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Abstract. In multi-valued model checking, a temporal logic formula is
interpreted relative to a structure not as a truth value but as a lattice
element. In this paper we present new algorithms for multi-valued model
checking. We first show how to reduce multi-valued model checking with
any distributive DeMorgan lattice to standard, two-valued model check-
ing. We then present a direct, automata-theoretic algorithm for multi-
valued model checking with logics as expressive as the modal mu-calculus.
As part of showing correctness of the algorithm, we present a new fun-
damental result about extended alternating automata, a generalization
of standard alternating automata.

1 Introduction

In multi-valued model checking, one interprets a temporal logic formula on a
multi-valued Kripke structure, which is like a Kripke structure except that an
atomic proposition is interpreted at a state as a lattice element, not a truth
value. The meaning of a temporal logic formula at a state in such a structure is
then also given as a lattice element.

Multi-valued model checking is proving valuable as the basis for a variety
of new verification methods. For example, the abstraction method of [4] in-
volves model checking with the lattice L3 of Figure 1, where 1 represent truth,
0 represents falsity, and 1/2 represents “unknown whether true or false”. Model
checking with the lattice L2,2 can be used to analyze whether conflict will arise
when multiple requirements are combined [8, 18]. Temporal logic query checking
[6, 3, 9] can be regarded as model checking over lattices in which each element is
a set of propositional formulas.

One approach to multi-valued model checking is the reduction method, in
which a multi-valued model checking problem is reduced to a set of standard,
two-valued model checking problems [2, 19, 18]. For example, in the case of lattice
L3, a model checking problem for a Kripke structure over L3 can be reduced to
two model checking problems for Kripke structures over L2. Another approach
is the direct method, in which multi-valued model checking is performed directly
using special-purpose algorithms. An advantage of the reduction method is that
it can use existing tools, and benefits as these tools are improved. The advantage
of the direct approach is that it works in a more “on-demand” manner than the
reduction approach (more comparisons are made in Section 6).

This paper describes improved reduction and direct methods for multi-valued
model checking. A problem with existing reduction methods [2, 19] is their limi-
tation to selected sub-classes of DeMorgan lattices. A recent method [17] is more
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Fig. 1. Some distributive lattices

general but also more complicated, involving a step that uses an additional logic.
Our method is simple and general. We show that, for a finite distributive lattice,
the number of standard model checks required is equal to the number of join-
irreducible elements of the lattice in the worst case. From a multi-valued Kripke
structure over a finite distributive lattice, we show how a standard Kripke struc-
ture can be derived for each join-irreducible element of the lattice, and how the
results of model checking on each of these Kripke structures can be combined
to give a result for the multi-valued model check. The method yields complexity
bounds for the multi-valued model-checking problem for various temporal logics.

Existing work on direct methods is limited in the class of lattices that are
handled, or the logic that is supported. In [4] an algorithm is defined for CTL over
L3. In [10] an automata-theoretic algorithm is defined for LTL over finite linear
orders. In [7] a BDD-based algorithm is defined for CTL over DeMorgan lattices.
Our method is automata-theoretic and handles all DeMorgan lattices and the
full modal mu-calculus. To adapt the automata-theoretic method to multi-valued
model checking, we use extended alternating automata (EAA) [3], which extend
alternating automata (AA). In model checking applications of AA (e.g., [21]),
an input tree of the automaton has nodes that are labelled with sets of atomic
propositions, and a run of the automaton has no value associated with it. With
EAA, the nodes of the input tree are labelled with functions mapping atomic
propositions to elements of a lattice, and a run has an associated value. We show
how to use EAA for multi-valued model checking, but also prove a fundamental
result about EAA that is interesting independently of this application: that the
set of values of all the accepting runs of an EAA has a maximal element.

The following section briefly covers some background material. In Section
3, we define our reduction method. In Section 4 we define extended alternating
automata, and in Section 5 we show how to directly model check with them.
We conclude in Section 6 by comparing the reduction and direct approaches to
multi-valued model checking.

