
Access-Control Policies via Belnap Logic:
Effective and Efficient Composition and Analysis

Glenn Bruns
Bell Labs, Alcatel-Lucent
grb@bell-labs.com

Michael Huth
Dept. of Computing, Imperial College London

mrh@doc.ic.ac.uk

Abstract

It is difficult to develop and manage large, multi-author
access control policies without a means to compose larger
policies from smaller ones. Ideally, an access-control pol-
icy language will have a small set of simple policy combina-
tors that allow for all desired policy compositions. In [5], a
policy language was presented having policy combinators
based on Belnap logic, a four-valued logic in which truth
values correspond to policy results of “grant”, “deny”,
“conflict”, and “undefined”. We show here how policies
in this language can be analyzed, and study the expressive-
ness of the language. To support policy analysis, we de-
fine a query language in which policy analysis questions
can be phrased. Queries can be translated into a frag-
ment of first-order logic for which satisfiability and validity
checks are computable by SAT solvers or BDDs. We show
how policy analysis can then be carried out through model
checking, validity checking, and assume-guarantee reason-
ing over such translated queries. We also present static
analysis methods for the particular questions of whether
policies contain gaps or conflicts. Finally, we establish ex-
pressiveness results showing that all data independent poli-
cies can be expressed in our policy language.

1 Introduction

The problem we address here is composition in access
control policy languages. We take it as a given that pol-
icy languages must support policy creation through com-
position of sub-policies, e.g., as occurring in hierarchical
organizations or in secure composition of web services. A
policy language should ideally provide a small set of pol-
icy composition operators that are simple to understand and
use, expressive enough to capture all needed policy compo-
sitions, flexible enough to compose the basic rules within a
policy as well as whole policies, and based on a mathemati-
cal foundation that provides for intellectual tractability and
efficient analysis.

Let us consider the semantic objects that expressions in a
policy language will denote. Ultimately, a policy is a pred-
icate on access requests. An access-control system receives
a request and must make a decision. Think of the justifica-
tion behind such a decision. If there is reason, or evidence,
for granting a request, and no evidence for denying, then the
request should be granted. Conversely, if there is only evi-
dence for denying, then the request should be denied. Since
a system does not have the luxury to be able to respond to
a request with “I don’t know” or “I’m confused”, it would
seem that in the face of no evidence, or conflicting evidence,
that the system should deny.

However, in composing policies it makes sense to take
a broader view, in which a policy can produce more than
just “grant” or “deny”. Consider two policies, A and B.
Suppose an access request is received for which A produces
“grant” and B produces “deny”. The only safe response for
the combined policy seems to be “deny”. But suppose B
returns “deny” because there is no evidence for granting or
denying, while A returns “grant” because there is evidence
for granting. Then “grant” seems the correct response for
the combined policy. The combined policy could produce
this result if policy B did not have to produce a default re-
sponse of “deny” in the face of no evidence, and could in-
stead produce “undefined”. In [15], Halpern and Weissman
make this point in the context of a library policy example.

An additional policy response of “conflict” can also help
in policy composition. Suppose again that policy A returns
“grant” and B returns “deny”. We may decide to return
“deny” for the result of the combined policy. However,
resolving the conflict in this way can mask what may be
an error by the policy writer or in the policy requirements.
Furthermore, by building a conflict resolution strategy into
every policy composition mechanism, we lose the ability
to apply a single conflict resolution strategy over a large
policy composed of many parts. If several policy compo-
sition mechanisms are to be used, each can be simpler if
not required to do the job of conflict resolution. Finally,
the “conflict” response arises naturally when combining the
“information content” of policy responses. Allowing “con-

tf

f

t

information ordering truth ordering

|

|

||

Figure 1. The information and truth orderings
on elements of the Belnap space.

flict” as a policy response leads to simplicity and elegance
in the formal treatment of access-control policies.

If policies can provide four results, how should the re-
sults be combined in policy composition? A natural idea is
to think of these four values as truth values, with “grant” as
truth and “deny” as falsity, and to combine them with opera-
tors of four-valued propositional logic. We write t for value
“grant”, f for “deny”, ⊥ for “undefined”, and > for “con-
flict”. We define a truth ordering ≤t on these values, with t
the greatest value, f the least value, and > and ⊥ mutually
incomparable but less than t and greater than f (see Fig.
1). We take the conjunction (written ∧) of two values to be
their greatest lower bound, and the disjunction (written ∨)
to be their least upper bound. For example, the conjunction
t ∧ > is >, and the disjunction f ∨ ⊥ is ⊥. We can apply
these operations to policy results. So if policy A grants a
request (produces t), and policy B is in conflict on the re-
quest (produces >), then policy A ∧ B produces >. Policy
negation (written ¬) can be defined similarly: it swaps t
and f , and leaves ⊥ and > unchanged. However, some use-
ful policy operations cannot be captured using these logical
operations. For example, a natural composition operation
will sum the “information content” of two policy responses.
If policy A produces ⊥, and B produces t, we may want
the combined policy to produce t. Therefore we define an
information ordering ≤k (index k stands for “knowledge”)
over the four policy result values, with > the greatest and
⊥ the least value (see Fig. 1). Relative to this ordering we
can again define an operation (written⊕) that gives the least
upper bound and another (written ⊗) that gives the greatest
lower bound. The least upper bound t⊕⊥ is t, and t⊕ f is
>.

A logic based on these four values and the operators we
have mentioned was developed by Belnap [2]. In [5] we
presented a policy language based on Belnap logic, which
we here refer to as PBel (for “Policy language based on
Belnap logic”, and pronounced “pebble”). Composition in
PBel has many virtues. It is denotational, as the meaning
of a policy comes from the meaning of its sub-policies. The
policy combinators have clear and simple meanings, and ap-

ply equally well to the composition of large policies and the
composition of single rules within a policy. From the oper-
ators in Belnap logic we can derive a wide range of policy
operators, including those used in popular access-control
policy languages like XACML [9] and Cisco’s IOS fire-
wall policy language [24]. Furthermore, policy composition
in PBel is based on established mathematical concepts and
provides for the efficient analysis of conflict-freedom and
other important properties of policies.

In this paper the focus is policy analysis. We develop a
framework supporting a range of policy analysis questions
and verification methods. We define a propositional policy
query language in which policy analysis questions can be
formalized. The atomic propositions of this language ask
whether two policies are related by the truth or information
ordering. A policy query is then translated to a first-order
logic constraint over the access predicate symbols of the
policies appearing in the query. With these constraints we
can answer policy analysis questions through model check-
ing, validity checking, or assume-guarantee reasoning. For
example, suppose we want to check that a policy A has
no conflicts on a policy interpretationM (which interprets
predicates on access requests that may appear in a policy
expression). We express the property of conflict-freedom as
a query φ, from φ obtain a first-order constraint c by trans-
lation, and then model check to see whetherM satisfies c.
The model check succeeds iff policy A is conflict-free. For
validity checking and assume-guarantee reasoning we use
SAT solving or BDDs on propositional formulas derived
from the first-order constraints.

For the important policy properties of conflict-freedom
and gap-freedom, we additionally provide static analyses
through type systems. Finally, we consider the question of
the expressiveness of PBel. We show that PBel expresses
exactly data-independent functions, functions that map ac-
cess requests to the same value if these requests cannot be
distinguished by access predicates of the ambient system.
We also sketch an extension of PBel that supports a compo-
sition called “closure” by Woo and Lam [25]. This allows
one policy’s reply to a request to depend on another policy’s
reply to a different request.

Outline. The paper is organized as follows. In Section 2
we present PBel. In Section 3 we define a query language in
which policy analysis questions can be phrased. In Section
4 we show how a policy query can be translated to a logi-
cal constraint on access predicates of the policies appearing
in the query. In Section 5 we present static analyses for
gap and conflict-freedom of policies. In Section 6 we show
how our machinery can be applied to the analysis of fire-
wall policies. In Section 7 we present a method for assume-
guarantee reasoning about policies, allowing for more pre-
cise property verification. In Section 8 we study the expres-
siveness of PBel. In Section 9 we discuss related work. In

2

p, q ::= Policy
b if api Basic policy
¬p Logical negation
p ∧ q Logical meet
p ⊃ q Implication
p⊕ q Nondeterministic choice
p[v 7→ q] Refinement

Figure 2. Policy Language PBel: the api are
access predicates, b ∈ {f , t}, and v ∈ {⊥,>}.

Section 10 we sketch language extensions and point out fu-
ture work. Finally, in Section 11 we conclude.

