
On Guard: Producing Run-Time Checks from

Integrity Constraints

Michael Benedikt and Glenn Bruns

Bell Labs, Lucent Technologies

Abstract. Software applications are inevitably concerned with data in-
tegrity, whether the data is stored in a database, files, or program mem-
ory. An integrity guard is code executed before a data update is per-
formed. The guard returns “true” just if the update will preserve data
integrity. The problem considered here is how integrity guards can be
produced automatically from data integrity constraints. We seek a so-
lution that can be applied in general programming contexts, and that
leads to efficient integrity guards. In this paper we present a new integrity
constraint language and guard generation algorithms that are based on
a rich object data model.

1 Introduction

Every programmer understands the issue of data integrity. In database applica-
tions, updates must be checked before they are applied to prevent data corrup-
tion. In object-oriented programs, method parameters must be checked to ensure
that object attributes are not corrupted. In networking, updates to configuration
data and routing tables must be checked.
Ideally, data integrity would be ensured in advance through program verifi-

cation using static analysis, model checking, or theorem proving. However, large
programs and unbounded data values are problematic for model checkers, while
theorem provers generally require human guidance. More importantly, many
programs accept data from the environment, and this data cannot be checked
before run time, even in principle. An alternative to preventing bad updates is
to monitor at run-time for the presence of corrupted data. An issue with this
approach is how data that has been found to be corrupted can be “repaired”
(see e.g., [1]).
In this paper we focus on another run-time approach: the integrity guard.

An integrity guard is a program that is executed just before a data update is
performed. If the guard returns “true” then the update is guaranteed to cause
no data corruption. It is desirable that a guard be exact – it should return
true if and only if the update will not corrupt the data. A guard should also
be efficient – it should not interfere with application performance requirements.
Guards are often used with constraints that are invariants. When this is the
case it is desirable that a guard be incremental: it can assume that prior to
the update the data is valid. The guard generation problem is to automatically
generate an exact, incremental, and efficient guard from a data schema, a data
update language, and set of data integrity constraints.

Much work on the guard generation problem comes from the database com-
munity, where it is known as the “integrity constraint maintenance problem”.
A related and more general problem is “view maintenance” – recomputing the
result of a query as the input data is updated.
Our goal is to make guard generation useful for general-purpose program-

ming. The database community has concentrated on the guard generation prob-
lem primarily for the relational data model and for constraint languages whose
expressiveness subsumes first-order logic (see Section 5 for details). However,
common programming data structures can be hard to model relationally. And
in a general programming context, we wish to generate imperative guards, not
relational queries. Furthermore, guards generated from arbitrary first-order con-
straints may have prohibitive execution cost.
Our approach is to use an object data model in which program data struc-

tures can be naturally expressed. We use an XPath-based constraint language
that can express classical functional and inclusion dependencies and data restric-
tion constraints, but with expressiveness limited enough to ensure that generated
guards are inexpensive to evaluate (in particular, much less expensive than for
traditional relational query languages). By using XPath we also gain in read-
ability and user-familiarity. Finally, our architecture for guard generation allows
guards to be produced for a wide range of data infrastructure.
Thus the main contributions of our work are a) a constraint language that

is expressive while having advantages for generation and evaluation of guards
b) algorithms for generating low-cost guards and c) a modular implementation
framework that allows guard generation in multiple data storage paradigms.
The language and algorithms we describe have been implemented as part of the
Delta-X system at Lucent. This system is used to generate production code in
several complex network management applications.
The paper is organized as follows. Section 2 presents our data model, up-

date model, and constraint language, and gives properties of the constraints
that will be useful in guard generation. Section 3 defines formally the incre-
mental precondition problem in general, and presents the high-level structure
of our procedures. Section 4 gives a detailed look at guard-generation. Section
5 overviews related work and discusses the implementation and applications of
the framework, including experience and open issues.

2 Specifying Data Integrity

In this section we present a simple object data model, a set of data update
operations, and our language for expressing constraints.

2.1 Data Model

A data signature is a set A = {a1 . . . an} of unary function symbols, where each
symbol ai in A is either of integer type or node type, and a set Classes of class
names. An tree t of this signature has the form

t = (nodes, class, I, child)

where nodes is a finite set, class is a mapping from nodes to Classes, I is a
function interpreting members of A of integer type as functions from nodes to
the integers, and members of A of node type as functions from nodes to nodes.
Function child maps each node n to a sequence m1 . . .mk of distinct nodes, such
that the binary relation defined by m ∈ child(n) forms a tree. For ai a symbol
of A we define type(ai) to be the integers if ai has integer type, and nodes if ai

has node type.
This data model is a simplified object model – nodes represent objects, func-

tion symbols in A represent attributes, and members of Classes represent class
names. The model is simplified in that our model captures only attributes of in-
teger and pointer type. Also, we capture only a weak notion of class in our model,
as all objects share the same set of attributes. The absence of an attribute in a
class can be modeled through the use of distinguished attribute values. Finally,
we do not model class inheritance.