2 Background

Lattices and Negation. We take for granted the notion of lattice and complete
lattice. We write x ∨ y or

∨
P for join and x ∧ y or

∧
P for meet (where P

is a set). Every complete lattice has a greatest element, called top, and a least



element, called bottom (and written ⊥). Every finite lattice is complete. A lattice
is distributive if x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) for all lattice elements x, y, z.

A join-irreducible element x of a distributive lattice L is an element that is
not bottom and for which x = y ∨ z implies x = y or x = z. If L is finite,
the join-irreducible elements are easily spotted in the Hasse diagram for L as
elements having exactly one lower cover (i.e. one line connected to the element
from below). The darkened elements in Figure 1 are the join-irreducible ones.
We write J (L) for the set of all join-irreducible elements of L.

If one orders truth and falsity as shown in lattice L2 of Figure 1, then conjunc-
tion can be interpreted as meet and disjunction as join. In this way conjunction
and disjunction can be interpreted over an arbitrary lattice. To interpret nega-
tion on lattices, a restricted class of lattices must be used if one hopes to obtain
expected properties of negation. Boolean lattices support a strong sense of com-
plement. Every element x in such a lattice has a unique complement ¬x such
that x ∨ ¬x equals the top element of the lattice and x ∧ ¬x equals the bottom
element of the lattice. Lattice L2 of Fig. 1 is boolean. However, there are “few”
boolean lattices.

In a DeMorgan (or quasi-boolean) lattice [1], every element x has a unique
complement ¬x such that ¬¬x = x, DeMorgan’s laws hold, and x ≤ y implies
¬y ≤ ¬x. DeMorgan lattices can be characterized as lattices with horizontal
symmetry [7]. Lattice L3 of Fig. 1 is DeMorgan, but not boolean. Using DeMor-
gan complement we get that ¬0 = 1, ¬1/2 = 1/2, and ¬1 = 0

A Heyting algebra is a lattice with a bottom element in which every element
x has a unique relative pseudo-complement ¬x defined as the greatest element y
such that x∧ y equals the lattice’s bottom element. In the case of finite lattices,
Heyting algebras and distributive lattices are the same thing [13]. The right-
most lattice in Fig. 1 is a Heyting algebra but is not DeMorgan. In this lattice,
using relative pseudo-complement as complement, we get ¬a = e and ¬b = a.
In lattice L3 we get ¬0 = 1, ¬1/2 = 0, and ¬1 = 0. Some DeMorgan lattices are
not Heyting algebras.

Reasoning about partial information with three-valued logic based on L3

is an important application of multi-valued model checking, and since in this
application we want to interpret negation in the DeMorgan sense, we adopt
DeMorgan lattices for multi-valued model checking.

The Modal Mu-Calculus. The modal mu-calculus [20] is an expressive
modal logic that includes as fragments linear-time temporal logic (LTL) and
computation-tree logic (CTL) [12]. Without loss of generality, we use a positive
form of the modal mu-calculus in which negation applies only to atomic propo-
sitions. Formulas have the following abstract syntax, where p ranges over a set
P of atomic propositions and X ranges over a set V ar of fixed-point variables:

φ ::= p | ¬p | φ1 ∧ φ2 | φ1 ∨ φ2 | �φ | �φ | X | νX.φ | µX.φ

In fixed-point formulas νX.φ and µX.φ the operators ν and µ bind free occur-
rences of X in φ. We call this logic µL.

A Kripke structure M = (S, s0, Θ,R) consists of a set S of states, an initial
state s0 in S, a mapping Θ from states to subsets of P , and a transition relation



R ⊆ S×S, assumed to be total. We say M is finite if it has finitely many states.
We write s→ s′ if (s, s′) ∈ R and write succR(s) for the set {s′ ∈ S | s→ s′}.
For a finite subset D of IN , we say M has degrees in D if |succR(s)| ∈ D for all
states s of S.