2 Policies

An access control policy defines the response an access
control system should make to an access request (we usu-
ally refer to an access request simply as an “access”). We
take responses of an access control system to be the values
t, f , >, and ⊥ of the aforementioned Belnap space, which
we write as Four. These values and their two orderings
form a distributive, interlaced bilattice [14, 13]. Thus Bel-
nap logic has many convenient properties, for example: ∧
and ∨ distribute as in propositional logic, as do ⊗ and ⊕,
and all these operators are also monotone to both the ≤k

and ≤t orderings.
Operator ⊃ is an extension of implication to the Belnap

space [1]. Expression a ⊃ b with a, b ∈ Four yields b if
a is greater or equal to t in the information ordering, and
yields t otherwise. We additionally define an “overwrit-
ing” operator [y 7→ z] for elements of Four. Expression
x[y 7→ z] yields x if x 6= y, and z otherwise. Figure 2
gives the syntax of PBel, our access control policy lan-
guage. Informally, a PBel expression is interpreted as a
mapping from accesses to elements of Four. If policy p
produces result x on access a and policy q produces result
y on a, then p ∧ q produces result x ∧ y on a. The other
Belnap operators are similarly interpreted on policies as the
pointwise extensions of their logical meaning. The intuition
behind these policy operators is that:

• ¬p denies an access iff p grants it (and vice versa)

• p ∧ q grants an access iff both p and q grant it, and
denies an access iff at least one of p and q denies it

• p ⊃ q grants an access iff p does not grant it or q does
grant it, and p ⊃ q denies an access if p grants it and q
denies it

• p ⊕ q grants (resp. denies) an access iff p or q grants
(resp. denies) it

• p[⊥ 7→ q] grants an access iff either p grants it, or p has
no information on that access and q grants it; p[⊥ 7→ q]
denies an access iff p denies it, or p has no information
on that access and q denies it

• p[> 7→ q] grants an access iff either p grants it and does
not deny it at the same time, or q grants it; p[> 7→ q]
denies an access iff either p denies it and does not grant
it at the same time, or q denies it

Arieli and Avron showed [1] that the set {¬,⊕,⊃,⊥}
of Belnap operators is functionally complete for Four: all
functions of type Fourk → Four can be expressed as ex-
pressions in this fragment of Belnap logic. Therefore in ex-
amples we will use ⊗ and other derivable operators freely.
Indeed, operator [v 7→ q] is itself derivable from other op-
erators of PBel, but it is so useful that we have included it
explicitly in our core policy language.

The only operator in PBel not derived from Belnap logic
is the basic PBel expression b if api, where b ranges over
{f , t}, and api is an access predicate. Informally, the
b if api “rule” gives result b for an access satisfying api

and gives result ⊥ otherwise. The idea is that api defines
the domain of accesses covered by the rule, so that ⊥ is
produced on accesses outside of the rule’s domain.

For generality we take accesses to be atomic entities,
abstracting from the exact form of accesses, which will
vary between applications. Often accesses are modeled
as tuples of the form 〈subject, action, object〉, for exam-
ple 〈librarian,write, catalog〉, but in general an access could
contain a time value, a history of access requests, values
representing object states, or any other values needed to
make access control decisions. By using access predicates
we are not tied to a particular structure for accesses, or to
a particular logic for forming predicates on accesses. We
expect an instantiation of our language for some applica-
tion domain to include a sub-language in which to express
access predicates. A specialized language might, e.g., treat
accesses as triples (as above, or with an additional state tag),
allow the definition of user, subject, and action domains,
and provide a logical language for access predicates.

If ap1 is true of accesses in which a librarian writes to the
card catalog, and ap2 is true of accesses in which a library
user writes to the card catalog, then a simple library policy
might be (t if ap1)⊕(f if ap2). This policy grants access to
librarians seeking to write to the card catalog, denies access
to users seeking to write to the card catalog, and produces
result > to a librarian who is also a library user seeking to
write to the card catalog. But policy (t if ap1) ∧ (f if ap2)
would deny catalog writes by the librarian/user.

To give formal meaning to PBel expressions, we define
a class of accesses and a set of access predicates over this
class. For convenience we work with a countable set {api |
i ≥ 1} of symbols for access predicates. Examples may use

3

[[b if api]]M(a) def=
{
b if a ∈ apMi
⊥ otherwise

[[¬p]]M(a) def= ¬[[p]]M(a)

[[p ∧ q]]M(a) def= [[p]]M(a) ∧ [[q]]M(a)

[[p ⊃ q]]M(a) def= [[p]]M(a) ⊃ [[q]]M(a)

[[p⊕ q]]M(a) def= [[p]]M(a)⊕ [[q]]M(a)

[[p[v 7→ q]]]M(a) def= [[p]]M(a)[v 7→ [[q]]M(a)]

Figure 3. Meaning [[p]]M(a) of PBel expression
p at access a of access-control stateM.

meaningful names for some of these access predicates.

Definition 1 An access-control state M = (AM, {apMi |
i ≥ 1}) is a non-empty setAM of accesses with a predicate
apMi ⊆ AM for each i ≥ 1.

An access-control state can serve as a model of first-
order logic, in which the accesses are the objects, and apMi
is the interpretation of unary predicate symbol api. We call
it an “access-control state” since one might want to allow
policies in which operations can modify access predicates
or create or delete accesses. We assume that every access-
control state M includes an access predicate, which we
write as true, that holds of all accesses in AM.

We interpret a PBel expression p relative to an access-
control state M as a function [[p]]M : AM → Four from
accesses to elements of Four, as defined in Fig. 3. The op-
erators ¬, ∧, ⊃, ⊕, and x[y 7→ z] on the right-hand side
of equations in Fig. 3 are operators on the Belnap space
discussed earlier. We often write p(a) as shorthand for
[[p]]M(a) when intended access-control stateM is clear.

Example 1 We show how some common ideas of policy
composition can be expressed in PBel.

• “Priority composition” of p and q gives p’s result if it
is not ⊥, and otherwise gives q’s result. This idea can
be written p[⊥ 7→ q], which we abbreviate as p > q.

• A “disjoint policy” composition gives > if both p and
q produce a non-⊥ result, gives ⊥ if both policies pro-
duce ⊥, and otherwise gives the result of the policy
that does not produce ⊥. This idea can be written
(p⊕q)⊕((p⊕¬p)⊗(q⊕¬q)). The expression p⊕¬p
yields ⊥ if p yields ⊥, and otherwise yields >.

• A “constant” policy that grants all accesses can be
written (t if true). We abbreviate (t if true) as t,

φ, ψ ::= Query
p ≤t q Truth ordering
p ≤k q Information ordering
¬(p ≤t q) Negation Truth ordering
¬(p ≤k q) Negation Information ordering
φ ∧ ψ Conjunction
φ ∨ ψ Disjunction

Figure 4. Query Language: p and q range over
PBel expressions.

for example in expression p[> 7→ t]. Similarly f is
shorthand for (f if true).

Because the Belnap space is a distributive, interlaced bi-
lattice, and because policies are defined as the functions
from accesses to the Belnap space, we have by a result of
Fitting’s (see [13]) that policies themselves form a distribu-
tive, interlaced bilattice, where p ≤k q if p(a) ≤k q(a) for
every access a, and similarly for the ≤t ordering on poli-
cies. Thus policies inherit all the useful properties from the
Belnap space, such as that ∨ and ∧ distribute.

3 Queries

Properties about policies and their relationships can be
expressed as queries, propositional formulas in which the
atomic propositions concern the pointwise truth or informa-
tion ordering among policies [5]. Figure 4 gives the abstract
syntax for queries (in negation normal form for technical
convenience). We overload the symbols for negation (¬)
and conjunction (∧) as context will show how they apply.
A query is interpreted relative to an access-control state.

Definition 2 Let φ be a query. An access-control stateM
satisfies φ, written M |= φ, according to the following
structural induction, where ∗ ∈ {k, t}:

• M |= p ≤∗ q Iff for all a ∈ AM we have
[[p]]M(a) ≤∗ [[q]]M(a)

• M |= ¬(p ≤∗ q) Iff there is some a ∈ AM with
[[p]]M(a) 6≤∗[[q]]M(a)

• M |= φ ∧ ψ IffM |= φ andM |= ψ

• M |= φ ∨ ψ IffM |= φ orM |= ψ

We now present queries for some examples of policy
specification and analysis.
Gap and conflict analysis. Conflict (resp. gap) analysis
asks whether a policy can ever return a value> or⊥ (resp.).

