Validating Safety Models with Fault Trees

Glenn Bruns and Stuart Anderson

Department of Computer Science
University of Edinburgh
Edinburgh EH9 3JZ, UK

Abstract. In verifying a safety-critical system, one usually begins by
building a model of the basic system and of its safety mechanisms. If the
basic system model does not reflect reality, the verification results are
misleading. We show how a model of a system can be compared with the
system’s fault trees to help validate the failure behaviour of the model.
To do this, the meaning of fault trees are formalised in temporal logic
and a consistency relation between models and fault trees is defined. An
important practical feature of the technique is that it allows models and
fault trees to be compared even if some events in the fault tree are not
found in the system model.

1 Introduction

Safety-critical systems often have mechanisms designed to prevent, detect, or
tolerate system faults. To ensure that these mechanisms work as intended, a
model of the system can be built from two parts: a model of the basic system
and a model of the safety mechanisms (see Figure 1). Important properties of
the system are then verified of the model. For example, if a component failure
occurs, then it is detected.

Basic system Safety
model Mechanisms

Fig. 1. A Model of a Safety-Critical System

For the verification results to be valid, the basic part of the model should
reflect the true connection between component failures and system faults in
the system. We are aware of a study of a rail interlocking system in which the
preliminary system model allowed only one train per track section, thus making
collisions impossible. Less obvious problems may be harder to discover, such as
when a particular combination of failures leads to a system fault in the real
system but not the system model.

We propose a validation technique in which a system model is compared to
its fault trees. If a system model and its fault trees are not consistent in a sense
that we will define, then the system model may not be valid. Fault trees are
well suited for this purpose because they are specifically intended to capture the
relationship between component failure and system faults.

The two main sections of the paper cover the precise meaning of fault trees
and our proposed relationship between fault trees and system models. First,
however, we present an example.

2 Example

To make discussion of the problem more concrete, we present a simple boiler
system example (see Figure 2).

Boiler

water water
level level

water
Sensor 1 Sensor 2

sensor 1 sensor 2
reading reading

Control

Pump

System pump input
signal

Fig. 2. A Simple Boiler System

Steam is produced by water contained in the boiler vessel. The water level in
the vessel is read by two sensors, which pass their readings to a control system.
If the readings are below a certain value, the pump is turned on, delivering water
to the vessel. If the level readings are above a certain value, the pump is turned
off.

One safety-critical fault of the system is a boiler level that is too high. A
fault tree for this fault is given in Figure 3.

A fault tree represents how events in a system can lead to a particular system
fault. The event symbols used here are either basic events (which are drawn
as circles and represent component failures) or intermediate events (which are
drawn as rectangles and represent events which occur because of lower-level

Boiler level
above limit
when operating

pumping when level >
level > limit limit upon
startup
pump set "on"
when level > limit pump

| stuck on

0

sensors show
level < limit
when level > limit

control
stuck on

sensor 1 sensor 2
failure failure

Fig. 3. A Fault Tree for the Boiler System

events). The system fault is shown as the event at the root of the tree. Event

symbols are connected in the tree by gate symbols, which are either and-gates
or or-gates.

The full fault tree notation has many more event and gate symbols, but if
we do not consider the probabilistic meaning of fault trees then the symbols we
have described are enough.

3 Fault Tree Semantics

If we are to compare fault trees and system models, we need to understand
precisely what a fault tree means. Unfortunately, even the most definitive sources
(e.g., the Fault Tree Handbook [5]) are vague on some critical points.

One issue is the nature of events. Are they to be regarded as conditions
having duration or as instantaneous occurrences? The example event “contacts
fail to open” from the Fault Tree Handbook suggests the former, but the example
“timer reset” suggests the latter.

The second issue is the gate condition: does “and” mean that both input
events happen at once, or only that one happens and then the other?

A third issue is the nature of causality. A gate models a sufficient cause if
the output must occur if the gate condition is satisfied by the inputs. A gate
models a necessary cause if the gate condition must be satisfied by the inputs
if the output occurs. According to the Fault Tree Handbook, fault trees model
sufficient and necessary causes. However, Figure IX-10 of the Handbook shows
an event labelled “wire faults in K3 relay & comp. circuitry” as a cause of “K3
relay contacts fail to close”, but one can imagine circumstances in which wire
faults occur in such a way that the relay contacts do not fail to close. Therefore
the cause as stated is not a sufficient one.

Causes of an event are also supposed to be immediate. This term seems
related to the notion of flow, and may not be relevant in systems that cannot be
captured easily with flow models. All examples in the Fault Tree Handbook are
illustrated with flow diagrams. Immediacy also suggests time. For our purposes,
a gate models an immediate cause if no time passes between a cause and its
effect.