Running Example. Figure 1 shows an example tree that describes a net-
work configuration for routing software in a telecommunication system. The tree
represents regions in the network, with attributes storing the minimum and max-
imum call capacity of each region and the children of a region representing the
regions’ neighbors. In the figure each box represents an object, with the object’s
class at the top and its attributes listed below. The system’s call-processing com-
ponent reads this data in order to route calls, while the provisioning component
updates the data in response to commands from a technician.

nodeId = 0
minCpty= 1

Region

Network

nodeId = 3
minCpty= 0
maxCpty = 5maxCpty = 3

Region

regionId = 0

AdjRegion AdjRegion

regionId = 1

Fig. 1. Data for Running Example

We provide two basic update operations on trees, each of which is parame-
terized. A create operation Create(n,C,U) for tree t has as parameters a node
n of t, a class name C of Classes, and elements U =< u1, . . . , un >, with each
ui in type(ai). The effect of applying Create(n,C,U) to t is that a fresh node
n′ is added to nodes(t), function class is updated so that class(n′) = C, each
function ai is updated so that ai(n

′) = ui, and function child is extended so that
child(n) has additional, final element n′. A delete operation Delete(n,C) for t
has as parameters a leaf node n of t and a class name C of Classes. The effect
of applying Delete(n,C) to t is that node n of class C is removed from nodes(t).

2.2 Constraint Language

We present a two-tiered language, consisting of an expression language and an
assertion language. The expression language allows one to define sets of nodes
in a data tree, while the assertion language consists of statements about sets of
nodes.
Our expression language is based on XPath [5], an XML standard that allows

one to express queries on an XML document. Evaluating an XPath expression on
a tree node yields a set of nodes, or a set of values, or a boolean. In Delta-X we use
a simplified form of XPath having the following abstract syntax, where ∝ ranges
over {=, <,≤, >,≥}, axis ranges over {←,←∗,→,→∗, ↓, ↓∗, ↑, ↑∗}, a ranges over
attribute names, C ranges over class names, and k ranges over integers:

E ::= ε / @a axis C E1 ∪ E2 [q] E1/E2

q ::= E E1 ∝ E2 E ∝ k class = C q1 ∧ q2 q1 ∨ q2

We now briefly describe, in the style of [20], the meaning of expressions by
defining the set E(n) of nodes “returned” by expression E relative to a node
n of tree t. Expression ε returns {n}. Expression / returns the root node of t.
Expression @a returns the singleton set containing the value of attribute a of n.
Expression axis returns the nodes related to n by the axis (for example, ↓ returns
the children of a node, ↓∗ the descendants, and→ the right siblings). Expression
C returns the children in class C of a node. Expression E1∪E2 returns the union
of E1(n) and E2(n). Expression [q] returns {n} if qualifier q returns false, and ∅
otherwise. Expression E1/E2 returns the functional composition of E1 and E2

(in other words, the union of what E2 returns relative to each of the nodes in
the set E1 denotes).
A qualifier denotes a node predicate. Qualifier E holds of a node n in tree t

iff E(n) is non-empty. Qualifier E1 ∝ E2 holds of n iff E1(n) contains an element
n1 and E2(n) contains an element n2 such that n1 ∝ n2. Similarly, E1 ∝ k holds
of n iff E1(n) contains an element n1 such that n1 ∝ k. Qualifier class = C holds
of n iff class(n) = C. Qualifiers q1 ∧ q2 and q1 ∨ q2 provide logical conjunction
and disjunction.
Assertions are built up from expressions. Our assertion language supports

three types of assertions (or “constraints”). A restriction constraint Never(E)
asserts that for every node in a data tree, E returns empty on that node.
A referential constraint Reference(E) : Source(E1 . . . En),Target(F1 . . . Fn)

asserts that for every node n, such that E evaluated at the root satisfies n,
there is another node n′ in the tree such that for each i, Ei(n) has nonempty
intersection with Fi(n

′).
A key constraint Key(E) : Fields(F1 . . . Fn) asserts that for any two distinct

nodes n1, n2 returned by E at the root of a data tree, there is some i such that
Fi(n1) is distinct from Fi(n2): that is, a node can be uniquely identified by the
values of F1, . . . , Fn.
We write LXP for the language obtained from this assertion language by

taking expressions from XPath. LXP allows one to express a wide range of
program invariants.

