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ABSTRACT
In defining large, complex access control policies, one would
like to compose sub-policies, perhaps authored by different
organizations, into a single global policy. Existing policy
composition approaches tend to be ad-hoc, and do not ex-
plain whether too many or too few policy combinators have
been defined. We define an access control policy as a four-
valued predicate that maps accesses to either grant, deny,
conflict, or unspecified. These correspond to the four ele-
ments of the Belnap bilattice. Functions on this bilattice
are then extended to policies to serve as policy combinators.
We argue that this approach provides a simple and natural
semantic framework for policy composition, with a minimal
but functionally complete set of policy combinators. We de-
fine derived, higher-level operators that are convenient for
the specification of access control policies, and enable the
decoupling of conflict resolution from policy composition.
Finally, we propose a basic query language and show that
it can reduce important analyses (e.g. conflict analysis) to
checks of policy refinement.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection—Ac-
cess Control ; F.3.2 [Logics and Meanings of Programs]:
Semantics of Programming Languages; F.3.3 [Logics and
Meanings of Programs]: Studies of Program Constructs;
K.6.5 [Management of Computing and Information
Systems]: Security and Protection
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1. INTRODUCTION
An access control policy is essentially a predicate that

determines whether an access – a requested operation on
some object by some subject – should be permitted or not.
In practice, however, there are many complications. The
problem we focus on here is how a complex access control
policy can be concisely specified. Since an access control
policy is merely a predicate, one could list all the accesses
that are permitted. However, there are many subjects and
objects, and the sets of subjects and objects often change.

One feature of access control policy languages that ad-
dresses this problem is the ability to refer to collections of
subjects and objects. The best-known example of this ap-
proach is role-based access control [9, 10]. More generally,
classes of subjects and objects can be set in a hierarchy, al-
lowing more general or more specific policy statements. For
example, an access policy for a hospital may refer to roles
such as “physician” and “cardiologist”. We might expect car-
diologists to inherit the permissions given to physicians.

Another useful policy language feature is high-level policy
combinators, so that policies authored by sub-organizations
can be combined easily into a single organization-wide pol-
icy. For example, a group of libraries may want to have
a common access control policy, and to do this they might
want to merge their individual policies. A natural concept
is to permit in the combined policy any access permitted in
some sub-policies. Or, in some circumstances, it may be bet-
ter to permit in the combined policy only what is permitted
in every sub-policy.

However, real problems arise when attempting to define
policy combinators on policies that are simply predicates on
accesses. The first problem is that it is impossible to indicate
within a policy the difference between denying some access,
and simply not caring about it. For example, a policy may
regard an access as outside its scope, or may not have a posi-
tion as to whether the access should be denied or permitted.
This matter is explained clearly by Halpern and Weissman
(see [16], Section 6). They give as an example two libraries
that want to merge their policies. Suppose the policy of the
first library states that users may access the coatroom, but
the policy of the second library does not state that users
may access the coatroom. If the second library’s policy was
intended to deny access to the coatroom, then the two poli-
cies are in conflict. However, if the second library’s policy
simply wanted to be silent on the subject of coatrooms, per-
haps because the second library has no coatroom, then the
policies are not in conflict.

A solution to this problem is to allow a policy to inde-



pendently state positive and negative permissions. Thus,
the second library, if desired, could explicitly state that
users may not access the coatroom. Many languages for
access control policies support this feature (e.g., [17, 22, 8]).
With this feature present, a policy is naturally interpreted
as a mapping from accesses to one of three values: true (or
grant), false (or deny), and ⊥ (or unspecified). In the end, a
reference monitor responsible for enforcing a policy will have
to make a grant or deny decision on every access, but for the
purpose of defining policies, the value unspecified is useful.
By not denying an access by default when no explicit rule
for granting is found, it is then possible to check whether a
policy has gaps – accesses on which it is not defined.

Problems in policy composition still occur, however, even
once both positive and negative permissions are treated sep-
arately. There is the possibility that two policies will conflict
on an access: one will grant the access and the other will
deny it. A common solution to this problem is to define all
policy composition operators so that conflicts are immedi-
ately resolved, so that the composed policy is guaranteed
to have no conflicts. For example, in logical specifications
of access control policies this is appealing because conflicts
may represent logical contradictions that will cause the pol-
icy specification to become entirely inconsistent, even for
accesses not related to the particular cause of the conflict.

However, there are good reasons for not insisting that po-
tential conflicts be eliminated when policies are composed.
First, for analysis purposes it can be helpful for conflicts to
become explicit so that their causes can be discovered and
resolved in an intelligent manner. By “automatically” re-
solving every conflict at the moment of composition, it may
be that a poor choice of resolution is made. On the other
hand, it may be that a uniform method is desired for resolv-
ing conflicts. In this case, it would make sense to have a
single point at which conflicts are resolved, and not have to
define every policy composition operator so that it resolves
conflicts in the same way. In short, a policy language should
allow the issues of policy composition and conflict resolution
to be treated separately.

Our approach is to treat a policy as a four-valued pred-
icate. That is, a policy maps every requested access to ei-
ther grant, deny, unspecified, or conflict. The unspecified
response to an access allows a policy to indicate that an ac-
cess is outside the policy’s scope, or that a policy does not
take a stance towards the access. The conflict response nat-
urally arises when composing two policies that take opposite
stances towards an access.

