A Practical Technique for Process Abstraction

Glenn Bruns

Department of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, UK

Abstract. With algebraic laws a process can be simplified before ver-
ifying its equivalence with another process. Also needed are laws to al-
low a process to be simplified before verifying that it satisfies a tem-
poral logic formula. Most previous work on this problem is based on
property-preserving mappings between transition systems. The results
presented here allow direct simplification of process terms for some im-
portant classes of temporal properties.

1 Introduction

In attempting to verify that a property holds of a system, a natural approach is
to simplify the system in a way that preserves the property. For example, to show
that a system is deadlock-free, it is common to ignore computations made by
the system and focus instead on its synchronisation skeleton. Simplification can
also be achieved by merging states, ignoring components, and hiding actions.
Soundness of the approach is only guaranteed if one shows that the property
shown of the simplified model will indeed hold of the original model, although
this requirement is sometimes ignored in informal proofs.

Within concurrency theory, most work on this abstraction approach to verifi-
cation (sometimes called reduction) has been concerned with property-preserving
mappings between transition systems. In Kwong [6], reductions are defined on
labelled transition systems that strongly preserve a small but important set
of properties including deadlock-freedom, determinacy, and the Church-Rosser
property. A more general approach [11] defines classes of mappings, which, if
applied to a transition system, will preserve properties expressible in certain
classes of temporal logic formulas. Recent work [1] gives specific results for the
modal mu-calculus [5] and two of its sub-languages. Central here is the role
of < f,g >-simulations, which are simulation relations on transition systems
based on Galois connections. For example, it is shown that if a transition system
< f,g >-simulates another transition system, then f preserves formulas of a
mu-calculus sub-language.

While the existing work is general, it does not provide everything needed
to apply abstraction methods in practice. First, the operations are defined on
transition systems, not process terms. In practice, building the full transition
system may be impossible, as it may be very large or even infinite. Second, most
existing work gives no particular abstraction operations, instead defining classes
of operations that preserve classes of properties. In practice it can be difficult to

find an abstraction operation that suits the problem at hand. Finally, property-
preserving mappings are often not what is needed in verification. Rather than
showing that an abstraction operation will preserve a property, one would like to
show the opposite: that properties shown of the abstracted process will also hold
of the original process. A compromise is to show strong preservation, in which
a property holds of the original process exactly when it holds of the abstracted
process.

In this paper we attempt to address these requirements for practical abstrac-
tion techniques. First, we show how process terms can be directly simplified,
without first building a transition system. Thus our approach is equally suited
to manual or automatic verification, and can be used even for infinite-state sys-
tems. Second, we are example-driven: abstraction operations are invented to
handle real verification problems — and are therefore likely to be generally use-
ful. Finally, our main theorem relates the original and simplified processes in a
useful way. For an abstraction operation A on processes we define a correspond-
ing operation A’ on temporal properties such that A(P) has property ¢ exactly
when P has property A’'(¢).

Before describing our abstraction technique, we briefly review CCS [9], our
process notation, and the modal mu-calculus [5], our property notation.

2 Defining Processes and Properties

The terms of CCS represent processes that perform actions. The set of actions
Act is composed of a set of names (a,b, . ..), a set of co-names (@,b,...), and the
special action 7, which has no corresponding co-action.

Processes are given as agents having the following syntax, where a ranges over
actions, L ranges over sets of actions, A ranges over process constants, and f

ranges over relabelling functions (functions from Act to Act satisfying f(7) =7

and f(a) = f(a)):
E:::A’O|a.E|E1+Ez|E1 ‘E2|E\L|E[f]

The set of all agents is denoted by P. The meaning of agent constants is
given by a set of agent definitions of the form {A4; g o | © € I'}, such that an
agent constant in any E; belongs to {A4; | i € I}.

The meaning of agents is given as a labelled transition system (P,{% :a €
Act}), where % is a transition relation % C P x P for each a € Act. We
write E-% E' if (E, E') € %. The relation - is defined to be the least relation
satisfying the following;:

aE%E
E%FE = FE+F%E F+ESFE EIF X E|F,FIE%F|FE,
f(a)
E[f]'= E'[f]

ESE FSF = EFLE|F

E%FE,a¢ LUL= E\L%E'\L
ESE AYE=ASE

The set of labels that a process can perform eventually is called its sort. For
example, the sort of A df A+ 0.0 s {a,b}.