A Kripke structure M = (S, s0, Θ,R) over a lattice L differs from a standard
Kripke structure in that now Θ maps a state to a mapping from propositions to
elements of L. We write P → L for the set of all mappings from P to L.

A valuation V over a lattice L maps a variable to a mapping from states to
elements of L. We write () for the valuation such that ()(X)(s) = ⊥ for all X
and s (it is required here that L has a bottom element), and write V[X := f ]
for the valuation that is like V except that it maps X to f .

We define the meaning ‖M, φ‖V of a µL formula relative to a Kripke structure
M = (S, s0, Θ,R) over lattice L as a mapping from S to L. In the following def-
inition the function f : (S → L) → (S → L) is defined by f(g) = ‖M, φ‖V[X:=g],
and νf and µf stand for the greatest and least fixed-points of f . We know f has
greatest and least fixed-points by the Knaster-Tarski fixpoint theorem [23] be-
cause the functions in S → L, under pointwise ordering, form a complete lattice,
and function f preserves this ordering.

Definition 1. The interpretation ‖M, φ‖V of a µL formula relative to Kripke
structure M = (S, s0, Θ,R) and valuation V over complete DeMorgan lattice L
is defined as follows:

‖M, p‖V = λs.Θ(s)(p)
‖M,¬p‖V = λs.¬Θ(s)(p)

‖M, νX.φ‖V = νf
‖M, µX.φ‖V = µf

‖M, X‖V = V(X)

‖M, φ1 ∧ φ2‖V = λs.‖M, φ1‖V(s) ∧ ‖M, φ2‖V(s)
‖M, φ1 ∨ φ2‖V = λs.‖M, φ1‖V(s) ∨ ‖M, φ2‖V(s)

‖M, �φ‖V = λs.
∧{‖M, φ‖V(s′) | s→ s′}

‖M, �φ‖V = λs.
∨{‖M, φ‖V(s′) | s→ s′}

If φ is a closed formula then we write [(M, s), φ] for the value ‖M, φ‖()(s) of
formula φ at state s of Kripke structure M . Given φ, (M, s), and L, computing
[(M, s), φ] is called the multi-valued model-checking problem. If M is a Kripke
structure over lattice L2, then we write (M, s) |= φ if [(M, s), φ] = true.

Proposition 1. The µL semantics of Def. 1 collapses to the standard two-
valued semantics of µL when lattice L is L2 of Fig. 1.

3 Reduction to 2-Valued Model Checking

In this section we show how multi-valued model checking of a µL formula φ rela-
tive to a Kripke structure M over a finite distributive lattice L can be performed
by model checking φ relative to a set of standard Kripke structures.

A key part of our approach is the treatment of negation. We transform φ to
a formula φ′ containing no negation symbols. Each negated proposition ¬p in
φ is replaced by p̃, where p̃ is a fresh proposition not already appearing in φ.
Correspondingly, M is transformed to M ′ by extending the proposition valuation
Θ of M to Θ′, where Θ′(s)(p̃) = ¬Θ(s)(p). Then [(M, s), φ] = [(M ′, s), φ′] for



all states s of M . In the rest of this section we consider only formulas of µL
not containing the negation symbol. Note that our step of eliminating negation
symbols requires a negation operation on the underlying lattice.

3.1 Reduction Method

We now describe how to derive a standard Kripke structure Mx from a Kripke
structure M over lattice L. If M is defined to be (S, s0, Θ,R), and x is an element
of L, then Mx is defined to be (S, s0, Θx,R), where

Θx(s)(p) = Θ(s)(p) ≥ x

Mx differs from M only in its treatment of atomic propositions. In Mx, proposi-
tions with value x or greater are regarded as true, and all others as false. Thus,
if x ≥ x′, we expect a formula that holds in Mx to also hold in Mx′ .