These four values we propose for policy responses are ex-
actly the four truth values of Belnap’s four-valued logic [5].
This logic has been studied extensively [11, 14, 3, 2], and it
is no coincidence that a main application has been to the
semantics of logic programs, where handling negation under
a closed-world assumption has been a difficulty [12]. Bel-
nap’s logic is based on supplying two orderings on the truth
values; one that captures degree of truth and another that
captures degree of information. These ideas also apply very
naturally to policies, where we might ask whether a policy
grants accesses more than another policy, and whether a
policy is defined on more accesses than another policy.

Our approach to policy composition is to derive policy
operators from the operators of Belnap’s logic. Thus, we
interpret expressions of this logic not as truth values, but as
policies. Similarly, we derive relations on policies from the
two (truth and knowledge) orderings of Belnap’s logic.

Our framework for policy composition and analysis is com-
prised of three layers of language:

1. A core language for policies and their composition, es-
sentially a pointwise extension of logical operators of
the Belnap space to accesses.

2. Syntactic sugar over the core language, capturing im-
portant idioms of policy composition.

3. Finally, a propositional query language in which policy
analyses can be expressed.

We strongly believe that this framework, by explicitly sup-
porting unspecified and conflict values of policies, and by
clearly and separately capturing the two notions of truth
and knowledge, greatly improves on existing semantic ap-
proaches to the treatment of policies and their composition.
Additional benefits are gained by building on an established
logic with well-understood properties.

Organization. In Section 2 we briefly list the basic ele-
ments of access control. In Section 3 we motivate the Bel-
nap bilattice and give its formal definition. In Section 4 we
describe a four-valued semantics for policies and show how
a language for policy composition can be built on the op-
erators of the Belnap bilattice. In Section 5 we list some
problems in defining and composing access control policies,
and show how the problems are solved using our approach
to policy composition. In Section 6 we define truth and in-
formation orderings on policies, and then define a query lan-
guage in which analysis questions on policies can be framed.
In Section 7 we specialize and extend our language for the
case in which accesses are based on roles, in the sense of
role-based access control. In the last sections of the paper
we discuss related work and make concluding remarks.

2. ACCESS CONTROL
A basic access control mechanism is a predicate on ac-

cesses, where an access is commonly treated as a triple of
the form (subject, operation, object), meaning that subject
(e.g. some user, role, or program) is requesting to perform
the operation on object (e.g. a file on a computer system).

In this paper, the precise structure of accesses is not im-
portant, so we simply imagine a domain A of accesses. In
fact, it is important not to commit to a specific access con-
trol model to highlight the wide range of applicability of our
semantic framework. We follow the standard approach of
treating a basic access control mechanism semantically as
a predicate of type A × Context → Bool where Bool =
{true, false}. Here Context represents some additional in-
formation an access control mechanism might need in mak-
ing decisions. We give some examples for the use of such a
context for the purpose of illustration:

• Accesses may be permitted or denied according to the
time of the access. In this case the elements of domain
Context may be time stamps.
• An access (s, op, o) may be permitted only if it carries

a certificate saying that subject s inherits rights per-
taining to operation op on object o from subject s′. In
this case Context contains delegation certificates.



• In history-based access control, an access may be per-
mitted or denied based on properties of the record of
past accesses. In this case the elements of Context are
sequences of past access decisions which may have to
manage information flow [4].

For the purposes of this paper, we may think of A ×
Context abstractly as A, so we will no longer use the richer
type. Also, we do not consider here the structure of prin-
cipals, as in [1], nor do we look at issues of authentication,
trust models, identity management, or higher-order policies.
Some of these issues are orthogonal to our approach and con-
tributions; others will be expanded on in future work.

3. BELNAP’S FOUR-VALUED LOGIC
We use the Belnap bilattice as the basis for policy compo-

sition. Rather than starting with a definition of the Belnap
bilattice, we show how this structure arises naturally from
issues in access control.

First consider the issue of composing access control poli-
cies. Imagine two access control policies, each of which re-
ports a boolean representing whether an access should be
permitted or not (or “abstains” if the policy is unspecified
on that access). We can form four possible sets by collecting
the verdicts: {true}, {true, false}, {false}, and {}. For ex-
ample, the set {true, false} arises when one policy permits
the access and the other denies it. The set {} arises when
the access is outside the domain of both policies.

We can order these sets in two different ways. If we order
by the degree to which the access is permitted, we have that
{true} is greatest and {false} is least. Fig. 1 left) depicts a
Hasse diagram containing the four sets. We can also order
by the amount of information we have obtained. In this
ordering {true, false} is greatest and {} is least. We write
≤t for the truth ordering and ≤k for the information (i.e.
knowledge) ordering. The two orderings are shown along
the two axes in Fig. 1.

A negation operation on these sets, written ¬, can be
derived by applying standard logical negation to each el-
ement of the set and collecting the results. For example,
¬{true} = {false} and ¬{true, false} = {true, false}.

Next consider the issue of access control policies contain-
ing both “permit rules” and “deny rules”. A permit rule
returns true if the access is permitted and false if the ac-
cess is not permitted (but not necessarily denied). Deny
rules work symmetrically. Now suppose we have an access
for which both a permit rule and a deny rule are applicable.
We can summarize by building a pair (a, b) out of the results
from the two rules; e.g. (true, false) arises when the permit
rule says “permit” and the deny rule does not say “deny”.