Example. Returning to the network configuration example, one can express
that the minimum capacity of a region must be above the maximum capacity of
adjacent regions by

Never([class = Region∧

@minCpty ≤ AdjRegion/@regionId/@maxCpty])

One can express that a region ID uniquely identifies a region node by

Key(↓∗ /Region) : Fields(@regionId)

One can express that the region ID of every adjacent region points to some node
ID of a region by

Reference(↓∗ /AdjRegion) : Source(@regionId),Target(@nodeId)

LXP is strictly more expressive then the standard key and referential constraints
of relational and XML data. On the other hand, evaluation of the language is
tractable:

Theorem1. The problem of evaluating a constraint φ ∈ LXP on a tree t can
be solved in polynomial time in |φ|, |t|, on a machine that can iterate through t
with unit cost for each child, sibling, or parent navigation step.

The proof follows from the fact that evaluating a XPath expression E can be
done in time |E||t|2. This quadratic bound requires a refinement of an argument

in [8]. For now we sketch a simpler argument that gives a bound of |E||t|3,
and which will be relevant to our later algorithms. An XPath expression can be
translated in linear time to a first-order formula in which every subformula has
at most three free variables. The evaluation of such formulae on data trees is well
known to be in cubic time ([11]) using a bottom-up algorithm. The polynomial
bounds now follow easily. A more detailed look at this translation and its target
logic is presented in Section 4.
A LXP constraint is called local if the initial expression is of the form ↓∗

/E, and all other expressions do not involve navigation of axes or following
node-valued (i.e. pointer) attributes. The second and third example constraints
above are local. For local constraints, we can get extremely efficient bounds on
verification: linear for Never, quadratic for all others.

3 Computing Guards from Integrity Constraints

Imagine a system in which condition φ currently holds and must continue to
hold. To ensure that a state update will not take the system to a state not
satisfying φ, we want to perform a check such that 1) the check will succeed iff
applying the update would leave the system in a state satisfying φ, and 2) the
check will be inexpensive to perform. We now formalize the problem of finding
such a check.

For simplicity we will for a moment treat preconditions in a purely semantic
way. Assume a set S of states. Let op : S → S be a state update operation
and let φ : S → Bool be a state predicate. The weakest precondition [7] of φ
and op, written wp(op, φ), is the predicate that holds of s exactly when φ(op(s))
holds, for all s in S. A predicate ψ is an incremental precondition of φ and op if
φ(s)⇒ (ψ(s)⇔ wp(op, φ)) holds for all s in S. In other words, ψ is a predicate
that acts like wp(op, φ) for all states in which φ holds. Trivially, wp(op, φ) is an
incremental precondition for op and φ, and so is the predicate ¬φ ∨ wp(op, φ).
We are interested in incremental preconditions that can be evaluated cheaply,
and generally we can expect no relationship between the logical strength of a
predicate and its cost. For example, wp(op, φ) is not necessarily more costly than
¬φ ∨ wp(op, φ).
In putting these ideas into practice we need languages to describe updates

and properties of states. In our case we actually need two property languages: a
specification language in which to describe constraints, and an executable target
language in which to describe incremental preconditions. Our computational
problem is then: given a constraint in the specification language and an operator
in the update language, compute a minimal cost incremental precondition in the
target language. An issue is whether an incremental precondition exists in the
target language for each constraint in the specification language (see [2]).
In Delta-X the specification language is LXP and the update language is

the one defined in Section 2, consisting of create and delete operations. These
updates have parameters that are instantiated at runtime; we want to generate
incremental preconditions with the same parameters.
In producing guards (i.e. incremental preconditions in an executable target

language) from LXP constraints, we work in multiple steps using intermediate
languages. Delta-X supports several target language and environments (e.g. Java
code storing objects within main memory, or C++ code storing objects within
a relational database), so we translate constraints to guards via an intermedi-
ate language named DIL. This language has the basic control structures of an
imperative language plus data types based on our data model.
Another intermediate language is called for because DIL is unsuited to the

simplification of guards. We first produce the guards in a first-order logic on
trees. This logic, called FOT , is powerful enough to express both the constraints
of LXP and the generated guards. The basic precondition generation algorithms
are easy to express as transformations on FOT , and as a declarative language
it provides a good framework for simplification.
Hence we compute guards in four steps, as shown in Figure 2. We first trans-

late a LXP constraint φ into a formula ψ0 of FOT (see Section 4.1). Next we
generate an incremental precondition of ψ0 within FOT , and then simplify to
obtain formula ψ1. In the next step we translate ψ1 into a DIL program, which
is finally translated into a program in the target programming language. Before
going into these steps in detail, we state some results about the algorithm as a
whole.