Proposition 2. Let M be a Kripke structure over a finite distributive lattice L,
with s in M and x, x′ in L. Then ((Mx, s) |= φ and x ≥ x′) ⇒ (Mx′ , s) |= φ

The value of a formula relative a Kripke structure over a lattice L can be
determined by checking the standard Kripke structures derived from the join-
irreducible elements of L.

Lemma 1. Let M be a Kripke structure over a finite distributive lattice L, with
s in M and x in J (L). Then (Mx, s) |= φ ⇔ x ≤ [(M, s), φ].

From this lemma our main theorem follows using Birkhoff’s representation
theorem for finite distributive lattices, which states that every element a of such
a lattice can be represented as the join of all the join-irreducible elements less
than or equal to a in the lattice.

Theorem 1. Let M be a Kripke structure over a finite distributive lattice L,
with s in M . Then [(M, s), φ] =

∨{x ∈ J (L) | (Mx, s) |= φ}.
For example, consider the model checking of a formula φ relative to a struc-

ture M over lattice L3 of Fig. 1. The join-irreducible elements of L3 are 1/2 and
1. Intuitively, the model M1 represents a pessimistic view in which 1/2 is taken
as false, while M1/2 represents an optimistic view in which 1/2 is taken as true.
The algorithm first checks whether φ holds in M1. If so, the result is

∨{1/2, 1},
or 1. If not, it checks whether φ holds of model M1/2. If so, the result is

∨{1/2},
or 1/2. Otherwise the result is

∨ ∅, or 0.
Since two-valued model checking is a special case of multi-valued model check-

ing, our reduction immediately gives the following complexity bounds for the
multi-valued model-checking problem.

Theorem 2. Let L be a finite distributive DeMorgan lattice with n join-irre-
ducible elements, and let TL denote µL or any of its fragments. Then the multi-
valued model-checking problem for TL with respect to L can be solved in time
linear in n. Moreover, the complexity of multi-valued model checking for TL has
the same time and space complexity, both in the size of the Kripke structure and
of the formula, as traditional two-valued model checking for TL.



The linear complexity in the number of join-irreducible elements can be improved
for some classes of lattices. For example, when the join-irreducible elements of
a lattice L are linearly ordered, a binary search (i.e., checking first the join-
irreducible element in the middle of the lattice, then the join-irreducible element
in the middle of the upper or lower half, etc.) can be performed instead of a
linear search, providing a decision procedure for the multi-valued model-checking
problem for L with a worst-case time complexity of O(log(n)) instead of O(n).

3.2 Multi-Valued Transitions

In Kripke structures with multi-valued transitions, transitions are represented
by a function R that maps pairs of states to lattice values. The µL semantics
(see Section 2) changes only for the modal operators, as follows:

‖M, �φ‖V = λs.
∧{¬R(s, s′) ∨ ‖M, φ‖V(s′) | all s′}

‖M, �φ‖V = λs.
∨{R(s, s′) ∧ ‖M, φ‖V(s′) | all s′}

A Kripke structure with multi-valued transitions can be transformed to a
structure without multi-valued transitions using the idea described in Defini-
tions 16 and 17 of [16]. However, this transformation may in the worst case
involve a blow-up of size |L|. Therefore we extend our reduction method to
handle multi-valued transitions directly, with no blow-up in |L|. The extended
method works in two steps. First, as before, from the original Kripke structure
M over a lattice L, we obtain a set {Mx | x ∈ J (L)} of structures. However,
each structure Mx now has two transition relations: R+ and R−. In the second
step, each Mx is translated to a standard Kripke structure M ′

x having only a
single transition relation.

We now briefly cover the details. Suppose M = (S, s0, Θ, R) is a Kripke
structure over a finite distributive lattice L, where R : S × S → L is the multi-
valued transition function. Given a join-irreducible element x of L, we define
Mx as before, except that now Mx has the form (S, s0, Θx,R+

x ,R−
x ), where we

define R+
x (s, s′) = R(s, s′) ≥ x and define R−

x (s, s′) = ¬(¬(R(s, s′)) ≥ x). In
interpreting a formula over such a structure, we modify the µL semantics as
follows:

‖Mx, �φ‖V = λs.
∧{¬R−(s, s′) ∨ ‖M, φ‖V(s′) | all s′}

‖Mx, �φ‖V = λs.
∨{R+(s, s′) ∧ ‖M, φ‖V(s′) | all s′}

Our reduction lemma (Lemma 1) also holds for this extended reduction.