These pairs can similarly be ordered in two different ways.
If we order by the degree to which the access is permitted,
then (true, false) is greatest and (false, true) is least – see
Fig. 1 right). If we order by the amount of information, we
have that (true, true) is greatest and (false, false) is least.

In the two cases we have formed isomorphic ordered sets
of four values. Indeed, two orderings are present in each
case. Thus, when combining the outcome of multiple poli-
cies, or even when combining the effects of multiple rules
within a single policy, it can be natural to regard a policy
as producing one of four possible results for an access.

This structure of four elements with two orderings was de-
veloped by Belnap as the basis for a four-valued logic [5]. It

is an example of the more general notion of bilattice, defined
by Ginsburg [15]. A bilattice consists of a set of elements
with two orderings and a negation operator, such that both
orderings form lattices and the negation operator interacts
with the two orderings in a particular way.

Definition 1 A bilattice is a structure (A,≤t,≤k,¬), where
A is a non-empty set, and ≤t and ≤k are partial orders on A
such that (A,≤t) and (A,≤k) are complete lattices, ¬ maps
from A to A, and these conditions must hold:

• x ≤t y ⇒ ¬y ≤t ¬x,
• x ≤k y ⇒ ¬x ≤k ¬y, and
• ¬¬x = x.

(The form of this definition of bilattice comes from [14].)
The first two conditions say that negation inverts truth, but
does not affect knowledge.

The Belnap bilattice (Four,≤t,≤k,¬) is the simplest non-
trivial bilattice, where Four = {true, false,⊥,>}. It is
shown in Fig. 1 bottom). We sometimes refer to Four as
the “Belnap space”. We write ∧ and ∨ for the meet and
join operations of the lattice formed by the truth ordering
≤t, and we write ⊗ and ⊕ for the meet and join operations
of the lattice formed by the information ordering ≤k. It is
common to also define a negation operator relative to the in-
formation ordering. It is written − and called “conflation”.
As expected it inverts knowledge, but does not affect truth:

x ≤k y ⇒ −y ≤k −x and x ≤k y ⇒ −x ≤t −y

The Belnap bilattice can be used as the basis for a four-
valued logic. The values true and false capture the standard
logical notions of truth and falsity. The value ⊥ means “no
information”, and the value > means “conflicting informa-
tion” or “too much information”.

The meet and join operators of Four can be understood
as logical operators. Think of conjunction and disjunction
in ordinary two-valued logic as the meet and join operators
in a lattice of only two values, with true as the top ele-
ment and false as the bottom element. Then it is clear that
one can generalize two-valued to many valued logics by us-
ing a lattice of truth values. In particular, one can form a
four-valued logic from the Belnap bilattice, interpreting con-
junction as ∧, disjunction as ∨, and negation as ¬. One can
then develop other logical concepts, like logical consequence,
in this four-valued setting (see [5, 3]).

Also, one can define an implication operator ⊃ by a ⊃ b =
b if a ∈ {true,>}, and a ⊃ b = true otherwise. This opera-
tor is one possible generalization of classical implication.

The Belnap lattice has been used in Artificial Intelligence,
along with other non-monotonic logics, to capture human
reasoning processes [15]. It also has been successfully ap-
plied to logic programming, e.g. it helped there in the pres-
ence of negation or multiple truth values [12].

We briefly note some algebraic properties of the Belnap bi-
lattice. First, for each lattice taken separately we have that
the meet and join operations are commutative and associa-
tive, and we have absorption (e.g., in the truth ordering,
a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a), and idempotency (e.g.,
in the truth ordering, a ∧ a = a and a ∨ a = a). Also, each
meet and join operation is monotonic in its respective order-
ing. Because the Belnap bilattice is distributive, we have for
each ordering that meet distributes over join and vice versa.
The Belnap bilattice is an interlaced bilattice: ∧ and ∨ are
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Figure 1: The Belnap bilattice: obtained left) by a subset construction; right) by a lattice product construc-
tion; and bottom) in its standard presentation (with synonyms for access control decisions in parentheses)

monotonic with respect to ≤k, and ⊗ and ⊕ are monotonic
with respect to ≤t.

4. POLICIES
The idea of this paper is to understand an access control

policy not as a simple predicate, but as a four-valued one of
the form A → Four. We use the synonyms g (“grant”, for
true), d (“deny”, for false), u (“unspecified” for ⊥), and c
(“conflict”, for >).

The intuition behind the g and d values should be clear.
When a policy returns u for an access, it might be that the
policy author considers the access outside the scope of the
policy, or it might be that the policy author has no opinion
as to how the access is treated. When a policy returns c, the
idea is that there is conflict within the policy as to whether
the access should be granted or denied.

We obtain policy operators as the pointwise extension of
operators on the Belnap space. Letting p and q be policies,
and ◦ : Four × Four → Four be a binary operator on the
Belnap space, the derived policy operator is then:

(p ◦ q)(a)
def
= p(a) ◦ q(a)

The type of p◦q, like p and q, is A→ Four. Operators with
more or less than two operators can be handled similarly. In
this way the Belnap operators can serve as policy operators.
The algebraic properties of the operators when interpreted
on Four are retained when the operators are interpreted on
policies. For example, we have p⊗ q = q ⊗ p.

