screen for formatter
vivisection

Hypertext and rule-based implementation

An amalgam of formal structure and semi-structured,
largely textual, content is well-suited for representation in
a hypertext system [Conklin, 1987]. We have implemented
the Liskov and Guttag formatter development, of which
the the portion discussed in this paper constitutes just a
part, in Planetext, a prototype hypertext system (see Con-
klin {1987] for an overview of Planetext). Planetext in-
cludes a graphical browser that enables the user to view
the network as a whole and to move around it. Figure 14
shows a Planetext browser window. Apart from differ-
ences in layout, and the fact that node types are encoded
by two-letter prefixes, it is similar to Figure 6. The indi-
vidual nodes in the deliberation network are represented
by single Planetext nodes.

In Planetext, nodes are represented by text files. Nodes
have associated link files that collectively represent the
network. Figure 15 is a Planetext edit window containing
the alternative node make_do_line_abstraction (cf. Figure
10). To link a Planetext text node to others in the network,
the user selects the ‘LINK’ option and specifies the link
type (e.g. ‘justification’) and the name of the destination
node (e.g. ‘JU_problem_orientation’). The cursor position
at the time the link was created is taken to be the point
from which the link emanates. Thus a link’s true source
may be a component inside the node (for example a field
or keyword), not the node as a whole. The entries ‘{justifi-
cation}’ and ‘{artifact}’, have been placed in the node by
Planetext, to indicate the sources of the links emanating
from the node.

PlaneText /ulg/stp/potis/Cellini/GD/PT/DA aake do line abstraction

SELECTED{justification],

i SUMMARY ¢
! lake a do_line procedural sbstraction te process each input Vine.
|| RESPONSE-TO:

read_inputs_encapsulation_level
f ARTIFACT:
i do_line{artifact)

o -

Figure 15:

Planetext edit window showing emanating
links

Planetext has no mechanism to check whether a network
complies with a data model. Simple networks can be in-
spected visually, but this becomes difficult and error-
prone for more complex networks. We would like to be
able to check, for example, whether there are instances of
issues which have been responded to with only one alter-
native (like do_line_interprets_and_calls_doc_ops above),
whether there are instances of selected but unjustified al-
ternatives, and so on. This can be accomplished by trans-
lating the Planetext link file information into Horn clauses
and using a Prolog interpreter to perform the analyses as
queries.

Augmenting a hypertext system with a general-purpose in-
ference mechanism has the advantage that analyses can be
performed by formulating the appropriate query. It is alsa
possible to formulate special transitivity rules to define vir-
tual links that could not be represented explicitly in the
hypertext network without incurring a substantial mainte-
nance overhead. For example, one artifact can be said to
be derived from another if it arises out of deliberations
concerning the originating artifact. Intuitively, we would
like to be able to ‘telescope’ deliberation nodes out of exis-
tence to produce a view of the network that only contained
derivations between artifacts (cf. Figure 1). This is trivial
in Prolog. Thus (in sugared Prolog syntax):

derived-from(Artifact1, Artifact2) if
raises (Artifact1, Issue) &
alternative(lssue, Alt) &
selected (Alt) &
artifact(Alt, Artifact2)

where, in L&G:

raises(Artifact, Issue) if
procedural-abstraction(Artifact) &
performs(Artifact, Task) &
encapsulation(Task, lssue)

and:

raises(Artifact, Issue) if
behavior (Artifact, Issue).

Notice, that method-specific knowledge of node types and
relationships is vital in defining these kinds of rules. Sim-

ple reachability is not sufficient to define derivations: links
must be of the correct type.

Initially, separate Planetext and Prolog descriptions of the
text formatter development were developed. A translation
program has been developed that reformulates the
Planetext linkfile information as a Prolog database. Peri-
odic analyses can thus be performed on the network. Cur-
rently, however, Planetext does not have a Prolog inter-
face, so changes to the network are not automatically re-
flected in the Prolog version.

Discussion

Conclusions

We have described a simple model of design deliberation,
and its relation to the derivation of design artifacts. Its
simplicity and the separation of the representation of arti-
fact and rationale facilitate the understanding of decisions
made during a design effort. The model has been easily
tailored to a specific method. This suggests that it is possi-
ble to systematize design deliberation in a fairly uniform
way. A design method provides a set of representations for
the artifacts produced at each stage and a corpus of stan-
dard issues, candidate alternatives and justifications that
systematize some of the deliberation entered into at each
stage.

Related Work

Our approach can be compared to ‘process modeling’ -
the development of descriptive models of software devel-
opment practices (Potts [1984], Dowson [1986]). Because
software development is very complex, with organizational
factors overlaying the purely technical, some published
process models are very complicated. Yet few process
models have become the basis for project support environ-
ments, and those that have are among the simplest and
most capable of specialization for particular contexts (e.g.
Stenning [1986]). Our deliberation model has been devel-
oped with the same goals of simplicity and tailorability in
mind.