4

We claim that the query p ≤k p[> 7→ f] correctly specifies
conflict-freedom of policy p, and prove the correctness of
this claim. A similar query is also proved to correctly char-
acterize gap-freedom.

Definition 3 For a PBel expression p and access-control
stateM, p is gap-free (resp., conflict-free) inM iff for no
access a in AM is [[p]]M(a) = ⊥ (resp., [[p]]M(a) = >).

Theorem 1 For every access-control stateM and PBel ex-
pression p we have:

1. p is gap-free inM iffM |= p ≤t p[⊥ 7→ f]

2. p is conflict-free inM iffM |= p ≤k p[> 7→ f].

Change management. In [12], Fisler et al. consider the
problem of change-impact analysis of access-control poli-
cies. When a policy p is updated, one may want to confirm
that too many permissions were not added, either uninten-
tionally or maliciously. For example, we may require that
the legal scope of any new permissions is bounded by an
access predicate ap1. So the query p ≤t (p ⊕ (t if ap1))
should hold in all access-control states. Or suppose we want
to refine policy (p1 > p2) into (p1 > (p2 ∧ q)) such that
the new policy is gap-free. Can one synthesize a PBel ex-
pression q that suits these needs? This problem of policy
synthesis is the subject of future work.

4 From Queries to Constraints

The truth of a query could be evaluated by a “model
check” of the query, through the first-order logic seman-
tics for |=. However, such model checking offers limited
value for the analysis of policies and their compositions.
There may be a very large or infinite access-control state
space, so a literal interpretation of quantifiers in M |= φ
may be impossible or too costly to compute. In addition,
access-control states may change with any decision to grant
an access, as that may grant the privilege to change access
rights. Therefore queries may have to be checked for an en-
tire region of access-control states (e.g. as for discretionary
access control models [20]), and so model checking may
have to be replaced with satisfiability or validity checking.

The alternative approach proposed here for evaluating a
query is to translate the query into a constraint on the basic
access predicates appearing in the policies of the query. For
example, an analysis of this query

f if ap1 ≤k ¬[(t if ap2) ∧ (f if ap3)] (1)

should reveal that it holds in an access-control stateM iff
access predicate apM1 is empty.

c, c′ ::= Constraint
tt Truth
api(x) Access predicate as atom
c ∧ c′ Conjunction
c ∨ c′ Disjunction
¬c Negation
∀x. c Universal quantification
∃x. c Existential quantification

Figure 5. Constraint Language: api and x de-
note access predicates and variables (resp.).

More precisely, from each query φ is computed a first-
order logical formula in which atomic expressions are ac-
cess predicates api(x) and which is nesting-free (no quanti-
fiers are within scope of other quantifiers). Figure 5 shows
the abstract syntax of constraints. We freely use addi-
tional logical operators, e.g. implication (→) and falsity (ff),
that can be derived from the operators of the language in
the usual manner. Our analysis translates all queries into
closed, nesting-free formulas with x as sole variable; we
call such formulas nesting-free constraints.

The meaning of constraint c is given by the standard se-
mantics of first-order logic, using a first-order valuation v
overM that maps all variable symbols occurring freely in
c to elements ofM, and may thus be a partial function. We
write v[x := a] for the valuation that is like v except that x
maps to access a, and write () for the empty valuation.

Definition 4 Let M be an access-control state, c a con-
straint, and v be a first-order valuation over M defined
for all x occurring in c. Then the satisfaction M, v |= c
is defined by structural induction, with truth constants and
propositional combinators taking their usual meaning, and

• M, v |= api(x) Iff v(x) ∈ apMi
• M, v |= ∀x. c Iff for all a : M, v[x := a] |= c

• M, v |= ∃x. c Iff for some a : M, v[x := a] |= c

For a closed constraint c the valuation v is irrelevant, so we
can writeM |= c instead ofM, v |= c. Subsequently we
also useM, a |= c as shorthand forM, ()[x := a] |= c if c
is a constraint with at most a single free variable x.

The translation from queries to constraints that we shall
soon present uses an auxiliary function, defined in Fig. 6,
that translates PBel expressions p to quantifier-free con-
straints with x as sole variable. (Throughout ⇑ has higher
binding priority than ∨, ∧, and→, but ¬ binds more tightly
than ⇑). This translation is static and independent of access-
control states. But it gives, for every policy p and b in {f , t},
a constraint p⇑b that holds of access a just if p(a) is at least
b in the information ordering.

5

(b′ if api)⇑b =
{
api(x) if b = b′

ff otherwise

(¬p)⇑b = p⇑¬b
(p ∧ q)⇑ f = p⇑ f ∨ q⇑ f
(p ∧ q)⇑t = p⇑t ∧ q⇑t
(p ⊃ q)⇑ f = p⇑t ∧ q⇑ f
(p ⊃ q)⇑t = ¬(p⇑t) ∨ q⇑t
(p⊕ q)⇑b = p⇑b ∨ q⇑b

p[> 7→ q]⇑b = p⇑b ∧ [¬(p⇑¬b) ∨ q⇑b]
p[⊥ 7→ q]⇑b = p⇑b ∨ [¬(p⇑¬b) ∧ q⇑b]

Figure 6. Constraint p⇑ b for PBel expression
p and b ∈ {f , t}. Access a satisfies p ⇑ b iff
p(a) ≥k b.

[| p ≤t q |] = ∀x. ([q⇑ f → p⇑ f] ∧ [p⇑t→ q⇑t])
[| p ≤k q |] = ∀x. ([p⇑ f → q⇑ f] ∧ [p⇑t→ q⇑t])

[| ¬(p ≤t q) |] = ∃x.¬([q⇑ f → p⇑ f] ∧ [p⇑t→ q⇑t])
[| ¬(p ≤k q) |] = ∃x.¬([p⇑ f → q⇑ f] ∧ [p⇑t→ q⇑t])

[| ψ ∧ ψ |] = [| φ |] ∧ [| ψ |]
[| ψ ∨ ψ |] = [| φ |] ∨ [| ψ |]

Figure 7. Constraint [| φ |] for query φ.

Theorem 2 Suppose p is a PBel expression, b ∈ {f , t},M
is an access-control state, and a ∈ AM. Then p ⇑ b is a
quantifier-free constraint with x as sole variable such that

M, a |= p⇑b Iff [[p]]M(a) ≥k b

Figure 7 shows the top-level translation from a query φ
to a nesting-free constraint [| φ |] in a negation normal form
for quantifiers: no quantifier is within the scope of a nega-
tion (but propositional operators may be in such a scope).
Positive and negative literals p ≤∗ q and ¬(p ≤∗ q) are
compiled using the predicates p⇑ b and the following char-
acterization of the truth and information orderings on Four:

Proposition 1 For all x and y of Four we have

1. x ≤t y Iff (y ≥k f ⇒ x ≥k f) & (x ≥k t⇒ y ≥k t)

2. x ≤k y Iff (x ≥k f ⇒ y ≥k f) & (x ≥k t⇒ y ≥k t)

This translation of queries to constraints satisfies the desired
correctness condition: query φ holds at an access-control
state iff the constraint obtained from φ does.

Theorem 3 Let M be an access-control state and φ be a
query. Then [| φ |] is a nesting-free constraint in negation
normal form such that

M |= [| φ |] Iff M |= φ

Example 2 We compute constraint [| φ |] for the query of
form p ≤k q in (1) above, replacing constraints with equiv-
alent ones if these replacements are easily detected by SAT
solvers or theorem provers (e.g. changing ff ∧ ψ to ff):

• p⇑t = ff

• p⇑ f = ap1(x)

• q ⇑ t = [(t if ap2) ∧ (f if ap3)] ⇑ f = (t if ap2) ⇑
f ∨ (f if ap3)⇑ f = ff ∨ ap3(x) = ap3(x)

• q ⇑ f = [(t if ap2) ∧ (f if ap3)] ⇑ t = (t if ap2) ⇑
t ∧ (f if ap3)⇑t = ap2(x) ∧ ff = ff

• [| φ |] = ∀x. ([ap1(x) → ff] ∧ [ff → ap3(x)]), which
simplifies to ∀x.¬ap1(x).

By Theorem 3 we therefore know thatM |= p ≤k q holds
iffM |= ∀x.¬ap1(x) holds, i.e. iff apM1 = ∅. In particular,
this is independent of the meaning of ap2 and ap3.