Theorem2. For any LXP constraint and any update operation, let ψ be the

Logic Logic CodeConstraint

target language
translate to

DIL

translate to
precondition

compute incrementaltranslate
to logic generic language

Fig. 2. Code-generation Scheme

result of the algorithm shown in Figure 2.

– ψ runs in time polynomial in the data (where atomic operations of the target
language are assumed to have unit cost). In fact, we can give the same bounds
for ψ as we can for evaluation of constraints in Theorem 1 – e.g. quadratic
in |t| for Never constraints.

– If φ is a local constraint, then ψ can be evaluated in: constant time for a
Never constraint, linear time for a Key constraint, and linear time for a
Reference constraint for Create operations.

On the other hand, there are limits to what one can hope to accomplish for
any incremental precondition algorithm:

Theorem3. The problem of determining, given a φ in LXP and an update
operation, whether or not there is an incremental precondition of φ with a given
quantifier rank, is undecidable. If φ consists of only Never constraints, then the
problem is decidable but NP-Hard.

The proof uses the undecidability of the implication problem for XML keys
and foreign keys, the decidability of existential first-order logic over graphs, and
the intractability of conjunctive query satisfaction.

4 Algorithms

4.1 Translating Constraints to Logic

The first step of our translation is from LXP constraints to FOT formulas. The
syntax of FOT formulas and terms is as follows, where C ranges over Classes,
k over integers, axis over {↓, ↓∗, ↑∗,→,→∗}, and ∝ over {=, <,≤, >,≥}:

φ ::= ∀x ∈ C : φ ∃x ∈ C : φ φ1 ∧ φ2 φ1 ∨ φ2 φ1 ⇒ φ2 ¬φ

class(t) = C t1 axis t2 t1 ∝ t2

t ::= x t.a k parent(t)

A formula is interpreted relative to an instance t as follows. The logical symbols
have their expected meaning. Formula class(t) = C holds if t represents a node
of class C. Formula t1 ↓ t2 holds if the node represented by t1 is a child of
the node represented by t2. Other formulae of the form t1 axis t2 are interpreted

similarly. For example, for axis ↓∗, t1 must be a descendent of t2, and for axis→,
t1 must be the right sibling of t2. Formula t1 = t2 holds if the terms represent
the same integer values or the same node values. Other formulae of the form
t1 ∝ t2 are interpreted similarly.
The term x is a node variable, the term t.a represents the a attribute of

the node represented by t, the term k represents integer value k, and the term
parent(t) represents the parent of the node represented by t.
We translate a constraint in LXP to a closed formula of FOT in two stages.

First, the XPath expressions within the constraint are each translated into open
formulas. Second, the constraint itself is translated, with the XPath-related for-
mulas used as parameters.

Example. The Never constraint of our running example translates to:

∀x ∈ Region : ∀y ∈ AdjRegion : y ↓ x⇒

∀z ∈ Region y : regionId = z.nodeId⇒ z.maxCpty < x.minCpty

In translating an XPath expression to FOT , we obtain a formula containing
free variables x and y. The formula represents a function from an input node x to
an output node y. Because of space limitations we cannot present details of the
translation. One issue is that an XPath expression can return nodes of different
classes. Since our logic provides only for quantification over nodes of a single
class, translation requires us to bound the set of classes in which a variable
can occur. We do a static analysis to conservatively estimate which classes a
particular variable may range over. The analysis can be made more precise in
the presence of schema information, such as a DTD.
This translation satisfies two properties. First, φ has no subformula contain-

ing more than three free variables. As explained in the proof of Theorem 1, this
guarantees low evaluation complexity. Second, φ has limited-alternation. This
means that no universal quantifier is found within the scope of a existential
quantifier, no negation symbols are present, and in an implication ψ1 → ψ1 the
formula ψ1 contains no universal quantifications and no implications. Precondi-
tion algorithms are much simpler for this class.
The translation of assertions is a straightforward implementation of the se-

mantics. This translation produces formulas that are limited-alternation, while
our translation of expressions produces formulas that are both limited-alternation
and within the three-variable fragment.