L&G seems to be representative of informal, but system-
atic methods which can be supplemented by the semi-
structured representation of deliberation. Semi-structured
deliberation can also be applied in the case of more formal
methods. For example, Bjorner [1987] describes a formal
approach to software development in terms of ‘software
development graphs’. (His Figure 3.1 is identical in kind to
our Figure 1). Bjorner has in mind artifacts and derivation
rules constructed according to the principles of VDM
[Jones, 1986]. But having a formal (or ‘rigorous’) method
does not, of course, completely free the designer from the

need to deliberate about different potential refinements of
a specification or how to discharge proof obligations.
VDM-specific deliberation occurs between the artifacts in
a software development graph in an identical fashion to
the deliberation occurring between the L&G artifacts in
our vivisection.

Wile [1983] has developed a system (POPART) and a lan-
guage (Paddle) for describing as a ‘meta-program’ the
transformational development of a program. A Paddle pro-
gram is a formal description of the program development
that can be used to explain the development to subsequent
maintainers. Using Paddie, the designer can write com-
mands to perform general-purpose problem solving meth-
ods (e.g. ‘divide and conquer’). Our approach is comple-
mentary. Support like POPART and Paddle will be neces-
sary for transformational methods to be usable in the de-
velopment of large systems, as it effectively abstracts away
from source-to—source transformations to the fulfilment of
larger design goals. However, a meta-programming lan-
guage is not the best vehicle for documenting why a prob-
lem should have been tackled in a specific way; for exam-
ple, Paddle cannot be used to explain why a design goal
was ‘divided and conquered’ in the chosen fashion, or how
the goal itself arose.

In addition, it should be noted that transformational tech-
niques and other formal methods are only applicable once
a formal specification has been written. In a real project,
this is a significant development effort in its own right.
Many analysis and design decisions must be made prior to
that point, and informal intermediate artifacts will be pro-
duced en route (cf. Finkelstein and Potts [1986]).

The design we have vivisected in this paper was produced
for educational reasons and includes no mistakes or
changed decisions. Thus it is atypical of design processes
in real development projects. It remains to be seen
whether the explicit recording of design rationale is help-
ful or intrusive during constructive design, or whether it is
best done in order to ‘fake’ a rational design process after
the fact [Parnas and Clements, 1986]. We have also cho-
sen a level of granularity in representing deliberation that
may not be appropriate for larger projects or other design
methods. These are empirical questions.

Non-intrusive tool support is vital. To record design delib-
erations, the designer must create many objects - issues,
alternatives, and justifications. Thus tools must help the
designer create and use such objects easily and maintain
them behind the scenes. One mundane problem that must
be overcome is the naming of nodes. The nodes in the
formatter development are all given long, mnemonic
names. If every decision made by a designer were to re-
quire the creation and naming of five or six deliberation

nodes, there would be little time left for designing. In the
same vein, redundant data entry should be minimized. For
example, much of the nodes’ contents in the examples
above could be deduced by a tool from the network’s
structure.

Some of these requirements are fulfilled by existing
general-purpose hypertext systems. Undoubtedly, hyper-
text is very suitable for maintaining large, non-linearly re-
lated sets of documents. Thus hypertext should become a
standard vehicle for the preparation and maintenance of
system documentation. There have been previous attempts
to use hypertext systems to capture structural relationships
between design components [Biggerstaff, 1987; Petersen,
1987]. However, these studies were concerned with the
representation and inter—relationship of design documents,
not with the process of deliberation that gives rise to them.
For the latter purpose, a deliberation support tool would
have to contain a fairly general query and inferencing ca-
pability.

In the foreseeable future we believe that the best route for
introducing general inferencing is by representing design
artifacts and deliberations in semi-formal records and de-
fining rules that utilize this purely structural information.
In this we are following the example of Malone et al.
[1987], who describe an electronic mail system based on
‘semi-structured’ messages. Malone’s system has superfi-
cial knowledge of message types and their attributes; it has
no deep knowledge about the domain of office work, but it
allows users to define rules governing what categories of
message they wish to receive and what priority to accord
to them by purely structural criteria. Malone et al. identify
several benefits attributable to semi-structured forms in
the context of computer-mediated coordinated work, bene-
fits which appear directly transferable to a design applica-
tion:

,

¢ they help in composition of messages: confront-
ing the designer with field names is a simple way
to help him or her not to forget to record some
categories of information;

¢ they help in sorting, selecting and assigning pri-
orities to messages: the structure is sufficient to
be able to formulate useful semantic criteria for
retrieving information;

® they can be analyzed so that subsequent actions
(e.g. forwarding or acknowledging a message) can
be invoked automatically and they suggest likely
responses to other messages: a design agenda
management system could easily be based on su-
perficial analysis that helped a designer keep track
of the completeness of a design, automatically cre-
ating placeholder nodes or modifying related
nodes when appropriate (e.g. the creation of a
placeholder artifact stemming from a ‘make_’ al-
ternative).