An example CCS process, demonstrating simple mutual exclusion, is the
following:

def —_ — —
U; = acq.enter; . exit; .rel .U; +wait; .U;
def ___ ——
Sem = acq.rel.Sem

MY (Uy | Uz | Sem) \ {acg, rel}

The user process U; either performs action acq to acquire the semaphore
Sem, or performs action wait;. The actions enter; and exit; signify entrance
to and exit from the critical section. The process M is a system with two users
and a semaphore, having sort UZ-G{LQ}{enteri7 exit;, wait;}.

We use the modal mu-calculus [5] in a slightly extended form [12] as a tem-
poral logic to express behavioural properties. The syntax of the extended mu-
calculus is as follows, where L ranges over sets of actions and Z ranges over
variables:

=2 -¢| o1 A oo | [Lo]vZ.e

The operator vZ binds free occurrences of Z in ¢, with the syntactic re-
striction that free occurrences of Z in a formula ¢ lie within an even number of
negations.

The meaning of formulas is given as the set of agents ||¢||7; satisfying the
formula ¢ relative to a valuation V), which maps variables to sets of agents, and
a fixed transition system (P,{% | a € Act}). The notation V[P’/Z] stands for
the valuation V' which agrees with V except that V'(Z) = P’. Since the transition
system is fixed we normally drop the agent set and write simply [|¢||,,. The set

||¢H7; is defined as follows:

I=¢lly =P = ll¢lly
1 A 2lly = llgally N lio21ly
1Ll = v lI8lly
121, = v(2)
lvZ.¢lly, = U{P S PP Cldllyp)}

where ||[L]||7; is defined, for any P’ C P, as the following:

L5 P (P e P |VP Vae Lit P% P then P' € P'}

For a closed formula ¢ we write P |= ¢ if P € [|¢]|,, (the valuation is irrelevant
for closed formulas).

Informally, [L]¢ holds of P if ¢ holds for all processes P’ that can be reached
from P through an action a € L. A fixed point formula can be understood by
keeping in mind that vZ.¢ can be replaced by its “unfolding”: the formula ¢ with
Z replaced by vZ.¢ itself. Thus, vZ.4y A [{a}]Z = A [{a](vZ4 A [{a}]Z) =
v A [{a}](A [{a}](vZap A [{a}]Z)) = ... holds of any process for which v
holds along any execution path of a actions.

The operators V, (a), and p are defined as duals to existing operators (where
@[/ Z] is the property obtained by substituting 1 for free occurrences of Z in

}):
o1V P2 o (g1 A g2)

(L)g = (L]0
(2.0 vz -p[~2/7)

These additional abbreviations are also convenient (where L ranges over sets
of actions, and Act is the set of CCS actions):

def

[a1,...,an]¢ = [{a1,...,an}]®
[~]o < [Act]o
[~L]o < [Act — L]
tt 2.2
£f 9 gt

For example, consider the formalisation in the mu-calculus of some properties
of our mutual exclusion example. The property “process M may perform wait;”
can be expressed as the formula (wait;) tt. The property “M is deadlock free”
can be expressed as vZ.(—) tt A[—]Z. The property “user 1 can wait forever” can
be expressed as vZ.(wait;)Z. The property of mutual exclusive execution of the
users’ critical sections can be expressed as vZ.[enter|(vY.[enter| £ A[—exit]Y) A
[-]Z. This formula can be read as “whenever an enter action occurs, then an-
other enter action cannot occur until after an exit action occurs.

3 Action Abstraction

The abstraction operation on processes that we use here is a generalisation of
the relabelling operation of CCS. It subsumes relabelling, restriction, and hiding.
Following [7], we define action abstraction with a single SOS-style rule.

For processes P and P’, actions a and a’, and function f : Act — Act,
Ay P — P is an action operator:

rPsp
Ap(P) = Ap(P)

o = f(a)

The side condition is true if f(a) is defined and its value is a’; otherwise the
side condition is false. For example, hiding can be defined as an action operator

by f(a) Ty o € L then 7 else a.