4.2 Computing Incremental Preconditions

We now present our incremental precondition algorithm, which accepts as input
an update operation and a specification in FOT , and produces an incremental
precondition as a formula of FOT .
As a first step towards incremental precondition generation we have a sim-

ple inductive algorithm fwp(op, φ) that calculates a weakest precondition for φ
under op. Weakest preconditions can be thought of as a default case for incre-
mental integrity checking. In fact, one can obtain an incremental precondition

by computing fwp(op, φ) and then simplifying, using φ as an axiom. Instead, we
begin with a set of rules that generate incremental checks directly, thus ensuring
that the most important simplifications are performed. The algorithms for com-
puting fwp(op, φ) for Create and Delete operations are shown in Figures 3 and
4. Only the cases that differ from those of Figure 3 are shown in Figure 4. We
write φ[x/p] for the formula obtained by substituting term p for free occurrences
of variable x in φ. In the figures, p is a parameter for the created object, C the
class of p and D an arbitrary class other than C.

fwp(op, φ1 ∗ φ2)
def
= fwp(op, φ1) ∗ fwp(op, φ2) (∗ a prop. connective)

fwp(op, ∃x ∈ C : φ)
def
= ∃x ∈ C : fwp(op, φ) ∨ fwp(op, φ[x/p])

fwp(op, ∃x ∈ D : φ)
def
= ∃x ∈ D : fwp(op, φ[x/p])

fwp(op, ∀x ∈ C : φ)
def
= ∀x ∈ C : fwp(op, φ) ∧ fwp(op, φ[x/p])

fwp(op, ∀x ∈ D : φ)
def
= ∀x ∈ D : fwp(op, φ[x/p])

fwp(op, p ↓ t)
def
= t = n

fwp(op, t ↓ p)
def
= false

fwp(op, p ↓∗ t)
def
= n ↓∗ t

fwp(op, t ↓
∗ p)

def
= p = t

fwp(op, t → p)
def
= t ↓ n ∧

∧
d
∀x ∈ D : (x 6= t ∧ x ↓ n) ⇒ x → t

fwp(op, p → t)
def
= false

fwp(op, t →
∗ p)

def
= t ↓ n

fwp(op, p →∗ t)
def
= p = t

fwp(op, axis(t1, t2))
def
= axis(t1, t2) (ti 6= p)

fwp(op, t1 op t2)
def
= t1 op t2

fwp(op, t)
def
= t (t a term or boolean constant)

Fig. 3. Weakest Precondition Calculation for Operation op = Create(n,C, U)

fwp(op, ∃x ∈ C : φ)
def
= ∃x ∈ C : x 6= n ∧ fwp(op, φ)

fwp(op, ∃x ∈ D : φ)
def
= ∃x ∈ D : fwp(op, φ)

fwp(op, ∀x ∈ C : φ)
def
= ∀x ∈ C : x 6= n ⇒ fwp(op, φ)

fwp(op, ∀x ∈ D : φ)
def
= ∀x ∈ D : fwp(op, φ)

Fig. 4. Weakest Precondition Calculation for Operation op = Delete(n,C)

Figures 5 and 6 show the incremental precondition algorithms for Create and
Delete operations. Again, the Delete case includes only rules differing from the

Create case. These rules are valid for the limited-alternation fragment of FOT
only. For example, in both the Create and Delete case we use the fact that since
limited-alternation formulas are Π2, there will be no universal quantifiers nested
inside existential quantifiers. In the case for implication in Figure 5, we use that
if φ1 ⇒ φ2, then φ1 must contain only universal quantifiers.

∆(op, φ)
def
= true (φ does not contain c)

∆(op, ∃x ∈ D : φ)
def
= true (d any class, including c)

∆(op, ∀x ∈ C : φ)
def
= ∀x ∈ C : ∆(op, φ) ∧ fwp(op, φ[x/p])

∆(op, ∀x ∈ D : φ)
def
= ∀x ∈ D : ∆(op, φ)

∆(op, φ1 ∧ φ2)
def
= ∆(op, φ1) ∧∆(op, φ2)

∆(op, φ1 ∨ φ2)
def
= (∆(op, φ1) ∧∆(op, φ2)) ∨ fwp(op, φ1 ∨ φ2)

∆(op, φ1 ⇒ φ2)
def
= fwp(op, φ1) ⇒ ∆(op, φ2)

∆(op, φ)
def
= φ (φ atomic)

Fig. 5. Incremental Precondition Calculation for Operation op = Create(n,C, U)

∆(op, ∃x ∈ C : φ)
def
= CBF(op, ∃x ∈ C : φ) ⇒ fwp(op, φ)

∆(op, ∃x ∈ D : φ)
def
= true (d 6= c)

∆(op, ∀x ∈ C : φ)
def
= ∀x ∈ C : x 6= n ⇒ ∆(op, φ)

∆(op, ∀x ∈ D : φ)
def
= ∀x ∈ D : ∆(op, φ)

∆(op, φ1 ⇒ φ2)
def
= fwp(op, φ1) ⇒ ∆(op, φ2)

CBF(op, ∃x ∈ C : φ)
def
= φ[x/n] (c does not appear free in φ)