We now present a formal semantics for fault trees. Events are treated as
conditions having duration, and the gate condition is taken to be that both
inputs to an and-gate must occur at once. Three different formalisations of gates
are given, corresponding to different stances on the issue of gate causality.

Formally, fault trees are interpreted as formulas of temporal logic. We use the
modal mu-calculus (see Appendix A), but nearly all temporal logics are expres-
sive enough for our purposes. Similarly, the kinds of structures that temporal
logics are interpreted over are very general. We assume only that a system model
can be represented as a transition system or as a set of sequences of states.

Events are formalised as atomic propositions, which are interpreted as sets of
states. For example, the event “sensor failure” could be modelled as the atomic
proposition SF, which is interpreted as all states in which the sensor has failed.
This formalisation of events fits with most of the examples of the Fault Tree
Handbook, and is consistent with the meaning of the term “event” in probability
theory. Since fault tree are subject to probabilistic analysis, a consistent view of
events is desirable.

Next we will formalise the meaning of gates. We will let +(iny, ins, out) stand
for an or-gate with inputs in; and iny and output out. Similarly, e(iny,ing, out)
stands for an and-gate. The semantics of a gate g, denoted [g], gives the logical
relationship between the input and output events of g.

3.1 A Propositional Semantics for Gates

Formalising gates with propositional logic is a simple approach that is reasonably
close to the informal description of gates in the Fault Tree Handbook. In terms
of the issues just discussed, this interpretation requires and-gate inputs to occur
at the same time for the gate condition to be satisfied, and takes causality to be
necessary, sufficient, and immediate. The subscript p on the semantic function
stands for “propositional”.

+(iny, ing, out def out & iny V ing
P

o(iny,ing, out def out & iy A ing
’ P

Informally, the first statement says that the output of an and-gate is true
whenever both inputs are true. Remembering that events are treated as sets of
states, the statement alternatively says that the set of states denoted by out is
the intersection of the sets denoted by in; and ins. The concept of causality here
is truly immediate: whenever both causes are present the effect is also present.

3.2 Two Temporal Semantics for Gates

The greatest weakness of the propositional interpretation of fault trees is the
assumption that no time can pass between cause and effect. This assumption
violates a common intuition about causality. Since the examples in the Fault Tree
Handbook mostly concern examples in which flow is virtually instantaneous (as
in an electric circuit), the problem rarely arises there. In cases where flow is not
instantaneous, events are modelled so that causes can be made immediate, albeit
somewhat unnaturally. For example, in the pressure tank analysis of Chapter VII
continuous pump operation can lead to a pump failure. This cause is modelled
as the event “tank ruptures due to internal over-pressure caused by continuous
pump operation for t > 60 sec”. Since the idea of a cause leading to an event is
natural, it is worthwhile to try to view fault trees in this way.

Our first temporal semantics requires that and-gate inputs occur at the same
time to satisfy the gate condition, and takes causality to be only sufficient, not
necessary or immediate. This means that once the gate condition is satisfied, the
gate output must eventually occur. The temporal logic operator even is used
to express the temporal condition of eventuality. Thus even(¢) means that the
property expressed by formula ¢ will hold in the future.

The temporal relation between input and output events for gates can be
defined as

[+(in1,ing, out)],, dof (in1 V ing) = even(out)

[e(iny,ing, out)],, dof (in1 A ing) = even(out)

The first definition says that it is always the case that if input events in; and
ing occur together, then eventually output event out will occur.

Our second temporal semantics treats causality as only necessary. The tem-
poral operator prev(¢) means that the property expressed by formula ¢ held in
the past.

[+(in1, ing, out)],, L out = prev(ing V ing)
[e(in1,ing, out)],, L out = prev(ing A ing)

However, these definitions allows the gate output out to occur many times
for a single occurrence of in; A ing. A better interpretation might require that
if out happens, then in; A in, must have happened at least as recently as the
previous occurrence of out.

There are other possible interpretations based on other choices about the
basic semantic issues. For example, combining the two temporal semantics we
have presented would give one modelling sufficient and necessary causality.

Fault tree gates have been interpreted temporally before (see [1]), but the
use of temporal logic here allows much simpler semantics. This simplicity makes
comparison between alternative interpretations easier.

3.3 Putting Gates Together

We now present the semantics of a fault tree ¢ based on the set of gates contained
in the tree (written as gates(t)) . We use the temporal operator always(¢), which
means that the property expressed by ¢ holds in every state.

[t] < always(A [g])

g€E€gates(t)

In English, this definition says that it is always the case that every gate
condition is satisfied. Note that the meaning of a fault tree is given in terms of
the meaning of its gates.