To relate the properties of a process to the properties of an abstracted process,
we introduce an operation on formulas of the mu-calculus. For an action operator
Ay, we can define a corresponding logical operator Ay as follows:

Ap(2) < 7
A=) = ~Ag(¢)
Ap(gr A 62) = Ap(ér) A Ap(¢2)
Ap([L]p) & [FHL) A (9)
Af(vZ.6) S vZ.Ag(9)

where F~1(L) ¥ (J, ., f~1(a), and f~Y(a) < {b| £(b) = a}.
Our main theorem shows that the process and logical operators correspond:

Theorem 1. (Action Abstraction Theorem) For all action operators Ay, pro-
cesses P, and closed formulas ¢ of the modal mu-calculus:

Ap(P) = ¢ iff P = Af(0)

Proof. A positive normal form version of the mu-calculus is used, with the
fixed point operators defined via ordinal approximants [5]. The proof proceeds
by induction on the structure of formulas. The only interesting cases are for the
modal operators. We show the [L]¢ case; the (L)¢ case is similar. We want to
prove that

Ap(P) = [L]g iff P = Af([L]¢)
By the definition of =, the left-hand side can be rewritten as
VP'.(3a' € L.A;(P)S Ap(P)) = A (P) = ¢

According to the definition of action operators, the transition is possible just
when there is some a such that P-% P’ and o’ = f(a), so we have

VP'.Fae FYL).PS5P)= Ay (P E ¢
By induction the right-hand side can be rewritten as P’ |= A (¢), so we get
VP'.(3a € F~Y(L).P5P)= P | As(9)
Using the definition of the box operator, this gives
P [F{(D)A(9)
which, by the definition of A¢([L]¢), gives P = A¢([L]9). O

A similar result is given in a different guise as the main theorem of [8] if the
action operators are seen as contexts, and the corresponding logical operators
are seen as cases of the weakest property transformer. However, the goals of [8]
are different from ours, and our form of the modal mu-calculus allows sets of
actions in the modal operators.

We demonstrate the technique of action abstraction on two small examples
chosen for their simplicity and familiarity. The application of the technique to a
larger problem is described in [3] (the technique itself is not described there).

4 Example — Dining Philosophers

Our formulation of the dining philosophers problem is based on that of [4]. A
philosopher, having special states T, H,E,and I, for thinking, hungry, eating, and
idle, respectively, is defined as follows:

T; def hungry, .H;

def . .
H; = sit,;.fu;.fu;y;.eating; .F;

Ei déf idlei Iz

def . . .
I, = f4;. fd;;1.rise;.thinking, .T;

A single fork:

F, %%, £4, .F, + Tu,_, .54, , .F,

An usher, who keeps at least one philosopher from sitting at the table:

U(m) def i < (n —1) then ZEZ U(m+1)

=1

+ Zrisei Ulm—1)
i=1

A table with n philosophers, n forks, and a single usher:

n

pP, = ([[(T: |) | UO)\{sit,rise, fu, fd}

=1

The sort of agent DP,,, U?_, {hungry,, eating,, idle;, thinking,}, will be
abbreviated as Lp. Further, we will abbreviate the set {sit, rise, fu, fd} of re-
stricting actions as K.

The property we wish to show of the dining philosophers is that deadlock
can never occur. The property of deadlock freedom is easily defined as a fixed
point property:

DF € vz (=)tt N[-)Z

A process is deadlock-free is it can perform an action, and no matter what
action it performs, a deadlock-free state is reached.

The abstraction operation we perform is to hide all observable actions of
DP,, that is, the actions of Lp. As mentioned earlier, hiding is an special case
of action abstraction, in which f(a) 2fif o € L then 7 else a. We write P\L
to denote the hiding of an action set L in agent P.

An outline of our proof that the dining philosophers are deadlock free is as
follows:

DP, = DF
ifft DP, = DF\Lp def. of hiding on DF
ifft DP,\Lp = DF by the action abstraction theorem

We have thus reduced the problem of showing that DP,, is deadlock-free to
showing that DP,\Lp is deadlock-free. The state space of DP,\Lp is smaller
than that of DP,,, but we would like to simplify the process term directly. Unfor-
tunately, the agent cannot be simplified with the algebraic laws for observation
equivalence or congruence, because these equivalences do not preserve DF' (and
many other mu-calculus formulas). However, strong bisimulation equivalence
(denoted by ~) does preserve mu-calculus properties [13]. We begin, then, by
moving the hiding operator into the process term using some laws about hiding.

Lemma 2.