4.1 Symbolic optimizations

Consider the query p ≤t q, where p and q are understood
as parameters for PBel expressions. We can apply the trans-
lation rules in Fig. 7 to the query to obtain a nesting-free
constraint [| p ≤t q |] with x as sole variable for the first-
order logic quantifiers but with p ⇑ b and q ⇑ b as formal
parameters. Any simplifications of this symbolic version of
[| p ≤t q |] will therefore be optimizations for policy analy-
ses of [| p ≤t q |] when p and q are instantiated with actual
PBel expressions. This optimization will also apply to the
assume-guarantee reasoning of Section 7.

Example 3 We compute the constraint [| p ≤k p[> 7→ f] |]
for conflict analysis symbolically in terms of p⇑ f and p⇑t.
We have p[> 7→ f]⇑t = p⇑t ∧ (¬(p⇑ f) ∨ (f if true)⇑t),
which simplifies to p ⇑ t ∧ ¬(p ⇑ f), since (f if true) ⇑ t
simplifies to ff. Also, p[> 7→ f] ⇑ f = p ⇑ f ∧ (¬(p ⇑ t) ∨
(f if true)⇑ f), which simplifies to p⇑ f since (f if true)⇑ f
simplifies to tt. Then we get [| p ≤k p[> 7→ f] |] = ∀x. [p⇑
f → p⇑ f] ∧ [p⇑ t → (p⇑ t ∧ ¬(p⇑ f))], which simplifies
to ∀x. [p ⇑ t → ¬(p ⇑ f)]. This confirms the intuition be-
hind conflict analysis: a policy p is conflict-free whenever
p(a) ≥k t implies p(a) 6≥k f .

Let p be p1 ⊕ p2. Then [| p ≤k p[> 7→ f] |] simplifies to
∀x. [¬(p1 ⇑ t ∨ p2 ⇑ t) ∨ ¬(p1 ⇑ f ∨ p2 ⇑ f)]. So p1 ⊕ p2

contains conflict just if there exists an access for which at
least one of p1 and p2 grants and at least one denies.

6

Example 4 A symbolic optimization for gap analysis un-
folds [| p ≤t p[⊥ 7→ f] |] symbolically to ∀x.[p ⇑ t ∨ p ⇑ f]
(done as in Example 3). So a policy p has a gap if it satis-
fies ∃x. [¬(p⇑ t ∧ ¬(p⇑ f)]. Suppose we instantiate p with
(f if ap1) > (f if ap2). Then ¬(p⇑t) ∧ ¬(p⇑ f) simplifies
to ¬ap1(x) ∧ ¬ap2(x). So policy p has a gap in access-
control statesM for whichM |= ∃x. [¬ap1(x)∧¬ap2(x)].

Example 5 Finally, consider the positive query φ = (p ≤k

q)∧ (p ≤t q), which states that policy q is more defined and
more permissive than policy p. The formula [| φ |] simplifies
to ∀x.[(p⇑t→ q⇑t) ∧ (p⇑ f ↔ q⇑ f)].

Figure 8 summarizes some facts about gap and conflict-
freedom obtained by symbolic optimization and appeal to
Theorems 1 and 3. The constraint for conflict-freedom of
p1 > · · · > pn in Fig. 8 says that p1 > · · · > pn is conflict-
free iff every sub-policy pi is either conflict-free itself or
has some predecessor that does not return ⊥. In the special
case where each pi is itself conflict-free, then clearly so is
p1 > · · · > pn. We summarize:

Proposition 2 In Figure 8, a PBel expression in the first
column is gap-free in an access-control state M iff M
satisfies the constraint given in the second column, and is
conflict-free inM iffM satisfies the constraint given in the
third column.

5 Static Analysis

Our policy language and its semantics have composi-
tional gap and conflict analyses based on type inference in
simple type systems. Figure 9 shows such a sound type
system for deriving judgments CF(p) that ensure conflict-
freedom of policy p. Derivation trees for CF(p) in that type
system are unique, i.e. all type inference rules are invertible.

Theorem 4 Let p be a PBel expression such that CF(p) can
be derived from the type inference rules in Fig. 9. Then p
is conflict-free at all access-control statesM. In particular,
all policies with no occurrence of ⊕ are conflict-free.

As a consequence, ⊕ cannot be expressed by any combi-
nation of other policy operators in PBel since (f if ap1) ⊕
(t if ap1) is not conflict-free.

The type system for CF(p) is sound but incomplete:
(f if ap1) ⊕ (f if ap2) is obviously conflict-free, but our
type system has no inference rule for ⊕ nor can there be a
sound compositional rule for conflict analysis of ⊕. Fortu-
nately, Theorem 4 remains valid as long as assumptions in
a derivation tree can be assured to be conflict-free by other
means. Policy p = (f if ap1)⊕ (f if ap2), e.g., is conflict-
free as [| p ≤k p[> 7→ f] |] is valid. So p ∧ (f if ap3) is
conflict-free by the inference rule for ∧ in Fig. 9.

Figure 10 shows a type inference system for judgments
GF(p), which assert policy p is gap-free. Its sole axiom
concerns constant policies that either deny or grant all ac-
cesses. But its inference rules are sound if their premises are
gap-free, so assumptions GF(p) may be used for inferences
whenever p is shown to be gap-free through other means.

Theorem 5 Let GF(p) be derived from the type inference
rules in Fig. 10 through assumptions GF(pi) with i =
1, . . . , n. If constraint [| pi ≤t pi[⊥ 7→ f] |] is valid for i =
1, . . . , n then p is gap-free in all access-control statesM.

Example 6 Let p be any PBel expression and q =
(t if ap1) ⊃ (t if ap1). Then [| q ≤t q[⊥ 7→ f] |] is valid
and so q is gap-free by Theorem 1. Thus p[> 7→ q] is gap-
free by Theorem 5.

6 Example: Firewall analysis

We now consider the analysis of firewall policies, which
are used to control traffic into or out of a private network.
Our analysis uses the results from Fig. 8 to generate op-
timized constraints whose validity can be shown with a
SAT solver. Alternatively, these constraints can be model
checked on access-control states or converted into BDDs [6]
for the purpose of debugging, or perhaps even implement-
ing, a firewall policy. Our formal model of firewall policies
is based on the extended access lists of Cisco’s IOS firewall
[24], used in Cisco routers and other products. The work
of Capretta et al. [7] on the analysis of conflict detection
in Cisco firewall policies also served as a reference and an
inspiration. See the end of this section for a comparison of
the work in [7] with the work reported here.

In a firewall policy an access is a packet, and various
attributes of the packet are examined in making a policy de-
cision. Typical attributes include host and target addresses
and port numbers, as well as service (such as the FTP pro-
tocol), so we model an access as a tuple of the form

〈hostIP, targetIP, hostPort, targetPort, service〉

We can think of a firewall policy as a sequence r1, . . . , rn
of rules, where each rule ri is a conjunction of basic PBel
expressions. Using b if (api ∧ apj) as shorthand for
(b if api) ∧ (b if apj), each rule ri has the form:

ri = bi if
5∧

j=1

api,j (2)

One could alternatively model a rule as an expression of
the form

∧5
j=1(bi,j if api,j). Yet, nothing is gained from

allowing both a granting and a denying expression within a
rule of that form as expressions (f if ap1) ∧ (t if ap2) and
f if ap1 are easily seen to be semantically equivalent.

7

policy constraint for gap-freedom constraint for conflict-freedom

p ∀x.(p⇑t ∨ p⇑ f) ∀x.[¬(p⇑t) ∨ ¬(p⇑ f)]

p1 ⊕ · · · ⊕ pn ∀x.
∨n

i=1(pi⇑t ∨ pi⇑ f) ∀x.(¬[
∨n

i=1 pi⇑t] ∨ ¬[
∨n

i=1 pi⇑ f])

p1 > · · · > pn ∀x.
∨n

i=1(pi⇑t ∨ pi⇑ f) ∀x.
∧n

i=1[¬(pi⇑ f) ∨ ¬(pi⇑t) ∨
∨i−1

j=1(pj ⇑ f ∨ pj ⇑t)]

p1 ∧ · · · ∧ pn ∀x.([
∧n

i=1 pi⇑t] ∨ [
∨n

i=1 pi⇑ f]) ∀x.(¬[
∧n

i=1 pi⇑t] ∨ ¬[
∨n

i=1 pi⇑ f])

Figure 8. A policy in the first column is gap-free in an access-control state M iff M satisfies the
constraint given in the second column, and similarly for conflict-freedom.