CBF(op, ∃x ∈ C : φ)
def
= (∃x ∈ C : x 6= n ∧ CBF(op, φ)) ∨ CBF(op, φ[x/n])

(c appears free in φ)

CBF(op, ∃x ∈ D : φ)
def
= ∃x ∈ D : CBF(op, φ)

CBF(op, φ1 ∨ φ2)
def
= CBF(op, φ1) ∨ CBF(op, φ2)

CBF(op, φ1 ∧ φ2)
def
= CBF(op, φ1) ∨ CBF(op, φ2)

CBF(op, φ)
def
= φ (φ atomic)

Fig. 6. Incremental Precondition Calculation for Operation op = Delete(n,C)

The algorithm for deletion uses an auxiliary function CBF(op, φ) (“can be-
come false”), defined for every formula without universal quantifiers, which re-
turns true whenever operation op can cause φ to change from true to false. We
present a basic algorithm for computing CanBecomeFalse, but algorithms based
on more precise static analyses are possible. Indeed, much more precise, albeit
ad-hoc, algorithms are used in our implementation.

Example. In our example constraint, for the operation op of creating a new
AdjRegion, the algorithm will produce the incremental precondition:

∀x ∈ Region. p ↓ x⇒

∀z ∈ Region. p.regionId = z.nodeId⇒ z.maxCpty < x.minCpty

Theorem4. Algorithm fwp(op, φ) computes the weakest precondition of φ and
op, while algorithm ∆(op, φ) computes an incremental precondition of φ and op.

One can also verify that for local constraints the output of these algorithms
meets the complexity bound of Theorem 2. For general constraints the claims we
can make are weaker. First of all, there are cases where the logical complexity
of an incremental precondition is higher than that of the original constraint. For
example, in a constraint of the form ∃x ∈ C : φ, a delete operation Delete(n,C)
may yield the precondition φ(n)⇒ ∃x ∈ C : x 6= n∧φ(x), which is logically more
complex but should yield better performance in the “average case”. However,
one can show that the worst-case running time for evaluation of the precondition
can never be more than a constant factor above that for evaluation of the original
constraint. This follows because fwp preserves the structure of formulas, hence
preserves the running-time bounds, while the running time of ∆ is at worst linear
in that of fwp.

4.3 Logical Simplification

The Delta-X simplifier is a rewrite system that takes a formula of FOT as input
and produces a logically equivalent formula of FOT as output. The quantifier
depth and maximum number of free variables of subformulas does not increase
through simplification. Indeed, because maximum quantifier depth is a factor
that relates strongly to performance of the generated code, a main goal of sim-
plification is to reduce quantifier depth.
The rewrite rules of the simplifier are based on laws of first-order logic and

the domain of trees. The following are a few sample rules:

∃x ∈ A : φ1 ∨ φ2 ; φ1 ∨ ∃x ∈ A : φ2 (x not free in φ1) (1)

x 6= t ∨ φ ; x 6= t ∨ φ[x/t] (x not free in t) (2)

t ↓ x ; x = parent(t) (3)

Rule 1 captures a validity of first-order logic. Rule 2 is a demodulation rule,
allowing one term to be substituted for an equal term. Rules 3 is domain-specific;
it says that t is a child of x just when x is the parent of t. Additional rules
would be present if schema information were available. For example, rules would
capture the relationships given by a class hierarchy.

Example. Figure 7 shows how our system simplifies the example precondi-
tion of Section 4.2. The subformula class(parent(p)) 6= Region could be simpli-
fied to false if schema information showed that the parent of p must be of class
Region.

∀x ∈ Region : p ↓ x ⇒

∀z ∈ Region : p.regionId = z.nodeId ⇒ z.maxCpty < x.minCpty
; ∀x ∈ Region : ¬p ↓ x ∨

∀z ∈ Region : p.regionId 6= z.nodeId ∨ z.maxCpty < x.minCpty
; ∀x ∈ Region : parent(p) 6= x ∨

∀z ∈ Region : p.regionId 6= z.nodeId ∨ z.maxCpty < x.minCpty
; ∀x ∈ Region : parent(p) 6= x ∨

∀z ∈ Region : p.regionId 6= z.nodeId ∨ z.maxCpty < parent(p).minCpty
; ∀z ∈ Region : p.regionId 6= z.nodeId ∨ z.maxCpty < parent(p).minCpty ∨

∀x ∈ Region : parent(p) 6= x
; ∀z ∈ Region : p.regionId 6= z.nodeId ∨ z.maxCpty < parent(p).minCpty ∨

class(parent(p)) 6= Region

Fig. 7. Simplification of the Example Precondition

To get a feeling for the cost savings achieved by the simplifier, we generated
preconditions from the 83 constraints in the Delta-X regression test suite, which
are modelled after constraints in Delta-X applications. The cost of a precondition
was computed as nd, where n is the number of nodes per class, and d is the
maximum loop nesting depth in the code generated for the precondition. Using
this approach, the cost before simplification was 9.6×106, and the cost afterward
was 3.5×106 – a savings of about 63%. Although the cost savings are good for this
constraint set, the simplifier lacks robustness. We have had to make extensions
to the rule set as new constraint examples appear.