(a.P)\L ~ 7.(P\L) (ae L)
(P +QN\L ~ P\L+Q\L
(P [QN\L ~ P\L | Q\L
(PNEONL ~ (P\L)\K (LNK =0)
PIfINL ~ (P\f~(L))Lf]

Proof. The proofs are similar to the proofs for the relabelling laws in [9].

Applying the hiding laws:

n

DPy\Lp ~ (H(Tz‘ | F3) | UQO)\E\Lp

~ (L1 L F) [T\ ER\K
~ (H(Ti\\LD | FA\Lp) | U(O)\Lp)\K

=1

Applying the hiding laws to the components, we get

Ti\\LD ~ T.HZ‘\\LD
Hl\\LD ~ Siti.fui.fui+1.T.E[\\LD

EZ\\LD ~ T.Ii\\LD
L’,\\LD ~ fdi.fdi_i_l.?"isei.T.ﬂ\\LD
F\Lp ~ F;

U(m)\Lp ~ U(m)

Renaming T;\Lp to T}, etc., and using the fact that ~ is a congruence, we get

n

DP\Lp ~ ([[(T/ | F) | U(O)\K

i=1

The next simplification step is to remove 7 actions from the process. We
now show that, in some circumstances, if a process with its 7 actions removed
is deadlock-free then so is the process itself.

First, we define a DF-relation to be a binary relation R on agents such that,
if (P,Q) € R, then

1. If P is deadlocked then so is Q.
2. Whenever P -% P’ then there exists a sequence s in Act* and a Q' such that

Q->Q and (P',Q') € R.

Theorem 3. If (P,Q) is a member of a DF-relation then Q = DF implies
P = DF.

Proof. For every state P’ reachable from P there exists a state Q' reachable
from @ such that (P’,Q’) € R. Suppose some P’ is deadlocked. Then some state
Q' would be deadlocked. But since @ is deadlock-free, so is every derivative Q’,
so P must be deadlock-free. O

The statement of the next theorem uses the notion of a contezt, which is a
CCS expression C' having a single hole, written as [|. We write C[E] for the term
obtained by filling the hole in context C' with agent E. A hole is not allowed
to “move” in transitions between filled contexts. For example, the transition
a.[b.0] % b.]0] is prohibited. Formally, the terms in the holes must correspond, in
a sense defined inductively on the structure of proofs of transitions. A subterm
E of P corresponds to a subterm E’ of P’ in a transition P - P’ if there exists
a proof of the transition such that either F is P and E’ is P/, or E and E’ are
identical and correspond due to the binding of variables in the consequent of the
final rule application, or E and E’ correspond in an antecedent of the final rule
application and correspond in the consequent due to the binding of variables in
the application.

Note that the empty context is allowed: a.0 + [b.0] 2, [0], and that contexts
can lose their holes: a.0 + [0.0] = 0.

Lemma 4. If agent 7.P s in the scope of no + operators in context C, then for

a transition
C[r.P] % C'[P)

it is the case that C is syntactically identical to C’.

Proof. The proof of the transition depends on the transition 7.P = P. Inspection
of the CCS semantic rules shows that the proof of any transition from a -
transition cannot change a static context. For example, the inference of a 7-
transition by the rule for parallel composition is

PLP = PIQ5P|Q.

The proof of a 7-transition also cannot change for a prefix context, because
such a proof depends on exactly one application of the prefix rule, which arises
here in the inference of 7.P 5 P. Finally, no + rule will be used in the inference
if 7.P is not in its scope. O

Theorem 5. Let C' be a context and P be an agent, such that P is in the scope
of no + operators in C. Then C[P] |= DF implies C[r.P] = DF.

Proof. Let relation R contain the following pairs, for all contexts C' and agents

P:
(P, P)

(C[P], C[P])
(C[r.P],C[P]) P is in the scope of no + operators in C'

For each pair (P, Q) the conditions required by a DF-relation must be shown.
This is trivial for the first two kinds of pairs. So consider agent C[r.P]. If it
is deadlocked then so is C[P], because if a transition can be proved by any
transition, then it can be proved by a 7 transition. Next consider transitions from
C[r.P]. If the transition does not depend on 7.P = P, then it can be matched
by C[P] such that the pair of derivatives are in R. If the transition is of the
form C[r.P] 5 C'[P], then by the previous lemma C and C’ are identical. This
transition can be matched by the empty transition from C[P], giving a pair of
derivatives in R. Therefore R is a DF-relation, and by Theorem 3, C[P] = DF
implies C[7.P] = DF. a