The propositional semantics has some great advantages over the temporal
ones. Because a gate output is defined in the propositional case to be logically
equivalent to the disjunction or conjunction of its inputs, the fault tree can be
manipulated according to the laws of propositional logic. This property allows
internal events of a fault tree to be removed by simplification, giving a relation
between only the primary failures and the system fault (as is found in minimal
cut set interpretations of fault trees [5]).

A further advantage of the propositional interpretation of fault trees is that
the meaning is given as an invariant property — a property that can be checked by
looking at states in isolation. Invariant properties are an easy class of temporal
logic formulas to prove.

The main advantage of the temporal semantics is their ability to model richer
notions of causality. Unfortunately, it is no longer possible to eliminate internal
events by simplification, and thus minimal cut sets cannot generally be obtained.
Furthermore, this formalisation of fault trees uses the temporal property of even-
tuality, and is therefore a liveness property. This class of temporal logic formulas
are generally more difficult to prove than invariant formulas.

The best interpretation of a fault tree probably depends on the system being
studied. In some cases one might want to choose different interpretations for
different kinds of gates. For example, or-gates could be interpreted proposition-
ally and and-gates interpreted temporally. Alternatively, a wider variety of gate
types could be defined, and their use mixed in a single fault tree.

The material in the next section can be applied independently of choice of
semantics for fault trees.

4 Relating Fault Trees to System Models

The last section showed that a fault tree expresses a property of failure events in
a system. We might therefore expect a model of the system to have the properties
expressed by its fault trees. We will attempt to make this relationship precise.

Let F stand for the set of system faults for which fault trees have been
developed, and let ft(F') be the fault trees for fault F'. Given a system model M
with an initial state so, we write sg [=aq ¢ if the system model has the property
expressed by formula ¢. The condition expressing that a model M of a system
is consistent with the set of fault trees for the system is

sobm N LFHP)]

FeF

This condition is too strong, however, because usually a system model will
capture only certain aspects of a system. One way to weaken the relation above
is to require a system model to satisfy the property expressed by a fault tree only
if the system fault of the tree is found in the system model. Letting faults(M)
stand for the system faults in a model M, the new consistency condition is

sobEm N LR

FeFnfaults(M)

This relation is still quite strong, however. If a system model only captures
certain failures, then it probably would not satisfy this condition. It would be
useful to know the weakest relation that should definitely be expected to hold
between a model of a system and the fault trees of a system. Our approach is
to assume that we know nothing about events not given in a system model. As
an example, suppose that we have a single or-gate, +(B,C, A), which by the
propositional interpretation gives the relation A < B V C between events A,
B, and C. Also suppose that we know nothing about event B. Then we will
still expect that C' = A. Logically this amounts to the projection of the relation
A < BV C onto the atomic propositions A and C. The projected relation is
arrived at by taking the disjunction of the cases where B is true and B is false. In
other words, the disjunction of A < true V C and A < false V C is equivalent
to the formula C' = A. In the general case, where more than one event might
be missing, we need to consider all combinations of possibilities for the missing
events.

To formalise this idea, let ¢[¢'/Q] be the formula ¢ with every occurrence of
atomic proposition) within ¢ replaced by ¢’. For example, AV B[false/B] gives
AV false. For multiple substitutions, let ¢[¢1/Q1, ..., ¢n/Qx] be the formula
¢ with occurrences of Q1,...,Q, in ¢ simultaneously replaced by ¢1,...,d,
(no atomic proposition is allowed to occur twice in the substitution list). For
example, A V B & Cltrue/A, false/C| gives true V B < false. We will write

S1 x S5 for the cross product of sets S; and Ss, i.e., S1 X Sy def {(z,y) | x €
S1 and y € SQ}

Let Bool be the set {true, false} of boolean constants, and let Bool™ be the
n-fold product of Bool. The interpretation of a fault tree in the absence of a set
of events £ = {aq,...,a,} is defined to be:

[t—&] % \ [t][b1 /a1, - .. bu/an]

{b1,...,bp }€Bool™

Let events(M) be the set of events in the system model M, and let events(t)
be the set of events in fault tree ¢. Then events(t)\ events(M) is the set of events
found in the fault tree ¢ but not the model M. The condition expressing that a
model M of a system is consistent with the set of fault trees for the system is
now

s0 Em /\ [ft(F) — (events(ft(F)) \ events(M))]

FeFnfaults(M)

5 Conclusions

This paper contains three contributions to the study of safety-critical systems.
First, it presents the idea that fault trees can be used to check the validity
of safety-critical system models. Second, it contains three formal semantics for
fault trees. These semantics are an improvement on earlier work by expressing
the meaning of fault trees with temporal logic, by expressing events as sets of
states, and by identifying four elements of the meaning of gates: gate condition,
sufficiency, necessity, and immediacy. Finally, the paper defines a consistency
condition between a model of a system and the system’s fault trees that works
even for models that contain only some of the failure events in the their fault
trees.