Lemma 2. Let M be a Kripke structure with multi-valued transitions over a
finite distributive lattice L, with s in S, and x in J (L). Then, letting Mx be the
result of the extended reduction, (Mx, s) |= φ ⇔ x ≤ [(M, s), φ].

In the second step, we translate the structure Mx = (S, s0, Θ,R+,R−) to
a standard Kripke structure M ′

x = (S′, s′0, Θ′,R′). The set of propositions over



which Θ′ is defined is P ∪ {p+}, and

S′ = {(s, sign) | s ∈ S, sign ∈ {+,−}}
s′0 = (s0, +)

Θ′(s, sign)(p) = if p ≡ p+ then (sign = +) else Θ(s, p)

R′((s, sign), (s′, sign′)) = (s, s′) ∈ Rsign′
(s, s′)

For every state s in Mx there are states (s, +) and (s,−) in M ′
x. Moreover, every

pair (s, +), (s,−) of states in M ′
x is strongly bisimilar. Since strong bisimulation

preserves µL formulas [22], we have that (s, +) satisfies φ iff (s,−) does.
We also define a translation T that maps formulas of µL to formulas of

µL. The translation maps all operators ⊕ homomorphically (i.e., T (φ1 ⊕ φ2) =
T (φ1) ⊕ T (φ2)), except the modal operators. In these cases we have T (�φ) =
�(p+ ∨ T (φ)) and T (�φ) = �(p+ ∧ T (φ)). The correctness condition for the
second step is that a formula holds of Mx iff the translated formula holds of M ′

x.

Proposition 3. Let Mx be a Kripke structure with two transition relations, M ′
x

be the standard Kripke structure obtained by translation from Mx, s be a state
of Mx, and φ be a formula of µL. Then (Mx, s) |= φ ⇔ (M ′

x, (s, +)) |= T (φ).

3.3 Related Work

In [2] a reduction is given for three-valued model checking. In [19], reductions are
given for total orders, binary products of total orders, and the lattice 2× 2 + 2,
which can be obtained from the right-most lattice of Fig. 1 by adding a new top
element f above element a.

A method [17] with the same generality as ours was discovered independently
(see [5]). In the method of [17] each µL formula is translated first to a set of
formulas in a logic designed specifically for the reduction, then each formula
in this set is translated to a µL formula. Our approach uses fewer steps, no
additional logic, and has simpler proofs (due to the use of Birkhoff’s theorem).

In [14], Fitting shows how a many-valued Kripke structure can be trans-
formed to a “multiple-expert” structure, that includes a set of experts and a
binary dominates relation over experts. Although the core idea of our method
comes from a construction in the proof of Prop. 5.1 of [14], our work differs in
several ways. We reduce to standard Kripke structures rather than multi-expert
models, we use µL rather than propositional modal logic, we use join-irreducible
elements rather than proper prime filters, and most importantly, we treat nega-
tion parametrically rather than as relative pseudo-complement. The advantage
of our approach to negation is generality; the disadvantage is that it increases
the size of the model’s propositional valuation.

[18] concerns AC-lattices, which are pairs of graph-isomorphic lattices in
which the order relation of one is the inverse of the other. Negation in an AC-
lattice is captured as two maps, each mapping an element of one lattice to the
isomorphic image in the other. AC-lattices can be used for the analysis of conflict
between multiple requirements. A notion of expert similar to Fitting’s is used.