4.1 A Basic Policy Language
The Belnap operators provide a language of policy com-

position, but for a complete policy language we also need a
way to write basic policies. A basic policy expression shows,
for various sets of accesses, whether the accesses within the
sets are to be denied or permitted. Policy languages often
contain rich sub-languages for defining basic predicates on
accesses, including use of the access context. We do not want
to define yet another such language here. We will therefore
assume a sub-language of boolean access predicates, and al-
low policies to be defined in terms of these access predicates.

Fig. 2 shows the abstract syntax of our policy language,
where x ranges over {g, d}, and ap is an expression in the

p, q ::= Policy
x if ap Basic policy
¬p Logical negation
p ∧ q Logical meet
p ⊃ q Implication

Figure 2: Syntax of the Policy Language.

sub-language of boolean access predicates, of type A →
Bool. Next we consider the meaning of policy expressions.
For the sub-language of predicate expressions, we assume
only a semantic function [[.]] that maps each such expression
to an access predicate. Then, a policy expression maps an
access to an element of the Belnap bilattice. We overload the
symbol [[.]] to denote also the meaning of a policy expression,
defined as follows:

[[x if ap]](a)
def
=

{
x if [[ap]](a) = true
u otherwise

[[¬p]](a)
def
= ¬[[p]](a)

[[p ∧ q]](a)
def
= [[p]](a) ∧ [[q]](a)

[[p ⊃ q]](a)
def
= [[p]](a) ⊃ [[q]](a)

The expression x if ap produces a policy from an access
predicate. For example, expression g if ap evaluates to g
whenever ap evaluates to true on an access, and evaluates
to u whenever ap evaluates to false on an access. In this
way a predicate defined to express when an access is granted
does not, at the same time, define when an access is denied.

Since all other logical operators of the Belnap space can
be expressed through the set of operators {d,¬,∧,⊃} [3], it
is justified to refer to other policy operators such as ⊕ and
⊗ subsequently.

A simple example policy is

g if (Librarian,write, CardCatalog) (1)

⊕ d if (Reader, write, CardCatalog)

The policy says that librarians may modify card catalogs
but library users must not write card catalogs. The first
clause (1) evaluates to u for all accesses except those in which



a librarian requests a modification of a card catalog. If the
class Librarian is disjoint from the class Reader, then the
composition through ⊕ will result in a policy that can only
return a value of g, d, or u for any access.

We can make two statements about the completeness of
our language. The first says that, if the access predicate
sub-language is expressive enough, then every policy can be
written as a policy expression.

Proposition 1 Let pol : A → Four be a policy, and sup-
pose that for every access a in A, there exists an access pred-
icate expression apa such that [[apa]](b) = true iff a = b.
Then there exists a policy expression p such that, for every
access a, pol(a) = [[p]](a).

Proof. The proof constructs a policy expression p as follows:

∑
a∈A

 ∑
pol(a)∈{d,c}

d if apa ⊕
∑

pol(a)∈{g,c}

g if apa


Here

∑
is the indexed form of ⊕, with the empty sum de-

fined to be u. We now show that pol(a) = [[p]](a), for every
a. Consider the summands produced for the top-level sum,
each of which has the form p1⊕p2. We now do case analysis
on the interpretation of a summand relative to the access a.

Consider first the summand produced for an access a′ dis-
tinct from a. In this case apa′ is interpreted as false on a,
so both p1 and p2 are interpreted as u, and hence p1 ⊕ p2 is
interpreted as u⊕ u = u.

Next consider the summand produced for a. We now do
a case analysis on the possible values of pol(a).

• Case pol(a) = d: In this case pol(a) ∈ {d, c} and
pol(a) 6∈ {g, c}, so the summand is equivalent to the
policy expression (d if apa)⊕ u, which is equivalent to
d if apa, which is interpreted as d on a.
• Case pol(a) = c: In this case pol(a) ∈ {d, c} and
pol(a) ∈ {g, c}, so the summand for access a is equiv-
alent to (d if apa)⊕ (g if apa), which is interpreted as
c on a.
• The other cases are similar. 2

The second statement concerns the ability of the language
to express policy compositions. We shall explain this fact
loosely, rather than introducing the additional concepts and
notation needed for a precise statement. Consider the set of
policy operations that can be defined through the pointwise
extension of functions on the Belnap space. Assume that the
language of access predicates contains an expression that al-
ways evaluates to the constant true. Then all such policy
operations can be represented in our policy language, sim-
ply because all functions on the Belnap space, of any arity,
can be represented with operators ¬, ∧, ⊃, and constants g
and d – a direct consequence of the functional completeness
result of [3] – and because g and d can be obtained from
g if true and d if true (respectively).

To summarize, our policy language is complete in the
sense of being able to express any policy (relative to a suf-
ficiently expressive language of access predicates), and also
complete in the sense that it can express all policy operators
that are the pointwise extensions of functions on the Belnap
space.

However, there are some useful policy composition oper-
ations that are not pointwise extensions of functions on the

Belnap space. One example, the “majority rule” operator,
grants access if the majority of relevant sub-policies grant
access, even if some sub-policies deny access. This cannot
be expressed in our language because

g ⊕ u = g ⊕ g

Our language does not allow one to distinguish between two
policies granting access, and one policy granting access while
another is unspecified on that access.