Our rewriting system currently uses a bottom-up rewriting strategy. To in-
crease the power of our system, we are experimenting with alternative rewriting
strategies. We are also considering the use of third-party systems (e.g., Simplify
[14], PVS [16]), but have yet to find a system that meets our needs. Most sys-
tems are geared towards theorem proving rather than simplification (e.g., they
use skolemization, which does not preserve logical equivalence). There are li-
censing issues with most academic systems, and many commercial systems are
targeted to special domains, such as hardware design. Finally, we require that
simplification be directed by our cost function.

4.4 Translating Logic to Code

We translate formulas of our logic into code via the Delta-X Imperative Language
(DIL). The translation of DIL to popular imperative languages is straightfor-
ward, so here we describe only the translation from logic to DIL.

DIL looks roughly like C++ and Java. It has classes, methods, statements,
and expressions. The types, expressions, and basic statements of the language
relate directly to the data model we use. For example, there are expressions to
get the attribute of a node and to get the parent of a node. Sequencing, looping,
and conditional statements are provided as control structures. However, only

special-purpose looping statements are provided: for iterating over all objects of
a class, or over all children of a node.

The translation to DIL takes a formula of our logic, plus a boolean variable,
and produces a statement such that the value assigned by the statement to the
variable is exactly the value our semantics dictates for the formula. Terms are
translated similarly, except that the computed value need not be boolean.

Example. The following shows the DIL code produced from a formula sim-
ilar to the simplified precondition of Figure 7.

// forall z in Region:

// p.region <> z.nodeId or z.maxCpty < parent(p).minCpty

okay := true

for all z in Region while okay {

// p.region <> z.nodeId or a.maxCpty < parent(p).minCpty

okay := p.region <> z.nodeId

if (!(okay)) {

okay := a.maxCpty < parent(p).minCpty

}

}

The translation of logic toDIL works in a bottom-up fashion on the structure
of the formula. The details are mostly straightforward, because most terms of
the logic correspond closely to expressions of DIL. However, in the translation of
quantifiers one can tradeoff space for time, so we define two translation methods.
In the iterative method, a quantifier is translated directly to a loop construct of
DIL, as in the example above. In the tabular method, a quantifier is translated
to a mapping represented as a table. The mapping obtained from the universally
quantified formula in the example above takes as input a value for free variable
p, and produces a boolean value as output.

The iterative translation method produces code that in the worst case re-
quires dk space and nk time, where d is the maximum size of data values and
O(nk) time, n is the number of nodes in the tree, and k is the maximum quan-
tifier depth of the formula. The tabular method produces code with worst case
time and space O(nv), where v is the maximum number of free variables found
in any subformula of the formula.

5 Related Work and Discussion

The relational data model is the basis of much work on integrity constraint
maintenance. [15, 3] deal with a rich class of constraints on relational databases,
with an emphasis on static verification of transformational programs. Runtime
approaches using relational calculus (equivalent in expressiveness to first-order
logic) as the specification language include [10, 18, 9]. [12] surveys the prob-
lem, dealing with questions such as which additional data structures are to be
maintained. [10] gives algorithms that can be used to provide a solution to the in-
tegrity constraint maintenance problem for relational calculus. The maintenance

of arbitrary first-order constraints is problematic because the evaluation of first-
order formulas has PSPACE-complete combined complexity. For this reason the
incremental evaluation of such powerful languages has not become a standard
part of commercial database management systems.

Richer than the relational model is the object data model, in which program
data structures can be captured in a natural way. [13] studies constraint main-
tenance within an object-oriented database, again using a language that can
capture all first-order constraints. Due to the richness of the language [13] can-
not provide efficient exact guards, and hence looks for ways to provide weaker
guarantees.

There is much recent work on the hierarchical XML data model, which lies
in expressiveness between the relational and object models. XML constraint lan-
guages have evolved from DTDs, which express purely structural properties, to
XML Schema [19], which extends DTDs with further structural features as well
as the key and foreign key constraints of [4]. Yet more expressive languages [6]
include both structural and data-oriented features. [17] presents integrity con-
straint algorithms for a subset of XML Schema dealing only with the tree struc-
ture, not with data values. To our knowledge no work on incremental constraint
checking for more expressive XML constraint languages exists.