It is shown, for finite models, that for each of the two “modes” captured by the
two lattices in an AC-lattice, the set of views for which a modal mu-calculus
formula holds is equal to the set obtained by an interpretation of the formula
as a view set. The result differs from ours in that it is based on AC-lattices,
in its treatment of negation, and in that it relates view sets rather than lattice
elements directly.

4 Extended Alternating Automata

The idea behind alternating automata is to describe successor states through
boolean expressions built up from states and truth values using conjunction
and disjunction. EAA generalize this idea by allowing expressions built up from
states and lattice elements using meet and join. A run of an EAA on an input
tree is itself a tree, as in alternating automata. However, each node of the run
is now labelled with a lattice element.

With alternating automata, one is interested in whether an accepting run
exists on an input tree. With EAA, each accepting run has a value (the value
at its root), and one is interested in the set of values of all accepting runs. A
fundamental question for EAA, and one that is key for the use of EAA in model
checking, is whether this set of values has a maximum element. We show below
that this is indeed the case.

Definitions. Formally, a tree τ is a subset of IN∗ such that if x · c ∈ τ then
x ∈ τ and x ·c′ ∈ τ for all 1 ≤ c′ < c. The elements of τ are called its nodes, with
ε called the root. Given a node x of τ , values of the form x · i in τ are called the
children or successors of x. The number of successors of x is called the degree of
x. A node with no successors is called a leaf. Given a set D ⊂ IN , a D-tree is a
tree in which the degree of every node is in D. A Σ-labeled tree is a pair (τ, T )
in which τ is a tree and T : IN∗ → Σ is a labeling function.

Let L = (B,∧,∨) be a lattice, and let B+(X) stand for the set of terms
built from elements in a set X using ∧ and ∨. A tree EAA over L is a tuple
A = (Σ, D, S, s0, ρ, F ), where Σ is a nonempty finite alphabet, S is a nonempty
finite set of states, s0 ∈ S is the initial state, F is an acceptance condition,
D ⊂ IN is a finite set of arities, and ρ : S × Σ × D → B+((IN × S) ∪ B) is
a transition function, where ρ(s, a, k) ∈ B+(({1, . . . , k} × S) ∪ B) is defined for
each s in S, a in Σ, and k in D. Various types of acceptance conditions F can
be used with EAA, just as in alternating automata, and are discussed below.

A v-run of a tree EAA A on a Σ-labeled leafless D-tree (τ, T ) is an IN∗ ×
S × B-labeled tree (τσ, Tσ). A node in τσ labeled by (x, s, v) describes a copy
of automaton A that reads the node x of τ in the state s of A and has value
v ∈ B associated with it. Formally, a v-run (τσ, Tσ) is an IN∗ × S × B-labeled
tree, defined as follows.

– Tσ(ε) = (ε, s0, v)
– Let y ∈ τσ, Tσ(y) = (x, s, v′), arity(x) = k, and ρ(s, T (x), k) = θ. Then there

is a (possibly empty) set Q = {(c1, s1, v1), . . . , (cn, sn, vn)} ⊆ {1, . . . , k} ×
S × B such that



• for all 1 ≤ i, j ≤ n, ci = cj and si = sj implies vi = vj ,
• Eval(Q, θ) = v′, and
• for all 1 ≤ i ≤ n, we have y · i ∈ τσ and Tσ(y · i) = (x · ci, si, vi)

Eval(Q, θ) denotes the value of the expression θ obtained by replacing each term
(ci, si) in θ by vi if (ci, si, vi) ∈ Q or by ⊥ otherwise.

A v-run σ is accepting if (1) the value associated with each node of the run
is not ⊥ and (2) all infinite branches of the run satisfy the acceptance condi-
tion F . As with traditional alternating automata, various types of acceptance
conditions can be used. For instance, a path w satisfies a parity acceptance con-
dition F = {F1, F2, . . . , Fn} with F1 ⊆ F2 ⊆ . . . ⊆ Fn if the minimal index i for
which some state s in Fi appears infinitely often along w is even. Note that an
accepting run can have finite branches: if, for some y ∈ τσ, Tσ(y) = (x, s, v) and
ρ(s, T (x), arity(x)) = v with v in B and v �= ⊥, then y does not need to have
any successor.