A second useful composition not handled by our language
is the “most specific rule wins” operation. Suppose a hos-
pital policy states that physicians cannot perform surgery
to install a heart stent, but also states that a cardiologist
can perform surgery to implant a heart stent. On the sur-
face there is a conflict, because a cardiologist is a kind of
physician, so both rules apply to cardiologists. However, a
common way to compose these two simple policies is to allow
a cardiologist to perform the surgery, letting the more spe-
cific rule take priority. Our language knows nothing about
subject hierarchies, so cannot make such distinctions. In
Section 7 we look at an extension of our language that al-
lows roles to be considered in composition.

4.2 High-Level Policy Operators
Our basic policy language can be inconvenient for practi-

cal use. For example, suppose we want a version of policy
p that is restricted to accesses defined by the access predi-
cate ap. This can be written as p ⊗ ((g if ap) ⊕ (d if ap)).
One can define a new operator p if ap to capture this idea
succinctly. We therefore define these additional policy oper-
ations, where x ranges over values in Four.

(p+ q)(a)
def
= p(a)⊕ q(a)

(x)(a)
def
= x

(p[x 7→ q])(a)
def
=

{
p(a) if p(a) 6= x
q(a) otherwise

(p if ap)(a)
def
=

{
p(a) if ap(a) = true
u otherwise

(p : q)(a)
def
=

{
q(a) if p(a) ∈ {g, c}
u otherwise

(p > q)(a)
def
= p[u 7→ q]

(p↓)(a)
def
= p[c 7→ d][u 7→ d]

(p↑)(a)
def
= p[c 7→ g][u 7→ g]

The operator + is simply a synonym for ⊕, an important
operator for policy composition. Given an access a, policy
p + q returns the value p(a) if p and q agree on a, or if p
returns a value greater in ≤k than q (and symmetrically).
Policy p+ q returns c if, for example, one of p and q returns
d and the other returns g.

The operator x is a policy that always returns Belnap
constant x. The operator [x 7→ q] allows for the selective
“repair” or “overwriting” of one policy by another. The op-
erator p if ap is a generalization of the basic operator x if ap.
The operator p : q, due to Fitting [13] and called guard con-
nective, is a kind of four-valued conditional expression.

The operator > is a policy priority operator. In expression
p > q, policy p is given priority; policy q is only used to
cover “gaps” in p. With the priority operator one can easily



capture case statements. Informally, a statement of the form

case { ap1 : d;

ap2 : g;

default : p }

can be written

(d if ap1) > (g if ap2) > p

The operator ↓ turns a four-valued policy into a two-
valued one by treating c and u conservatively as d. Ulti-
mately, the top-level policy driving an access control mech-
anism should be two-valued. In a considered approach, one
might identify and eliminate any gaps or conflicts in the
policy. As a stopgap one might use this operator. By us-
ing a four-valued approach we allow conflicts to be detected
and reconciled appropriately. In some cases these conflicts
might reflect bugs in the policy. In a two-valued approach
that removes conflict at each composition, such errors would
remain invisible.

The operator ↑ is the optimistic dual of ↓ that treats c
and u as g. In other words, if p makes no statement, or
conflicting statements, about an access a, then p(a) = g.

We have defined these policy operators directly for clarity.
However, they are all pointwise extensions to functions in
the Belnap space and therefore could have been defined in
terms of the operations in our basic policy language.

Proposition 2 Let p and q be policy expressions. We can
define our high-level policy operators through the operators
of our core policy language as follows:

[[g]] = [[g if true]]

[[u]] = [[g if false]]

[[d]] = [[¬g]]

[[c]] = [[g ⊕ d]]

[[p[d 7→ q]]] = p ∨ (¬(p ∨ −p) ∧ q)
[[p[g 7→ q]]] = p ∧ (¬(p ∧ −p) ∨ q)
[[p[u 7→ q]]] = p⊕ (−(p⊕ ¬p)⊗ q)
[[p[c 7→ q]]] = p⊕ (−(p⊗ ¬p)⊗ q)

[[p if ap]] = [[p⊗ ((g if ap)⊕ (d if ap))]]

[[p : q]] = [[(p ⊃ q)⊗ ¬(p ⊃ ¬q)]]

For the encoding of the constant policies we require that the
underlying language of access predicates includes the truth
constants true and false. The operator p[x 7→ q] can be
regarded as an indexed set of binary operators, one for each
value of x, as shown above. The encoding of p : q is due to
Arieli and Avron [3]. Fitting gives his own encoding in [13].

We conclude this section by discussing some algebraic
properties of these high-level operators. We write p = q
as a shorthand for [[p]] = [[q]]. Some algebraic identities are

p+ q = q + p

p > (q > r) = (p > q) > r

(p if ap) + (q if ap) = (p+ q) if ap

p↑↑ = p↑
p↓↑ = p↓
p↓↓ = p↓
p↑↓ = p↑

More identities for p if ap can be formulated whenever more
structure of access predicates is being exposed syntactically.
The identities for ↓ and ↑ mean that one arrow cannot in-
terfere with the previous application of another arrow as the
image values will then be in Two = {g, d}.

5. EXAMPLES
In this section we supply examples to support our thesis

that working with four semantic values for policy composi-
tion in access control is beneficial.