The specification language of the Lucent version of Delta-X differs in sev-
eral ways from the one presented here. The most significant difference is that
node expressions allow just the child axis, and that only key constraints must
be of the form Key(↓∗ /C) . . . for C a classname. On the other hand, Delta-X
allows a generalization of Never constraints that restricts the cardinality of a
node expression — Never asserts that this cardinality is 0; the general version
allows any integer upper or lower bound. The production version can make use
of schemas specifying for each class C the possible child classes. The Delta-X
simplifier allows these additional constraints to be exploited in guard generation
– the schema is read in along with the constraints, and a set of simplification
rules are dynamically generated. The schema for these applications requires the
class containment hierarchy to be acyclic, and hence implies a fixed bound on
the depth of the object hierarchy. With this restriction the use of the descendant
relation in constraints becomes unnecessary. The absence of sibling axes is due to
the fact that in these data-oriented applications the sibling ordering is arbitrary.
In addition to Create and Delete, Delta-X supports a Modify update operation
on trees, which allows the modification of selected attribute values.

Acknowledgements

Lucent engineers Robin Kuss, Amy Ng, and Arun Sankisa were involved in the
inception of the Delta-X project and influenced many aspects of Delta-X, es-
pecially the design of the constraint language. Lucent engineers Julie Gibson
and James Stuhlmacher contributed to the design of the constraint language
and the DIL language. We thank Kedar Namjoshi and Nils Klarlund for helpful
comments and discussion.

References

1. Marcelo Arenas, Leopoldo Bertossi, and Jan Chomicki. Consistent query answers
in inconsistent databases. In PODS, pages 68–79, 1999.

2. Michael Benedikt, Timothy Griffin, and Leonid Libkin. Verifiable properties of
database transactions. Infomation and Computation, 147:57–88, 1998.

3. Véronique Benzaken and Xavier Schaefer. Static integrity constraint management
in object-oriented database programming languages via predicate transformers. In
ECOOP ’97, 1997.

4. Peter Buneman, Susan Davidson, Wenfei Fan, Carmem Hara, and WangChiew
Tan. Keys for XML. In WWW 10, 2001.

5. James Clark and Steve DeRose. XML Path Language (XPath). W3C Recommen-
dation, November 1999. http://www.w3.org/TR/xpath.

6. Alin Deutsch and Val Tannen. Containment for classes of XPath expressions under
integrity constraints. In KRDB, 2001.

7. E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.
8. Görg Gottlob, Chistroph Koch, and Reinhard Pichler. Efficient algorithms for

processing XPath queries. In VLDB, 2002.
9. Tim Griffin and Howard Trickey. Integrity maintenance in a telecommunications

switch. IEEE Data Engineering Bulletin, Special Issue on Database Constraint
Management, 1994.

10. Timothy Griffin, Leonid Libkin, and Howard Trickey. An improved algorithm for
the incremental recomputation of active relational expressions. TKDE, 9:508–511,
1997.

11. Martin Grohe. Finite variable logics in descriptive complexity theory. Bulletin of
Symbolic Logic, 4, 1998.

12. Ashish Gupta and Inderpal Mumick. Materialized Views: Techniques, Implemen-
tations, and Applications. MIT Press, 1999.

13. H.V. Jagadish and Xiaolei Qian. Integrity maintenance in an object-oriented
database. In VLDB, 1992.

14. K. Rustan M. Leino and Greg Nelson. An extended static checker for Modula-3.
In Compiler Construction: 7th International Conference, 1998.

15. William McCune and Lawrence Henschen. Maintaining state constraints in rela-
tional databases: A proof theoretic basis. Journal of the ACM, 36(1):46–68, 1989.

16. S. Owre, S. Rajan, J.M. Rushby, N. Shankar, and M.K. Srivas. PVS: Combining
specification, proof checking, and model checking. In CAV, pages 411–414, 1996.

17. Yannis Papakonstantinou and Victor Vianu. Incremental validation of XML doc-
uments. In ICDT, 2003.

18. Xiaolei Qian. An effective method for integrity constraint simplification. In ICDE,
pages 338–345, 1988.

19. Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML
Schema Part 1: Structures. W3C Working Draft, April 2000.
http://www.w3.org/TR/xmlschema-1/.

20. Philip Wadler. Two Semantics for XPath. Technical report, Computing Sciences
Research Center, Bell Labs, Lucent Technologies, 2000.

This article was processed using the LATEX macro package with LLNCS style