Tool support for checking the consistency condition exists in the form of
model checkers, which automatically show whether a finite-state model satisfies
a temporal logic formula [3]. Proof tools (such as [2]) are available in case the
model is not finite-state.

The work described here should be regarded as a first step towards a complete
understanding of fault trees and their relation to system models. As mentioned
in the section on the semantics of gates, the formalisation here of necessary
causes may be too simplistic. The consistency condition given might need to
be strengthened to ensure that an event representing a component failure can
always occur provided it has not already occurred. Our consistency condition

also cannot handle the case in which a single failure event in a system model
represents several failure events in a fault tree.

A A Temporal Logic

We use an extended form of the modal mu-calculus [4, 6] as a temporal logic
to express behavioural properties. The syntax of the extended mu-calculus is as
follows, where L ranges over sets of actions, () ranges over atomic sentences, and
Z ranges over variables:

p=Q =l Aol [Llg] Z]|vZ9

The operator vZ binds free occurrences of Z in ¢, with the syntactic re-
striction that free occurrences of Z in a formula ¢ lie within an even number of
negations.

Let S be a set of states and Act a set of actions. A formula ¢ is interpreted
as the set ||¢||g of states, defined relative to a a fixed transition system 7 =
(S,{% | a € Act}) and a valuation V, which maps variables to sets of states.
The notation V[S’/Z] stands for the valuation V' which agrees with V except
that V'(Z) = §’. Since the transition system is fixed we usually drop the state
set and write simply [/¢||,,. The definition of ||¢||,, is as follows:

1Qlly = V(@)
I=olly =S = ll¢lly
61 A d2lly, = ld1lly, N2l
I[L]¢]ly, = {s € S|if s> 5" and a € L then s’ € ||¢[|,,}
12l = v(2)
1vZblly = UIS' € 18 € [6llvgsr s}

A state s satisfies a formula relative to a model M = (7, V), written s = ¢,
if s € [|¢]5-

Informally, [L]¢ holds of a state s if ¢ holds for all states s’ that can be reached
from s through an action a in L. A fixed point formula can be understood by
keeping in mind that vZ.¢ can be replaced by its “unfolding”: the formula ¢ with
Z replaced by vZ.¢ itself. Thus, vZ.4 A [{a}]Z =¥ A [{a]vZ9Y A [{a}]Z) =
v A {a}](A [{a}](vZap A [{a}]Z)) = ... holds of any process for which
holds along any execution path of a actions.

The operators V, (a), and puZ are defined as duals to existing operators
(where ¢[1p/Z] is the property obtained by substituting 1 for free occurrences of
Z in ¢):

$1 V P2 o (g1 A —g2)
def

(LYo = —[L]-¢
(2.0 vz ~p[~2/7)

These additional basic abbreviations are also convenient:

def

[a1,...,an]0 = [{a1,...,an}]d
o = [Act]o
true def vZ.7

def
false = =true

Common operators of temporal logic can also be defined as abbreviations:

always(¢) oz A -2

even(¢) def uZ.d N ((=)true A [—]2)

To define a previously operator, a reverse modal operator [L] must be added

to the logic.

||m¢||v ={seS|ifs’ Lsandac Lthens ¢ ol

The previously operator is just the reverse version of even:

prev(¢) def pZ.¢ N ((—)true A [-]Z)

References

1.

2.

R.E. Bloomfield, J.H. Cheng, and J. Gorski. Towards a common safety description
model. In J.F. Lindeberg, editor, SAFECOMP 91, 1991.

J.C. Bradfield. A proof assistand for symbolic model checking. In Proceedings of
CAV ’92, 1992.

Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The concurrency work-
bench: A semantics based tool for the verification of concurrent systems. Technical
Report ECS-LFCS-89-83, Laboratory for Foundations of Computer Science, Uni-
versity of Edinburgh, 1989.

. D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science,

27:333-354, 1983.

. N.H. Roberts, W.E. Vesely, D.F. Haasl, and F.F. Goldberg. Fault Tree Handbook.

U.S. Nuclear Regulatory Commission, 1981.

. C. Stirling. Temporal logics for CCS. In J.W. de Bakker, W.-P. de Roever, and

G. Rozenberg, editors, Linear Time, Branching Time and Partial Order in Logics
and Models. Springer Verlag, 1989. Lecture Notes in Computer Science, 354.

This article was processed using the IXTEX macro package with LLNCS style