Top-level policy wrappers. Consider two policies p
and q (of type A → Four). We can “wrap” each of these
policies, e.g., with ↓, so that p↓ and q↓ are free of gaps and
conflicts. The composition p↓ + q↓ of these wrapped ver-
sions may introduce conflicts that are solely caused by the
wrappers: if p(a) = g and q(a) = u, then p↓(a) = g and
q↓(a) = d and so (p↓ + q↓)(a) = c. This conflict would re-
quire yet another wrapper, e.g., (p↓+ q↓)↓(a) = d. But the
intended value of (p+q)(a) is g and not d, for g is the ruling
of policy p on a and policy q does not specify any recommen-
dations for a. A dual example highlights the same problem
with the wrapper ↑, and mixed combinations of wrappers
will have corresponding problems. This shows that it is best
to apply wrappers only at the top level, and to remove those
wrappers again prior to further policy composition. In the
above example, this says that we use p↓ and q↓ if we want to
use p and q on their own, but want to use (p ◦ q)↓ whenever
we mean to compose p and q. Fig. 3 shows the use of such
wrappers in a prominent architecture for access control.

Extending access domains. Consider a two-valued pol-
icy p : A → Two, where Two = {g, d}, and another two-
valued policy q : A′ → Two on an access domain A′ that is
a strict superset of A. For example, A′ may include roles
not found in A. For any a ∈ A′ \ A, policy p is unspecified
at a, but we have to cast p to type A′ → Two if we wish
to compose it with q. Setting p(a) = g is undesirable, be-
cause then a two-valued conjunction of p and q would lead
to conflict if q denies the access. Setting p(a) = d is unde-
sirable as well, in the case that q would grant the access.
This example shows the utility of having the value u as a
means of expressing partial functions. This is very familiar
in set theory, where the space of partial functions X ⇀ Y
is isomorphic to the space of total function X → Yu, where
u 6∈ Y . It should be clear that, if Two is extended with u,
the semantic value u cannot also serve the role of c as this
would confuse the specification of the absence of information
and that of information overload.

We can take this example further by assuming, implicitly,
that policies are well defined on supertypes by setting them
to be constantly u on the extended domain of accesses. For
example, we could write p > (q + r) for policies p, q, and
r with types A → Four, A′ → Four, and A′′ → Four
(respectively) where A ⊂ A′ ⊂ A′′. Implicit type casting is
a familiar and well accepted mechanism in a wide range of
programming languages.

Exceptions. Our next example uses the conditional p if ap.
Recall that this is the policy that behaves like p whenever
ap is true, and returns u otherwise. Now consider the roles
Cardiologist and Physician. Intuitively, cardiologists should
be permitted to engage in any action that a physician is
allowed to engage in. After all, a cardiologist is a kind of
physician. On the other hand, as noted in [10], there may
be tasks that a physician frequently performs but that are
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Figure 3: Implementation of wrappers as services that a reference monitor can use to resolve conflicts or fill
gaps. The choice of wrapper may well be context-dependent.

rather alien to cardiologists, who therefore should not be
permitted to perform them. These exceptions to permis-
sions will break the normal flow of permissions associated
with the specialization of roles, but one can express such
exceptions through the idiom

(d if apexc) > p (2)

where p is the original policy for Cardiologist, including the
permissions inherited from Physician, and apexc specifies the
set of accesses to which these exceptions should apply.

A posteriori strengthening. A slight variation of the
idiom in (2) is of use in the a posteriori strengthening of
an access predicate. As a simple example, suppose we have
policies p and q defined as follows:

p
def
= g if ap1 + d if ap2

q
def
= d if ap3

In the composite policy p+q we may find conflict because the
access sets represented by ap1 and ap3 may overlap. It may
be that for accesses satisfying ap2 we want policy q to have
priority. This is achievable by redefining p so that the grant
clause has the form g if ap1 & ¬ap3 (assuming the language
of access predicates has boolean connectives). However, the
same result can be accomplished by using, instead of p+ q,
the expression (p if ¬ap3) + q. This approach might be
preferable if p were very large, or difficult to modify.

Absolute rights and absolute prohibitions. Bonatti
et al. [6] have an operator that allows one to define a policy
having the permissions of one policy less the permissions of
another. They mention that this is important in supporting
“explicit prohibitions”. Our view is that there is no reason to
not equally accept the need for prescribing “explicit rights”.
In our framework, we can specify access rights for a set of
accesses ap1 by the policy g if ap1. Similarly, we can specify
access prohibitions for a set of accesses ap2 by d if ap2.
Now, given any policy p – which may have been the result
of repeated policy compositions – we can enforce these rights
and prohibitions as absolute ones for p by using the idiom

[(g if ap1) + (d if ap2)] > p

6. RELATIONS ON POLICIES
As part of a mathematical framework for access control

policies, it is helpful to have relations on policies that reflect
their relative permissiveness. For example, in [8], a permis-
siveness relation is defined (named contains) in which one
policy contains another if it permits more accesses and de-
nies fewer accesses.

A truth ordering on policies can be derived directly from
the truth ordering on the Belnap space. The derived truth
order reflects that one policy is “more lenient” than another.

p1 ≤t p2
def
= ∀a ∈ A : p1(a) ≤t p2(a)

For example, if p1 grants an access, then so too must p2. If
p1 is unspecified for some access, then if p2 is specified it
must grant the access.