CF(b if api)
CF(p)

CF(¬p)
CF(p) CF(q)

CF(p ∧ q)

CF(q)
CF(p ⊃ q)

CF(q)
CF(p[> 7→ q])

CF(p) CF(q)
CF(p[⊥ 7→ q])

Figure 9. Type system: judgment CF(p) as-
serts conflict-freedom of policy p.

A firewall policy is interpreted on an access-control state

M = (AM, {apMi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ 5})

where the set AM of accesses is all 5-tuples of the form ex-
plained above, and, for each i, the predicate apMi,1 returns
true for those accesses whose host IP address is within a
specified set of IP addresses Ii,1. For j = 2, 3, 4 the poli-
cies bi if api,j are defined in the same manner through spec-
ified sets Ii,j of IP addresses (for j = 2) and port numbers
(for j = 3, 4). Access predicate api,5 returns true for those
accesses a whose fifth component service is in a specified
set Servicei of services. For simplicity we assume that ap-
plications cannot modify any predicate api,j , and so exe-
cutions of access requests will preserve access-control state
M. By Theorem 4, each rule ri is conflict-free.

Note that in a “granting rule” ri, in which bi = t, we
have that ri(a) ≥k f is always false, and ri(a) ≥k t is
true iff apMi,j (a) holds for all j = 1, . . . , 5. Similarly, in a
“denying rule” ri, in which bi = f , we have that ri(a) ≥k t
is always false, and ri(a) ≥k f is true iff apMi,j (a) holds for
some j = 1, . . . , 5.

We now ask how the rules r1, . . . , rn can be composed
to form a firewall policy pfw. In other words, what is the
intended interpretation of the interaction between the rules?

Priorities. One interpretation is that “the first applicable
rule wins”, written as pfw = r1 > · · · > rn in PBel. By
Theorem 4, pfw is conflict-free. Gap analysis is also im-
portant for firewall policies, as it can detect that important

GF(b if true)
GF(p)

GF(¬p)
GF(p) GF(q)

GF(p ∧ q)

GF(q)
GF(p ⊃ q)

GF(p)
GF(p⊕ q)

GF(q)
GF(p⊕ q)

GF(p) GF(q)
GF(p[> 7→ q])

GF(q)
GF(p[⊥ 7→ q])

Figure 10. Type system: judgment GF(p) as-
serts gap-freedom of policy p.

access requests are unspecified. Using the type system of
Fig. 10 and Theorem 5 requires proof that rn is gap-free,
which is unlikely. But from Fig. 8 and Prop. 2 we learn that
pfw is gap-free in access-control stateM just ifM satisfies
∀x.
∨n

i=1(ri ⇑ t ∨ ri ⇑ f). This confirms our intuition that
pfw contains a gap for exactly those accesses that are gaps
for all rules ri.

Non-determinism. Another common interpretation of a
collection of policy rules is that “any applicable rule may
win”. This amounts to a non-deterministic choice of appli-
cable rules, which we may express as pfw = r1⊕ . . .⊕rn in
PBel. Ignoring policy conflicts for a moment, pfw will deny
(resp. grant) access a iff some ri denies (resp. grants) access
a. In particular, pfw will in general not be conflict-free. For
gap analysis, the type system for GF(pfw) can only help if
some ri is gap-free, which is unlikely. We therefore use our
symbolic optimizations for gap and conflict analysis.

For conflict analysis, by Prop. 2 pfw is conflict-free
at access-control state M just if M satisfies constraint
∀x.(¬[

∨n
i=1 ri ⇑ t] ∨ ¬[

∨n
i=1 ri ⇑ f]). In other words,

pfw is not conflict-free in M iff M |= ∃x. ([
∨n

i=1(ri ⇑
f)] ∧ [

∨n
i=1(ri ⇑ t)]). Since each ri is conflict-free, the lat-

ter holds iff there are distinct rules rk, rl and an access a in
M with [[rk]]M(a) ≥k f and [[rl]]M(a) ≥k t. From (2) we
thus infer that conflicts occur at exactly those accesses for

8

which some rule grants all five tuples, and some other rule
denies one of these five tuples.

For gap analysis, by Prop. 2 pfw is gap-free at an access-
control stateM just ifM satisfies ∀x.

∨n
i=1(ri⇑t∨ri⇑ f).

So pfw has a gap at access a iff all rules ri have a gap at a.

Logical Meet. Finally, a legitimate but impractical inter-
pretation is that “all applicable rules win”, which we may
express as pfw = r1 ∧ · · · ∧ rn. As noted already, expres-
sion (t if api) ∧ (f if apj) is semantically equivalent to
f if apj . So any firewall policy obtained by composing
rules with ∧ is equivalent to a policy whose results are con-
tained in {t,⊥} or contained in {f ,⊥}. Such policies are
clearly conflict-free. As this composition of pfw is rather
esoteric, we omit its gap analysis.

In [7], Capretta et al. present a conflict-detection method
for Cisco IOS firewall policies. Using the Coq proof assis-
tant, they define conflict in terms of the structure of access
requests and policy rules in IOS firewall policies. They im-
plement a conflict-detection algorithm in Coq’s functional
programming language and prove it correct, and then ex-
tract a correct OCaml program from the Coq program. The
efficiency of the OCaml program is demonstrated by using
it to detect conflicts in synthesized firewall policies having
tens of thousands of rules.

The aims and results of our work are quite different. The
work of Capretta et al. is targeted specifically to Cisco fire-
wall policies: the rules of these policies are directly formal-
ized, no explicit policy combinators are defined, and con-
flict is defined in terms of Cisco policy rules. Our work
is not tied to Cisco’s policies – we have a general-purpose
policy language with explicit policy combinators, a general-
purpose query language for expressing policy properties,
and, through access predicates, a means to avoid tying the
language and policy analysis to the particular structure of
access requests. We have shown how Cisco firewall policy
rules can be encoded in PBel, how the rules can be com-
posed using PBel combinators, and that our standard notion
of conflict captures the desired property. However, unlike
Capretta et al., we have not yet implemented our policy
analyses, and so have not checked any firewall policies, real
or synthesized.

A key difference between the work in [7] and our own
is in the treatment of conflicts. By supporting the value >
as a possible policy result, we can define conflict-freedom
as a simple semantic property of policies. If > is not sup-
ported, then conflict freedom must be defined in terms of
policy composition: a conflict exists if, on some access, one
sub-policy produces result t while another produces result
f . However, this condition does not represent genuine con-
flict if the sub-policies are composed through an operator
that resolves conflict. For example, in [7], conflict is defined
as the existence of disagreeing firewall policy rules, but rule
composition in firewall policies is a conflict-resolving pri-

ority composition operation. This means that the conflicts
discovered in [7] are not genuine conflicts, although some
of them may reflect unintended interactions between rules
(this point is clearly discussed in that paper). We argue that
such complications, which become more serious in a policy
language with multiple composition operators, are avoided
by using the Belnap bilattice as a policy result space.

7 Assume-guarantee reasoning

A query holds in a single access-control state M if
M satisfies the constraint derived from the query, and a
query holds of every access-control state if the constraint
derived from the query is valid. We now present an assume-
guarantee reasoning method that can be used to show that a
query holds in a specified class of access-control states.

We take an assumption α to be a constraint that describes
the class of access-control states we wish to consider, and
that has x as its only (and free) variable. For example if
α is tt, then we want to reason about all possible access-
control states. If α is ap1(x) → ap2(x), then we may only
want to reason about access-control states M for which
apM1 ⊆ apM2 . We take a guarantee to be a constraint c –
in practice this will be the constraint derived from a query.
For example, constraint c might be ∀x. [ap1(x) ∨ ap2(x)].

Definition 5 An assumption on x is a quantifier-free con-
straint that either has no variable or has x as only variable.

(Since an assumption α on x has at most free variable x, we
can use the shorthand described earlier and writeM, a |= α
instead ofM, v[x := a] |= α.)

The idea of the proof method is that ifMmeets assump-
tion α, and a prescribed condition links α and constraint
c, then M will satisfy c. To make this precise we need to
establish two things:

• How does access-control stateMmeet assumption α?

• What condition links assumption α and guarantee c?

An obvious starting point is to say thatMmeets assump-
tion α ifM |= ∀x.α, and that the required link between α
and c is some kind of implication. Suppose we have a con-
straint of the form ∀x.c′. IfM |= ∀x.α, and α → c′ is a
tautology (understanding predicates api(x) in α and c′ as
atomic propositions), then one can deriveM |= ∀x.c′.