A tree EAA A accepts a Σ-labeled leafless D-tree (τ, T ) with value v if
there exists an accepting v-run of A on that tree. We define the language Lv(A)
as follows (for v �= ⊥): Lv(A) = {(τ, T ) | A accepts (τ, T ) with value v}. For
convenience, we define L⊥(A) as {(τ, T ) | A has no accepting run on (τ, T )}.
When D is a singleton, A runs over trees with a fixed branching degree. In
particular, a word EAA is simply a tree EAA in which D = {1}.

Existence of Maximum Value. We now establish a new, fundamental
property of EAA: for any EAA and any input tree, there always exists a maxi-
mum value v of L for which the EAA has an accepting v-run on the input tree.
Note that this property is non-trivial since it is not generally true that, if an
EAA has an accepting v1-run and an accepting v2-run on an input tree, then
the EAA has an accepting (v1 ∨ v2)-run on this input tree.

Theorem 3 (Maximum-value theorem). Let A be a (finite) tree EAA over
a lattice L, and let (τ, T ) be a Σ-labeled leafless D-tree. Then the subset {v |
(τ, T ) ∈ Lv(A)} of L has a maximum value, which we denote by Max(A, (τ, T )).

We will write simply Max(A) when A is a word EAA on a 1-letter alphabet.

5 Model Checking with EAA

Our model-checking procedure for multi-valued logics using EAA generalizes the
automata-theoretic approach to 2-valued model checking with AAs [21]. Our
procedure computes the value [(M, s), φ] defined by a µL formula φ evaluated
in state s of a Kripke structure M over a DeMorgan lattice L. (Multi-valued
transitions in M can be transformed first as discussed in Section 3.2.) In the
first step of the procedure we translate φ to an EAA Aφ. Then we build a
product automaton from Aφ and M in such a way that the maximum value that
labels an accepting run of the product automaton is [(M, s), φ]. We now present
these steps in detail.

We begin with a translation of µL formulas to EAA. The translation is similar
to the translation from µL to parity alternating automata given in [21] except



for the case of atomic propositions, which are mapped to lattice elements in
our context. The property we want of the translation is that the value of the
maximum accepting run of the EAA for formula φ and an input tree (τ, T ) agrees
with the value [(τ, T ), φ] defined by the semantics of µL (with (τ, T ) viewed as
a Kripke structure over L).

Theorem 4. Let φ be a closed µL formula and L be a DeMorgan lattice. Then a
parity EAA AD,φ for φ can be constructed in linear time such that [((τ, T ), ε), φ)] =
Max(AD,φ, (τ, T )) for every leafless D-tree (τ, T ) on L.

In the next step of the procedure, we compute the product of a Kripke structure
and an EAA representing a µL formula. The product construction defined here
is again nearly identical to that given for alternating automata in [21].

Definition 2. Let φ be a closed µL formula, L be a DeMorgan lattice, M =
(S, s0, Θ, R) be a finite Kripke structure over L, with degrees in D, and AD,φ =
(P → L, D, Qφ, q0, ρφ, F ) be a parity EAA representing φ. Then the product
automaton AM,φ = ({a}, S × Qφ, (s0, q0), ρ, F ) of M and AD,φ is a parity word
EAA over a 1-letter alphabet with at most O(|S| · |Qφ|) states, where ρ and F
are defined as follows:

– For all q ∈ Qφ, s ∈ S, if succR(s) = (s1, . . . , sn) and ρφ(q, Θ(s), n) = θ, then
ρ((s, q), a) = θ′ where θ′ is obtained from θ by replacing each atom (c, q′) in
θ by (sc, q

′).
– If Fφ = {F1, F2, . . . , Fm} is a parity acceptance condition, then so is F =

{(S × F1), (S × F2), . . . , (S × Fm)}.
The product automaton AM,φ is used to prove the following.