Less obvious is the value of an ordering on policies that
reflects their definedness. However, such an ordering is help-
ful in working with policies and again can be derived from
the information ordering of Four.

p1 ≤k p2
def
= ∀a ∈ A : p1(a) ≤k p2(a)

For example, if p1 is defined on every access, then so is p2.
Also, note that if p1 grants some access, then p2 must either
grant that access or report conflict.

These relations can be used in various ways when working
with access control policies. For example, they can be used
to show that policies lie in a particular relation by construc-
tion. To illustrate, the following algebraic relations hold:

p ≤k p+ q

q ≤k p+ q

p ∧ q ≤t p

p ∧ q ≤t q

p ≤k p > q

p↓ ≤t p

p ≤t p↑

So, e.g., a policy p can be refined by p > q, which is guar-
anteed to be greater than or equal to p in the information
ordering. Also, policy p is at least as permissive as p ∧ q.



φ, ψ ::= Query
p ≤t q Truth ordering
p ≤k q Information ordering
¬φ Negation
φ ∧ ψ Conjunction

Figure 4: Syntax of the Query Language.

The truth and information orderings can also be used for
the analysis of arbitrary policy expressions. A basic analysis
question is whether two policies are ordered according to ≤k

or ≤t. Going further, we can make these refinement checks
the basic ingredients of a query language in which a wide
variety of analysis questions can be framed. We now define
a query language as a propositional logic in which the atomic
propositions have the form p ≤t q and p ≤k q, where p and q
are any policy expressions. Fig. 4 shows the abstract syntax
of the language.

Example 1 We list some important example queries:

• policy q is more defined and more permissive than p:
(p ≤k q) ∧ (p ≤t q)

• policy q is more defined but less permissive than p:
(p ≤k q) ∧ (q ≤t p)

• policies p and q are semantically the same:
p = q defined as (p ≤t q) ∧ (q ≤t p)

• policy p has neither gaps nor conflicts:
p = p↓
• policy p has no gaps:
p[c 7→ d] = p↓
• policy p has no conflicts:
p[u 7→ d] = p↓

The example above illustrates that many important analyses
of policy composition reduce efficiently to checks of policy
refinement. It also shows that the expressive power of such
queries stems to a large degree from the expressive power of
our policy composition operators. As pointed out already,
certain refinement relations will simply hold by construction.

Although a detailed treatment of policy refinement checks
is the subject of future work, we hasten to point out that
static analyses can be used to decide or compute constraints
for; e.g., in gap analysis, for p+ q to have any gaps, we need
that p and q have a gap at some same access. Such flow laws
are familiar in program analysis and SAT solvers.

7. ROLE-BASED ACCESS CONTROL
Mandatory and discretionary access control models and

systems are often too restrictive and inefficient to be used in
public-sector or commercial organizations, or their federa-
tions. Role-based access control (RBAC) [9, 10] models and
commercial products based on RBAC are being promoted
as fulfilling those needs of flexibility and efficiency.

In this section we discuss how RBAC strengthens our case
for the use of four values and further illustrates the utility
of our query language for policy analysis. In considering
RBAC we specialize our policy language in two ways.

Firstly, A is assumed to be a finite set of type

A = Roles×Operations×Objects

so that (r, op, o) is the access (request) of some role r – where
r means all users or subjects assigned to that role, either
statically or in a current session – to perform operation op
on object o. We leave the domains of roles, objects and
operations unspecified but will instantiate them freely in
examples. We also note that this paper does not provide
a mapping between roles and their users, subjects or user-
initiated processes. Although such a mapping is crucial for
the core RBAC, it is not important for the aspects of RBAC-
based policies we wish to discuss in this paper.

Secondly, we assume a general role hierarchy [10], a partial
order ≺ ⊆ Roles × Roles that allows us to model a form
of inheritance. The intuition behind r ≺ r′ is that greater
elements in the ordering correspond to more general roles.
For example, Cardiologist ≺ Physician.

In RBAC we have that more specialized roles ought to
inherit permissions from less specialized roles. For exam-
ple, everything that a physician is permitted to do should
also be permitted for a surgeon, expressed in Surgeon ≺
Physician. If two-valued access control is done, then we
should dually expect that less specialized roles inherit re-
strictions from more specialized roles. However, this does
not always work. Suppose a physician is permitted to pre-
scribe cough medicine. Then by permission inheritance a
surgeon can also prescribe cough medicine. But since sur-
geons are specialists it may be appropriate to stipulate that
they be denied the right to prescribe cough medicines. In
that case, a two-valued treatment of permission inheritance
would force that physicians are also not permitted to pre-
scribe cough medicine.

This problem goes away if we use four-valued policies;
then more specialized roles inherit both permissions and re-
strictions from more general roles. Both requirements can
be stated simply by saying that the result for a more spe-
cialized role should be greater in the information ordering
than the result for a less specialized role. This intuitively
makes sense because in any policy we are saying more about
more specialized roles.

We now illustrate the utility of our query language for
analyzing policies that are based on hierarchical RBAC. In
doing so, we extend our policy language with a clause

p ::= . . . | p \ r

where r ranges over Roles and the semantics of p \ r, for a
given access (r′, op, o) is simply the semantics of p for the
access (r, op, o). That is to say, p\ r takes an access as argu-
ment, replaces its role with that of r, and then applies the
original policy p to the modified access. Given this exten-
sion, the query ∧

r≺r′

(p \ r′) ≤k (p \ r)

evaluates to true if, and only if, policy p respects the inheri-
tance structure of the underlying hierarchical RBAC model.