If the constraint of interest has form ∃x.c′, then M |=
∃x.c′ can be derived from the fact that α→ c′ is a tautology
only fromM |= ∃x. α (and not fromM |= ∀x. α instead).

However, for this existential constraint ∃x.c′ we can get
by with a much weaker set of conditions. Take the required
condition linking α and the constraint to be that α ∧ c′ is
satisfiable. What it means forM to meet assumption α will

9

(|α impl ff |) Iff false

(|α impl tt |) Iff true

(|α impl c1 ∧ c2 |) Iff (|α impl c1 |) and (|α impl c2 |)
(|α impl c1 ∨ c2 |) Iff (|α impl c1 |) or (|α impl c2 |)

(|α impl∀x. c′ |) Iff α→ c′ is a tautology
(|α impl∃x. c′ |) Iff α ∧ c′ is satisfiable

Figure 11. Definition of (|α impl c |) where α is
an assumption on x and c a nesting-free con-
straint in negation normal form.

become more involved. We will say that M meets α if,
whenever someM′ satisfies α at access a′, then there is an
a in AM such that the values of access predicates ofM′ at
a′ match the values of access predicates ofM at a, for all
access predicates appearing in α and c′.

Let us sketch how these conditions support assume-
guarantee reasoning for constraint ∃x.c′. Assume α ∧ c′ is
satisfiable, which means there is some access-control state
M′ for whichM′ |= ∃x.(α ∧ c′), or equivalently there is
some M′ and access a′ such that M′, a′ |= α ∧ c′. Be-
cause M′ meets assumption α, we have (using the notion
of “meets” just explained) that there is an access a such that
M, a |= α ∧ c′, and therefore M |= ∃x.(α ∧ c′), which
impliesM |= ∃x.c′ as desired.

We now work through the details, considering first the
required condition linking assumption α and constraint c.
An assumption on x can be interpreted as a propositional
formula by treating each atom api(x) as an atomic propo-
sition, and using a propositional valuation pv to interpret
each api(x) as true or false. For each access-control state
M, and access a in AM, we define propositional valua-
tion pv(M, a) by pv(M, a)(api(x)) is true iff a ∈ apMi .
Then the propositional interpretation of an assumption α
on x in access-control state M and valuation v is ob-
tained by interpreting the Boolean connectives in the usual
way, and interpreting atoms with the propositional valuation
pv(M, v(x)). A tautology is a valid propositional formula.

The condition linking assumption α and constraint c that
we need for assume-guarantee reasoning is captured with
notation (|α impl c |) (read as “α implies c”). This condition
varies according to the structure of c (which we assume to
be in negation normal form for sake of simplicity) and is
defined in Fig. 11. That figure shows no cases for c of the
form api(x) or ¬c′ since c and so its negation normal form
are closed. We reduce computation of (|α impl c |) to SAT
solving:

Proposition 3 An assumption α on x interpreted proposi-

tionally is a tautology iff ∀x. α is valid.

Thus, the value of (|α impl c |) is the result of combining the
results of various calls to SAT solvers based on α and sub-
formulas of c. This use of SAT solvers is possible since all
expressions of the form α→ c′ and α ∧ c′ are by definition
assumptions on x, and so Prop. 3 applies here. By putting
an ordering on all k ≥ 0 access predicate symbols occurring
in α ∧ c we may alternatively compute (|α impl c |) through
the synthesis of BDDs, whose size is at worst exponential
in k [6] and so not directly dependent on the size of α ∧ c.

Example 7 Let assumption α be ¬ap1(x), as computed
in Example 2, and let constraint c be [| φ |] for φ being
(t if ap1) ∧ (f if ap2) ≤t (f if ap2) ∧ ¬(t if ap1). Then
(|α impl c |) iff ¬ap1(x) → (ap1(x) → ap2(x)) is a tautol-
ogy, which is the case. Thus (|α impl c |) = true. This also
illustrates that the constraints generated from a query may
serve as assumptions for the evaluation of other queries.

As explained earlier, we use two different notions of an
access-control stateM “meeting” an assumption α.

Definition 6 Let M be an access-control state, α an as-
sumption on x, and c a nesting-free constraint. Then

• α isM-valid ifM |= ∀x. α

• α isM-complete for c if, for all access-control states
M′, assumptions β on x whose access predicate sym-
bols all occur in c, and accesses a′ in M′ with
M′, a′ |= α ∧ β, there is an access a inM such that
M, a |= α ∧ β.

Theorem 6 LetM be an access-control state, α be anM-
valid assumption, and c be a nesting-free constraint whose
negation normal form contains no existential quantification.
Then (|α impl c |) impliesM |= c.

Showing (|α impl c |) is not a complete method for show-
ing that constraint c holds. For access-control stateM with
set of accesses AM = {0, 1}, apM1 = {0}, apM2 = {0, 1},
apM3 = {}, and c = ∀x. [ap1(x) → ap2(x)] we have
M |= c but (|α impl c |) is false for α = ¬ap3(x).

Example 8 We revisit Example 7. The query φ has form
p ≤t q and so is negation-free. Thus we may apply Theo-
rem 6 for various choices of assumption α.

• For α = ¬ap1(x), which says that access predicate
ap1 is empty, we saw in Example 7 that (|α impl [| φ |] |)
is true, and so M |= φ holds for all M with M |=
∀x.¬ap1(x) by Theorems 6 and 3.

• For α = ap2(x) → ¬ap1(x), we have (|α impl [| φ |] |)
is false as ∀x. [ap2(x) → ¬ap1(x)] → [ap1(x) →
ap2(x)] isn’t valid. So we don’t know ifM |= φ.

10

Theorem 7 LetM be an access-control state, α be an as-
sumption that isM-complete for c, and c be a nesting-free
constraint whose negation normal form contains no univer-
sal quantification. Then (|α impl c |) impliesM |= c.

Combining these assume-guarantee results, we obtain
their straightforward generalization for nesting-free con-
straints c with both universal and existential quantification.

Theorem 8 LetM be an access-control state, α be anM-
valid andM-complete assumption on x, and c be a nesting-
free constraint. Then (|α impl c |) impliesM |= c.

For any query φ, constraint [| φ |] is nesting-free. There-
fore we can combine Theorem 8 with Theorem 3 to support
assume-guarantee reasoning directly on queries.

Corollary 1 Let M be an access-control state, φ be a
query, and α be anM-valid andM-complete assumption.
Then (|α impl [| φ |] |) impliesM |= φ.

Theorem 7 suggests that assumptions on x need to en-
code a sufficient amount of information about M so that
they areM-complete for c, since our constraint-based anal-
ysis (the satisfiability check of α ∧ c′) then never produces
“spurious” witnesses to the satisfiability of α ∧ c′ that are
not such witnesses inM. So even if c contains no existen-
tial quantifications in negation normal form, knowing that α
isM-complete for c means that all satisfiability witnesses
of α ∧ c′ are genuine counter-examples forM |= ∀x. c′.

Before giving an example, we first show that one can
always synthesize assumptions on x that are M-valid and
M-complete for c over a finite set of accesses.

Theorem 9 Let M = (AM, {apMi | i ≥ 1}) be an
access-control state with finite set AM. For any nesting-
free constraint c with set of atoms Γ there is an assumption
α =

∨
a∈AM

ma on x with

ma =
∧

api∈Γ, a∈apMi

api(x) ∧
∧

api∈Γ, a 6∈apMi

¬api(x)

that isM-valid andM-complete for c.

Example 9 From an access-control stateM (and a query
φ) we derive anM-complete assumption α using Theorem
9. Let query φ be ¬(p ≤t q), where p = (f if ap1) ∧
(t if ap2) and q = (t if ap2)⊕ (t if ap1). Then constraint
c is [| φ |] = ∃x.¬[(ap1(x)→ ff)∧(ff → ap2(x)∧ap1(x))],
which simplifies to ∃x. ap1(x).

Let M be an access-control state with {} 6= apM1 6=
AM. For each a ∈ AM, monomial ma from Theorem 9
is either ap1(x) or ¬ap1(x), and both monomials occur in
α =

∨
a∈AM

ma as ∅ 6= apM1 6= AM. So α is equivalent to
tt. Then (| tt impl∃x. ap1(x) |) iff tt∧ap1(x) is satisfiable iff

¬ap1(x) is not a tautology (which is the case). Any witness
for the falsity of ¬ap1(x) has to make ap1(x) true. But that
propositional valuation has form pv(M, a) as apMi 6= ∅.