425

Future Plans

It is intended that the work reported in this paper is the
first step in the development of more deliberation-based
design methods, new representation schemes, and more
effective tool support for design problem solving. It needs
to be generalized in many ways by retracting the simplify-
ing assumptions we have made, by investigating:

® deliberation support for synthesis-oriented

methods other than L&G;

e the design of larger systems than text format-

ters;

® constructive design, as opposed to post hoc vivi-

section;

@ the design of reactive, as opposed to input-proc-

ess-output systems.
Another extension of deliberation-based design is in de-
sign planning. Studies of designers (e.g. Guindon, Krasner
and Curtis [1987]) have revealed that many design ‘break-
downs’ occur because of cognitive limitations - for exam-
ple designers forget to return to design goals they have
postponed, or while working on one part or one stage of
the design they cannot adequately record opportunistic de-
sign decisions affecting another part. Many of these break-
downs could be avoided by incorporating standard delib-
eration and planning structures in method support tools.
The designer could then incrementally generate and man-
age his or her work agenda. Such tools would assist in the
posting of issues for future consideration, or the creation
of place-holders (for example, creating null artifacts in
response to ‘make_’ alternatives).

We believe that generic models are limited in scope, and
have discussed how the model of deliberation presented
here can be tailored to a specific design method. Two
other kinds of tailoring would also be useful: those for
specific application domains (e.g. elevator scheduling, or
library inventory management); and those for established
solution technologies (e.g. security, databases, or commu-
nications). Application domain knowledge is an important
resource in design decision making, because some issues
crop up whenever a system is designed for a specific appli-
cation. Fickas [1987) has demonstrated that some applica-
tion-specific knowledge can be represented sufficiently
formally for a requitements analysis program to be able to
hypothesize problems with a specification. Most applica-
tion domains are difficult to codify, however, because they
are not part of any formal discipline. Deliberation specific
to a solution technology could be more easily systematized.
Solution technologies give rise to recurring patterns of de-
liberation, irrespective of the application. For example,
there are a limited number of protection strategies, and
each gives rise to a set of basic issues with standard alter-
natives. The authors are currently investigating how this

426

knowledge can be applied during requirements analysis
[{Bruns and Potts, 1987].

Acknowledgements

Don Petersen implemented the program to translate
Planetext outlink files into a Prolog database. Jeff Conklin,
Susan Gerhart and Don Petersen made many constructive
comments on an earlier version of this paper.

References

Biggerstaff, T. Hypermedia as a tool to aid large scale reuse,
MCC Technical report STP-202-87, 1987.

Bjorner, D. ‘On the use of formal methods in software
development’ Proc. 9th Int. Conf. Software Eng. IEEE
Comp. Soc. Press, 1987.

Broy, M. and P. Pepper ‘Programming as a formal activity’
IEEE Trans. Software Eng., SE-7(1): 14-22, 1981.

Bruns, G. and C. Potts Requirements by Analogy, MCC
Technical Report, STP-258-87, July, 1987.

Conklin, J. A theory and tool for coordination of design con-
versations, MCC Technical Report, STP-236-86, July,
1986.

Conklin, J. A survey of Hypertext, MCC Technical Report,
STP-356-86, Rev. 1, February, 1987. A shortened version
of this report has been published as ‘Hypertext: an intro-
duction and survey’ IEEE Computer 20(9): 17-41, Septem-
ber, 1987.

Dowson, J. (ed.) Iteration in the Saftware Process: Proc. 3rd
Int. Software Process Workshop, IEEE Comp. Soc. Press,
1986.

Fickas, S. ‘Automating the analysis process: an example’
Proc. 4th Int. Workshop on Software Specification and Design,
IEEE Comp. Soc. Press, 1987.

Finkelstein, A.C.W. and C. Potts ‘Structured common
sense: the elicitation and formalization of system require-
ments’ in D. Barnes and P. Brown (eds.) Software Engineer-
ing 86, Peter Peregrinus, 1986.

Guindon, R., H. Krasner and B. Curtis ‘Breakdowns and
Processes during the Early Activities of Software Design
by Professionals’ Proceedings of Second Workshop on Em-
pirical Studies of Programmers, Ablex. 1987.

Jackson, M.A. System Development, Prentice-Half, 1983.

Jones, C.B. Systematic Development Using the VDM Ap-
proach, Prentice-Hall, 1986.

Liskov, B. and J. Guttag Abstraction and Specification in
Program Development, MIT Press, 1986,

Malone, T.W., K.R. Grant, Kum-Yew Lai, R. Rao and D.
Rosenblitt ‘Semistructured messages are surprisingly use-
ful for computer-supported coordination’ ACM Trans. Of-
fice Inf. Sys. 5(2): 115-131, 1987.

Parnas, D. and P.C. Clements ‘A rational design process:
how and why to fake it’ JEEE Trans. Software Eng., SE-12:
251-257, 1986.

Petersen, D. Software design capture, MCC Technical Re-
port STP-138-87, May 1987.

Potts, C. (ed.) Proc. Int. Sofiware Process Workshop, TEEE
Comp. Soc. Press, 1984,

Rittel, H. and M. Webber ‘Dilemmas in a general theory
of planning’ Policy Sciences, 4, 1973.

Stenning, V. ‘An introduction to ISTAR’ in L. Sommerville

(ed.) Programming Support Environments, Peter Peregrinus,
1986.

Wile, D.S. ‘Program developments: Formal explanations
of implementations’, Comm. ACM, 26(11): 902-911, 1983.

427