Removing the 7’s from agent T gives new agent 77"

n def 7y
7

 def . 1
H’i = szti.fui.fu,;+1.Ei

y def 2y
E =1

1 def . "
I = fd;.fdiy1.1ise;. T

By the previous theorem we therefore know that
(1@ | F) | UO)\K & DF = DP,\Lp |= DF
i=1
A philosopher agent now has 6 states instead of 10. This modest improvement
gives a reduction from 79 states for DPs to 14 states, and from 1185 states for
DPs3 to 169 states. The blow up in state space is still exponential in the number
of philosophers, however.

5 Example — Scheduler

Our second example is a task scheduling system, taken directly from [9].
Each task to be scheduled is controlled by two actions: a allows the task to
begin, and b signals that the task must terminate. The execution of each task is

scheduled by a single process:
A¥ 0

CEeE

E¥yDydB

B¥ b A

DA

Scheduling processes are arranged in a ring, with actions ¢ and d used for
communication by a process with its neighbours. Relabelling the scheduling pro-

cess to enable the formation of a ring, we define A; def Alf;] and D; def DIfi],
where fi © (ai/a,bi/b,ci/c, €1 /d).
An n-task scheduler can now be assembled from components:
Sched ™ (Ay | Dy | ...| Du)\c
where ¢ denotes the set {c1,¢a,...,¢,} (and similarly for a and b). The sort of

the scheduler is {a;,b; | 1 <i < n}.
The property we wish to show of the scheduler is that the start-task actions

{a; | 1 <i < n} are performed in the cyclic order ay,...,an,a1,...,an,.... The
mu-calculus formula expressing that actions ai,...,ar occur cyclically can be
written as

def

cycle(ay,...,ar) = vXi.Ja—a1]£f A[—a]X1 A [aq]
vXo.la — ag) £f N[—a]Xa A [asg]

ka.[a — ak] f£f A [—G,]Xk A\ [ak]Xl

Note that this property is rather weak, not requiring that any a; ever be
performed.

Our strategy for showing that property cycle(as,...,a,) is satisfied by the
scheduler closely follows the pattern of the last example. Here, we hide the
actions {b; | 1 <i < n}. The proof outline is as follows:

Sched = cycle(ay, ..., an)
iff Sched | cycle(ay,...,an)\b
iff Sched\b | cycle(a, ..., ay)
Again, our first step is to move the hiding operator into the scheduler process
using the hiding laws. We arrive at

Sched\b ~ (A} | Dy | ... | Di)\c

where

/ def /
Ai = ai.ci.Ei
def —
E: = TD; +Ci—1 TA;

! def _ /
D; = Ci—1 ‘Ai

3

To eliminate the 7’s from the process terms, we need a result analogous to
the one for deadlock-freedom in the previous example. In what follows, < and
< will denote the strong simulation and weak simulation, respectively.

Theorem 6. Letay,...,a, benon-t actions and let P < Q. Then Q |= cycle(aq,
...y ap) implies P = cycle(ay, ..., ay).

Proof. Assume P < @ and Q [cycle(ay,...,a,). Suppose P does not satisfy
cycle(ay,...,a,). Then P can perform a sequence of observable actions such
that ay,...,a, are not in order. But since P < (), the same sequence can be
performed by @, contrary to assumption. So P must satisfy cycle(aq,...,a,).
O

Theorem 7. Let aq,...,a, be non-t actions. Then C[P] = cycle(as,...,an)
implies C[1.P] |= cycle(ay,. .., an).

Proof. A weak simulation relation up to < [9, 10] will be exhibited that contains
(C[r.P],C[P]), proving that C[r.P] < C[P]. Then by the previous theorem the
result is trivial.