Therefore α,M, and c satisfy the assumptions of Theo-
rem 7, so we infer from Theorems 7 and 3 thatM |= φ.

8 Expressiveness

An access-control policy language will ideally be able
to capture every policy as a language expression. That is
to say, for any access-control state M and any function
f : AM → Four there should be some policy expression
p with [[p]]M = f . A policy language is functionally com-
plete if this holds.

PBel is not functionally complete. Let AM = Four,
f(x) = x for all x ∈ Four and apMi = {t,>} for all i ≥ 1.
There cannot be a PBel expression p with [[p]]M = f . This
is shown by structural induction on p noting that f behaves
differently for t and > but both elements satisfy the same
set of access predicates inM.

This raises the question of whether functions f that iden-
tify accesses that are not distinguishable by access predi-
cates are those functions expressible as PBel expressions.

Definition 7 For access-control state M we define an
equivalence relation ≡M on AM by

a ≡M a′ Iff (∀i ≥ 1: a ∈ apMi Iff a′ ∈ apMi)

We call a function f : AM → Four data-independent inM
iff f(a) = f(a′) whenever a ≡M a′.

Data-independence [17] exploits that many systems, e.g.
security protocols [23], treat data of the same type in the
same manner. In our context it means a function f is inde-
pendent of the actual data (here accesses), but only depen-
dent on their types (here access predicates with “negation”
and “intersection” types). The semantics [[p]]M of all PBel
expressions is data-independent inM.

Proposition 4 LetM be an access-control state and p be
a PBel expression. Then [[p]]M : AM → Four is data-
independent inM.

We show that PBel can express all data-independent
functions in M. Let (t if ¬api) be a shorthand for the
PBel expression

¬[(t if api)[⊥ 7→ f] ∧ (t if false)]

Proposition 5 LetM be an access-control state. Then

[[t if ¬api]]M(a) =
{

t if a 6∈ apMi
⊥ otherwise

11

Below we write
∑

for the nary versions of ⊕, and
∧

for
nary versions of ∧.

Theorem 10 Let M be an access-control state with finite
set AM of accesses, and let f : AM → Four be a function
that is data-independent inM. Then f equals [[p]]M for the
PBel expression p = pt ⊕ pf where

pt =
∑

a∈AM | f(a)≥kt

pa

pf =
∑

a∈AM | f(a)≥kf

¬pa

pa = (
∧

i | a∈apMi

t if api) ∧ (
∧

i | a6∈apMi

t if !api)

Thus PBel can express exactly those functions f : AM →
Four that, for some access-control state M, are data-
independent in M. Also, the clauses for p ⊃ q and for
p[> 7→ q] in PBel can be expressed by a composition of
other clauses in that language as these two clauses were not
used in the proofs of Prop. 5 and Theorem 10. Moreover, a
replacement of all ⊕ and their nary versions in Theorem 10
with priority composition > expresses conflict-freedom:

Theorem 11 PBel, as shown in Fig. 2, but without clause
p⊕ q, expresses exactly the functions f : AM → Four that
are data-independent inM and conflict-free.

In summary, we have functional completeness for the
level of abstraction, the access predicates api, that we con-
sider. In future work we mean to investigate functional com-
pleteness for the richer types

(AM → Four)k → (AM → Four)

to understand better the expressiveness of PBel for higher-
order composition operators. Although operator ⊃ of PBel
has not been used in our examples, we suspect it is needed
for securing this functional completeness result, which is
“polymorphic” in access-control statesM.

9 Related Work

The idea that policies can produce results other than
“grant” and “deny” is familiar, but surprisingly little has
been done in the area of multi-valued policy algebras. Pol-
icy formalisms that capture “grant”, “deny”, and “unde-
fined” result values include the default logic-based formal-
ism of Woo and Lam [25], and SPL [22]. A formalism that
captures “grant”, “deny”, and “conflict” can be found in
[19], where the outcomes depend on the provability of for-
mulas in defeasible logic. XACML [9] uses values that cor-
respond to “grant”, “deny”, and “undefined”, plus a value
“indeterminate” that reflects a processing error.

SPL is one of the few policy languages that uses a multi-
valued algebra for policy composition. SPL policies can
be composed using a three-valued logic, with operators
AND, OR, NOT, plus indexed forms of AND and OR.
This logic is unlike Kleene’s strong three-valued logic [16]
and every other standard three-valued logic we know. In
PBel, the SPL policy composition p AND q can be writ-
ten (p ⊕ q)[> 7→ f] and composition p OR q can be writ-
ten (p ⊕ q)[> 7→ t]. We believe these encodings demon-
strate that policy composition is simpler when composi-
tion operators are not required to resolve conflicts. SPL’s
basic rule domain :: decide can also be encoded in PBel.
For that we use the fact, not shown in this extended ab-
stract, that expressions of the form (b if τ) can be trans-
lated into PBel whenever τ is a Boolean combination of
access predicates. The encoding of SPL’s rule above is then
(t if domain ∧ decide)⊕ (f if domain ∧ ¬decide).

XACML also has multi-valued operations for compo-
sition, but separate ones for rule composition and policy
composition. We consider here XACML’s four main pol-
icy composition operations (called “policy-combining al-
gorithms”). Although defined on non-empty policy sets,
they can be expressed as commutative and associative bi-
nary policy operations. If XACML’s “indeterminate” is
understood as >, then XACML’s “permit-overrides” al-
gorithm on policies p and q can be written in PBel as
(p+q)[> 7→ f], its “first-applicable” algorithm can be writ-
ten p > q, and its “only-one-applicable” algorithm can be
written (p⊕ q)⊕ ((p⊕¬p)⊗ (q⊕¬q)). However, it seems
more likely that XACML’s “indeterminate” should some-
times be treated as ⊥ and sometimes as >, depending on
circumstance.

We briefly mention one other policy algebra, which is not
however multi-valued. In [3], Bonatti et al. interpret a pol-
icy expression as a set of accesses, and then define composi-
tion operators on these access sets. For example, expression
p&q denotes the intersection of the access sets denoted by
p and q, and p + q their union. This approach is simple,
but does not allow for the distinction between an access that
should be denied and an access that is outside the scope
of a policy. Negative permissions are achieved through a
set difference operator p − q. This operation gives denials
modelled by q higher priority than permissions modelled by
p, so conflicts cannot arise. Furthermore, one cannot sym-
metrically state that grants modelled by one policy should
take priority over the denials modelled by another.

Composition in some policy languages is a syntactic op-
eration. For example, a form of policy inheritance is sup-
ported in the Cisco Management Center for Firewalls [8]. A
hierarchy of pairs of access lists is created; a firewall policy
is assembled by forming a single access list from the pairs
along a path in the hierarchy from a leaf to the root. An-
other example is in the policy language of Lee et al. [18].

12

Here a policy is a pair of theories of defeasible logic, each
theory consisting of three kinds of rules, plus a rule order-
ing. These rules, as in default logic [21], allow tentative
or definite conclusions to be inferred. Composition takes
an ordered set of policies and produces a single policy by
unioning the rules of defeasible theories and updating the
ordering among the rules of each theory.

The material in Sections 2 and 3 of this paper summarize
the main content of [5]. The version of PBel presented here
has two operators not found in the language of [5]: Non-
deterministic Choice, and Refinement. This is merely for
convenience; the additional operators do not add expres-
sive power. Only a single formal result on expressiveness
is found in [5], stating that the policy language is powerful
enough to express every mapping from accesses to Four
if strong-enough access predicates are available. In Sec-
tion 8 of this paper we have shown the more general result
that PBel expresses exactly the data-independent mappings
from accesses to Four, and further that PBel without⊕ ex-
presses exactly the data-independent and conflict-free map-
pings from accesses to Four. No material on policy analy-
sis (sections 4 – 7 of this paper) is contained in [5].

10 Future work

In [25], Woo and Lam list as a requirement that a pol-
icy language should support “closure”. Informally, closure
allows the result of a policy on an access to depend on the
result of a sub-policy on another access. For example, a pol-
icy that regulates read and write permissions to documents
may have to be extended so that a document is readable by
a user just if it is writable.

In logic-based policy languages, the ability to compose
policies in this way is supported by inference rules such as

grant(user, file, read) :- grant(user, file,write)

This rule has two salient features: the grant predicate ap-
pears as both a premise and a conclusion, and the access
mentioned in the premise differs from the access in the con-
clusion. The difficulty in expressing this idea in PBel has to
do with this latter feature. Our definition of [[p]]M(a) means
that a policy p on an access a must be a function of the re-
sults of its sub-policies on the same access a, not on some
other access (ignoring the effect of Prop. 4).