8. RELATED WORK
Halpern and Weissman [16] use a stylized form of standard

first-order logic to capture policies. A policy φ is a formula,
and then the decision on whether to grant an access is made
by checking the validity of the formula φ→ Permitted(t, t′),
where t and t′ are terms representing a subject and action,
respectively. A decision on whether to deny an access is



made by checking the validity of φ → ¬Permitted(t, t′).
Because this is a first-order framework, it is essential that
the policy be consistent, and so it is impossible that an access
could be both granted and denied. On the other hand, an
access could be neither granted nor denied in a consistent
policy. In short, this framework allows a kind of three-valued
attitude towards accesses, but these values cannot be used in
composition, as the three values result from a validity check
that can only occur at the “top-level” of policy processing.

In [6], Bonatti et al. interpret a policy as a set of accesses,
and then define a collection of composition operators that
manipulate the access sets. For example, P&Q stands for
the intersection of the access sets described by P and Q, and
P+Q their union. The approach has the virtue of simplicity,
but does not allow for the distinction between an access that
should be denied and an access that is outside the scope
of a policy. Some ability to model negative permissions is
achieved by composition subtraction: p− q means the set of
accesses of p less the set of accesses of q. In this way denials
by q are given higher priority than grants by p, so conflicts
cannot arise. However, one cannot symmetrically state that
grants of q should take priority over denials of p. It should
be possible to state absolute access rights as well as absolute
prohibitions.

In the SPL policy language [22], one can specify accesses
that are granted, accesses that are denied, and accesses
that are neither granted nor denied. For composition, a
three-valued logic is used. However, the propositional op-
erators of this logic do not appear to come from a stan-
dard three-valued propositional logic [18]. Furthermore, al-
though the logic appears useful for expressing certain kinds
of composition, the conjunction and disjunction operators
are not monotonic with respect to any ordering of the three
truth values, making the intuition behind the operators dif-
ficult. Also, being three-valued, the operators always treat
the combination of grant and deny (e.g., conjoining a grant
and a deny, or disjoining them) as either a grant or a deny,
thus, causing conflicts to be eliminated through composition.

9. DISCUSSION
We emphasize that our approach treats access predicates

as black-box primitives. This high level of abstraction en-
sures a flexible and wide-ranging applicability of our seman-
tic framework for policy composition in access control. It
also allows an elegant casting of access predicates into four-
valued policies (e.g. through x if ap) and, conversely, allows
for several systematic ways of collapsing four-valued policies
into access predicates (e.g. through p↓).

Also related to the practical use of our work is the idea
of combining an access control matrix for permissions with
a separate one for denials. From these, a four-valued policy
result could be obtained according to the bilattice depicted
in Fig. 1 right).

Semantically, there are at least two ways in which the ap-
proach of this paper could be enriched. In one, the Belnap
bilattice is retained but we allow composition operators that
are not necessarily pointwise extensions of the Belnap opera-
tors. For example, this would allow one to define a majority
rule operator majk. Let p1, . . . , pn be policies of type A →
Four and 0 < k < n. Then majk(p1, . . . , pn) : A → Four
maps a given access a to c if at least k policies pi map a
into {g, c} and at least k (not necessarily the same) policies
pi map a to {d, c}. Otherwise, it is mapped to g if at least

k policies map a into {g, c}; and a dual definition applies to
d. In fact, if we identity Four with the powerset of {d, g}
in the obvious manner, then majk is simply counting grants
and denials and uses the threshold k to determine the grants
and denials for the composite policy.

Another way to enrich our semantic framework would be
to use a bilattice more complex than the Belnap space. A
balance would have to be drawn between the perceived in-
creased benefit of such a generalization and the perceived
overhead such complexity would bring to those who write
and compose policies. For example, there is a seven-valued
bilattice used for default reasoning [15]. Default reasoning
is already being studied in the context of composing policies
that negotiate parameters for security protocols [19].

Our approach to composition, including the application
of unary operators, can be couched within the framework
of abstract interpretation [7]. To illustrate the unary case,
projection and closure operators are particular examples of
Galois insertions, and therefore of abstract interpretations.
One such example is the map

p 7→ p↑ : (A→ Four,≤t)→ (A→ Four,≤t)

This is a closure operator as it is monotone with respect to
the truth ordering, idempotent (p↑↑ = p↑), and inflationary
(p ≤t p↑). Dually, the map p 7→ p↓ is a projection operator
for the truth ordering.

There is a fairly large body of work on policy conflict
analysis (e.g. [20]) and the management of inconsistencies in
distributed systems (e.g. [21]). In [21] it is argued for a need
to make inconsistencies (i.e. conflicts) explicit and to manage
them through monitoring, diagnosing, and resolution. The
approach taken in this paper is consistent with such a view.

To summarize our contributions, we have defined a lan-
guage for policy composition, and shown that it neatly han-
dles common problems in policy composition. We have fur-
ther defined policy refinement relations, and built a query
language on top of such refinement checks that is suitable
for policy analysis. One of the key findings in this work
was to realize the benefits of separating policy composition
from conflict resolution or analysis but, at the same time, to
support such resolution and analysis through composition
operators and policy refinement checks.
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