Theorem 5. Let φ be a closed µL formula, M be a finite Kripke structure over
a DeMorgan lattice L, and s be a state of M . Then there exists a parity word
EAA AM,φ over a 1-letter alphabet such that [(M, s), φ)] = Max(AM,φ).

In the final step of the procedure, we compute the value Max(AM,φ) of the
product EAA.

Theorem 6. Given a parity word EAA AM,φ over L with a 1-letter alphabet,
computing Max(AM,φ) has the same complexity as checking whether the lan-
guage accepted by a parity word AA with a 1-letter alphabet is nonempty, i.e.,
can be done in nondeterministic polynomial time.

Algorithms for computing Max(A) of a word EAA A over a 1-letter alphabet
are similar to algorithms for checking emptiness of AAs over a 1-letter alpha-
bet except that the algorithms dealing with EAA propagates values in L in-
stead of values in {true, false}. The number of iterations for each state can be
bounded by O(|h(L)|) where h(L) is the height of L (e.g., [15]). The traditional
µL model-checking problem is in NP∩co-NP, and this upper bound carries over
to the multi-valued case. However, computing Max(AM,φ) can be done more
efficiently for some subclasses of µL. For instance, the EAA for a CTL formula
φ is weak [21], and computing the value Max(AM,φ) of the product of a weak
EAA with a Kripke structure M can be done in time linear in |M | and |φ| [3].
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Fig. 2. Example Kripke structure M and accepting run

Example 1. Consider the µL formula µX.p∨�X , which is equivalent to the CTL
formula AFp. By translating this formula into an EAA satisfying Theorem 4, we
obtain a tree EAA with a single state q0, an acceptance condition F = ∅ and the
following transition function: ρ(q0, σ, k) = σ(p) ∨ ∧k

c=1(c, q0). We next take the
product of this automaton with the Kripke structure M over L3 shown on the left
of Figure 2. The figure shows the value of the atomic proposition p at each state.
Using the product construction of Definition 2, we obtain a (weak) word EAA
over a 1-letter alphabet with no accepting states and the following transition
function: ρ((s0, q0), a, 1) = 0∨((s1, q0)∧(s2, q0)), ρ((s1, q0), a, 1) = 1/2∨(s1, q0),
and ρ((s2, q0), a, 1) = 1∨ (s2, q0). This EAA has the accepting 1/2-run shown on
the right in Figure 2. The value 1/2 is the greatest value v for which there is an
accepting v-run, so by Theorem 5, we have [(M, s0), µX.p ∨ �X ] = 1/2.

6 Discussion

As mentioned in the introduction, an advantage of the reduction approach to
multi-valued model checking is that it can be implemented using existing model
checkers. On the other hand, the direct approach can work in a more “on-the-fly”
fashion, computing whatever information is necessary to solve the problem at
hand on a demand-driven basis. Indeed, in the reduction approach, only the lat-
tice and Kripke structure are used in building the two-valued Kripke structures,
each of which can then be model checked possibly on-the-fly, thus using the for-
mula to guide the verification needs. In contrast, the direct approach can make
use of all three inputs together to further limit computational resources. For
instance, consider a lattice of n incomparable elements plus a top and bottom
element, and suppose the formula we wish to model check is simply the atomic
proposition p. In the reduction approach we must then perform n model checks.
In the direct approach we will perform a single model check that examines only
the initial state of the multi-valued Kripke structure and reads only the value of
p, which requires reading only log(n) bits.

Note that, in a finite-state Kripke structure with finitely-many atomic propo-
sitions, at most finitely-many lattice elements will appear. From these, by closing
under meet and join, one obtains a finite sublattice of the original lattice. This
finite sublattice can be used in place of the original one for multi-valued model
checking, with either approach, and thus the size of the original lattice does
not matter (and could even be infinite). Finally note that, unlike the reduction
approach, the direct approach does not require the lattice to be distributive.
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