To accommodate this feature, we add a clause p〈f〉 to
PBel, where unary function symbol f denotes an “access
mapping”. Its semantics in access-control stateM is a to-
tal function fM : AM → AM and so we may extend our
denotational semantics with a clause

[[p〈f〉]]M(a) = [[p]]M(fM(a))

If accesses have the form 〈user, action, document〉 and if
mapping ReadToWrite is interpreted as a function that

maps every access 〈u, read, d〉 to 〈u,write, d〉 and leaves all
other accesses fixed, we can write p〈ReadToWrite〉 > p
for a policy that grants a read access whenever the cor-
responding write access was granted in p – regardless of
p’s result on the access. In this way PBel can be ex-
tended to relate permissions of one policy to permissions
on other accesses in another policy. The constraints that
are generated then also contain terms built from variable x
and function symbols but can be embedded into a decid-
able fragment of first-order logic [4], e.g. into the fragment
[∃∗∀∃∗] (all, all). We mean to identify optimal decision
procedures for the constraints that we generate by the addi-
tion of a 〈f〉 operator to PBel.

Because PBel does not support policy variables, one can-
not write recursive policy rules. We therefore avoid the
cost and difficulty that can arise with such rules. Support
for bounded recursion would be of interest, e.g., in role-
based access control [10, 11], where permissions and de-
nials may be inherited across sub-roles. We mean to study
to what extent PBel can already support role-based access
control states (e.g., through assume-guarantee reasoning) or
whether changes to PBel (e.g., by making ∧ and ⊕ depen-
dent on a relation symbol) would accommodate this impor-
tant model (and perhaps even “closure”) better.

11 Conclusions

We have presented various methods for the analysis of
PBel policies. First we have shown how to translate pol-
icy queries to standard, two-valued logical formulas over
access predicates, allowing the satisfaction of queries by
policies to be checked using existing reasoning machinery
such as BDDs, SAT solvers, and logical simplifiers. We
have given static analyses for the common properties of
conflict and gap-freedom. To support proving policy prop-
erties that are only expected to hold for certain classes of
access requests, we have also devised a method for assume-
guarantee reasoning about policies. Again, such reasoning
can be achieved by means of SAT solvers or BDDs.

We have also formalized Cisco IOS policy analysis in
PBel, and shown how the analysis of conflict and gap-
freedom can be accomplished under various choices of rule
composition.

We would like to reiterate two key elements of our work.
By basing PBel on Belnap’s four-valued logic, the proper-
ties of conflict-freedom and gap-freedom can be expressed
as simple, purely semantic properties of policies. In con-
trast, two-valued policies cannot exhibit conflicts or gaps:
basic policies cannot exhibit them, and conflicts will neces-
sarily be resolved through policy composition. Therefore,
conflict-freedom in two-valued policies must be expressed
as the absence of disagreement between sub-policies. This
is unsatisfactory, however, because disagreements between

13

sub-policies may or may not reflect real problems. It may
be that these disagreements are anticipated and are resolved
appropriately through composition. With PBel, sub-policies
can either be composed in a way that resolves conflicts
(when they are expected), or in a way that allows conflicts
to propagate (when they are unexpected) so that problem-
atic conflicts then can be detected and eliminated.

The second key element is the use of access predicates
in PBel, which abstract away from the specifics of access
requests and environmental data in an application. Access
predicates serve as Boolean observables, and thus provide
for generality of the language, for flexibility in the degree of
granularity of access requests, and facilitate efficient anal-
ysis through the use of off-the-shelf SAT solvers or BDDs.
Since BDDs, unlike SAT solvers, provide an implementa-
tion of Boolean functions – and so of PBel expressions –
BDDs appear to be the method of choice for implementing
both PBel and its analyses.

Acknowledgments

Glenn Bruns was supported in part by US National Sci-
ence Foundation grant 0244901. This work has, in part,
be performed in collaboration with the project “Aspects of
Security for Citizens”, funded by the Danish Strategic Re-
search Council. Nir Piterman gave useful comments on
drafts of this paper.

References

[1] O. Arieli and A. Avron. The value of the four values. Artifi-
cial Intelligence, 102(1):97–141, 1998.

[2] N. D. Belnap. A useful four-valued logic. In J. M. Dunn and
G. Epstein, editors, Modern Uses of Multiple-Valued Logic,
pages 8–37. D. Reidel, Dordrecht, 1977.

[3] P. Bonatti, S. de Capitani di Vimercati, and P. Samarati.
An algebra for composing access control policies. ACM
Transactions on Information and System Security, 5(1):1–
35, 2002.

[4] E. Börger, E. Grädel, and Y. Gurevich. The Classical Deci-
sion Problem. Springer Verlag Berlin, 1997.

[5] G. Bruns, D. Dantas, and M. Huth. A simple and expres-
sive semantic framework for policy composition in access
control. In Proc. of the 2007 ACM workshop on Formal
Methods in Security Engineering (FMSE ’07), 2007.

[6] R. E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Transactions on Computers, 35(8):677–
691, 1986.

[7] V. Capretta, B. Stepien, A. Felty, and S. Matwin. Formal
correctness of conflict detection for firewalls. In Proc. of the
2007 ACM workshop on Formal Methods in Security Engi-
neering (FMSE ’07), pages 22–30, New York, NY, USA,
2007. ACM Press.

[8] CiscoWorks. Using Management Center for Firewalls 1.3.2.
Cisco Systems, Inc., 2004.

[9] T. M. (editor). eXtensible Access Control Markup Language
(XACML) Version 2.0. Committee specification, OASIS,
February 2005.

[10] D. Ferraiolo and D. R. Kuhn. Role-Based Access Control.
In Proc. of the NIST-NSA National (USA) Computer Security
Conference, pages 554–563, 1992.

[11] D. F. Ferraiolo, D. R. Kuhn, and R. Chandramouli. Role-
Based Access Control (Second Edition). Artech House, Inc.,
Norwood, MA, USA, 2003.

[12] K. Fisler, S. Krishnamurthi, L. A. Meyerovich, and M. C.
Tschantz. Verification and change-impact analysis of
access-control policies. In 27th International Conference on
Software Engineering (ICSE 2005), pages 196–205, 2005.

[13] M. Fitting. Bilattices are nice things. In T. Bolander, V. Hen-
dricks, and S. A. Pedersen, editors, Self-Reference, pages
53–77. Center for the Study of Language and Information,
2006.

[14] M. Ginsberg. Multivalued logics: a uniform approach to
reasoning in AI. Computational Intelligence, 4:256–316,
1988.

[15] J. Halpern and V. Weissman. Using first-order logic to rea-
son about policies. In Proceedings of the Computer Security
Foundations Workshop (CSFW’03), 2003.

[16] S. C. Kleene. Introduction to Metamathematics. D. Van
Nostrand, 1952.

[17] R. S. Lazic. A Semantic Study of Data Independence with
Applications to Model Checking. PhD thesis, Computing
Laboratory, Oxford University, April 1999.

[18] A. J. Lee, J. P. Boyer, L. E. Olson, and C. A. Gunter. De-
feasible security policy composition for web services. In
FMSE ’06: Proceedings of the fourth ACM workshop on
Formal methods in security, pages 45–54, New York, NY,
USA, 2006. ACM Press.

[19] M. McDougall, R. Alur, and C. A. Gunter. A model-based
approach to integrating security policies for embedded de-
vices. In Proceedings of Fourth ACM International Confer-
ence On Embedded Software (EMSOFT 2004), pages 211–
219, 2004.

[20] D. of Defense of the United States of America. Trusted com-
puter system evaluation criteria. DoD Standard 5200.28-
STD.

[21] R. Reiter. A logic for default reasoning. Artif. Intell., 13(1-
2):81–132, 1980.

[22] C. Ribeiro, A. Zuquete, P. Ferreira, and P. Guedes. SPL: An
access control language for security policies and complex
constraints. In Proceedings of the Network and Distributed
System Security Symposium (NDSS 2001), 2001.

[23] A. W. Roscoe. Proving security protocols with model check-
ers by data independence techniques. In Proc. of the 11th
IEEE Computer Security Foundations Workshop, pages 84–
95, June 1998.

[24] J. Sedayao. Cisco IOS Access Lists. O’Reilly, 2001.
[25] T. Y. C. Woo and S. S. Lam. Authorizations in distributed

systems: A new approach. Journal of Computer Security,
2(2-3):107–136, 1993.

14