Let relation R contain the following pairs, for all contexts C' and agents P:

(P, P)
(c[r], Clp))
(Clr.P], C[P))

For each pair (P, Q) we need to show that every transition P % P’ can be
matched by a transition Q = Q' such that, for some (Py,Q;) in R, P’ < P; and
Q1 < @’. This is trivial for the first two kinds of pairs. So consider a transition
of C[r.P]. If the transition does not depend on 7.P - P then the transition can
be matched by C[P], resulting in a pair of derivatives in R. If the transition
is C[r.P] 5 C[P], then the pair (C[P],C[P]) is in R. The interesting case is a
transition C[r.P] = C'[P]. Lemma 4 implies that C' and C’ are identical if C
contains no + operators, so C’ and C' differ only in that C' may contain choices
not in C’. Generally, if two agents P’ and P differ only because P has choices not
in P/, then P’ simulates P. Therefore C'[P] simulates C[P], and (C[P],C[P)]) is
in R. O

Applying the theorem gives

Sched\b = cycle(ay, ... a,) iff (A] | Dy |...| Di)\c E cycle(ay,. .., an)

Eliminating the b actions yields a great reduction in the state space of the
scheduler. For 10 tasks, the original scheduler has about 12,000 states versus
only 20 for the abstracted version. Generally, a lower bound on the state space
of the original scheduler is 2", while the state space for the abstracted version
is exactly 2n.

6 Conclusions

The techniques described here may seem familiar, as they are often informally
adopted. We regard this not as a shortcoming of our approach, but as a sign
that formalising and systematising the techniques is valuable. We have found
hiding to be a particularly useful abstraction operation, as suggested by its use
in both of the examples. Another useful operation is the relabelling of several
actions not of interest to a single observable action.

A key step in simplifying the examples was the removal of 7 actions. The
theorems behind this step rely on a notion of context and on reasoning about
proofs of transitions. It may be that existing work on generalized contexts [8]
and on proved transition systems [2] could be applied or extended in finding
more general theorems for simplifying process terms.

For the kinds of processes typically found in practice, such as those in con-
current normal form, the results given here could be combined to give simpler
theorems allowing actions to be removed directly without first being hidden. For
example, process actions are usually either strictly for synchronisation or strictly
for observation. In such cases, a corollary of the results here might state that
non-synchronising actions that are not relabelled can be removed, with cyclic
properties being strongly preserved.

By attempting to verify properties of other systems, we hope to discover
additional abstraction techniques. Since our ultimate goal is to simplify proofs of
systems, we are also investigating abstraction operations on proofs of properties.

Acknowledgements

I would like to thank Colin Stirling for suggesting this line of research and for
many helpful discussions on the subject. Thanks also to Javier Esparza and the
anonymous CONCUR referees for their useful comments.

References

1. S. Bensalem, A. Bouajjani, C. Loiseaux, and J. Sifakis. Property preserving sim-
ulations. In Proceedings of CAV ’92, LNCS 663, pages 260-273, 1992.

2. Gerard Boudol and Ilaria Castellani. Permutations of transitions: an event struc-
ture semantics for CCS and SCCS. In J.W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, 1989. LNCS 354.

10.

11.

12.

13.

Glenn Bruns. A case study in safety-critical design. In G.v. Bochmann and D.K.
Probst, editors, Proceedings of CAV 91, LNCS 575, pages 220-233, 1991.

C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall International,
1985.

D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Sci-
ence, 27:333-354, 1983.

Y. S. Kwong. On reduction of asynchronous systems. Theoretical Computer Sci-
ence, 5:25-50, 1977.

Kim G. Larsen and Bent Thomsen. A modal process logic. In Proceedings of
the 8rd Annual Symposium on Logic in Computer Science, pages 203-210. IEEE
Computer Society Press, 1988.

Kim G. Larsen and Liu Xinxin. Compositionality through an operational seman-
tics of contexts. In Proceedings of ICALP 90, LNCS 443, 1990.

Robin Milner. Communication and Concurrency. Prentice Hall International,
1989.

Davide Sangiorgi and Robin Milner. The problem of “weak bisimulation up to”.
In Proceedings of CONCUR 92, LNCS 630, 1992.

Joseph Sifakis. Property preserving homomorphisms of transition systems. In
Logics of Programs, pages 458-473, 1983. LNCS 164.

Colin Stirling. An introduction to modal and temporal logics for CCS. In
A. Yonezawa and T. Ito, editors, Concurrency: Theory, Language, and Architec-
ture, pages 2—20, 1989. LNCS 491.

Colin Stirling. Temporal logics for CCS. In J.W. de Bakker, W.-P. de Roever, and
G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics
and Models for Concurrency, 1989. LNCS 354.

