Foundations for Features

Glenn Bruns
Bell Labs, Lucent Technologies

Abstract
The feature interaction problem arose in the field of telecommunica-
tions but is now recognized as a general problem of software engineering.
Capturing the idea of feature interaction in a simple and precise way has
proven difficult. This paper briefly surveys existing notions of feature and
feature interaction.

1 Introduction

The problem of feature interaction is proving to be a broad and basic
problem of software engineering — not just a curiosity of telecommunica-
tion systems. The word “feature” once meant a call processing feature
in a telecommunications system, but now is often used to mean a unit of
change in system development. Despite its increasing relevance, the field
of feature interaction research seems to lack a clear set of core technical
problems. Indeed, there seems to be little consensus on some of the most
basic questions one could ask about features and feature interaction:

e what is a feature?
e how are features composed?
e what is a feature interaction?

e are feature interactions peculiar to telecommunication systems, dis-
tributed systems, reactive systems, ...7

e is feature interaction a property of specifications, or implementa-
tions, or a relationship between specifications and implementations?

The feature interaction problem is fascinating because it is real and
easy to explain, yet has been hard to pin down in a satisfactory way. Many
papers that propose solutions to the feature interaction problem do not
contain a clear statement of the problem. Others define the notion but
link it to details of a software development approach. If a simple, shared
conception of the problem existed, the field would be more focused, more
accessible, and more likely to attract the attention of others.

The modest goal of this paper is not to provide definitive notions of fea-
ture and feature interaction, but only to survey some existing conceptions
of feature interaction. We hope that by focusing on basic concepts we can
avoid the problem of defining feature interaction in terms of the methods
for dealing with them. (See [16] for a survey of reasoning methods for
feature interactions.)



feature specification and feature construct

N\

feature specification only feature construct only

/

no feature specification or feature construct

/N

Figure 1: Assumptions that can be used when defining feature interactions.

2 Features and Feature Interaction

To define “feature” and “feature interaction”, we need some basic ingre-
dients. For example, it is common to assume the existence of a “base
system” on which features are developed. Two other assumptions are
also frequently made:

e features are formally specified
e a feature construct exists in the design or programming language

The term feature construct is understood here to mean a syntactic or
semantic entity that represents a single feature at the program or design
language level.

These two assumptions play key roles in many ideas of feature and fea-
ture interaction. For example, one notion of feature interaction is as the
logical inconsistency of feature specifications. Another notion treats fea-
ture interaction as a confluence property when applying feature constructs
to a base system.

The four parts of this section reflect the cases one gets by looking at
whether feature specifications or feature constructs are present (see Figure
1). The subsections are ordered so that ideas using fewer assumptions
come first. In each section we first provide a framework for features and
feature composition, and then list some ideas on the nature of feature
interaction. In most cases pointers to the literature are provided.

2.1 No feature specification or feature construct

In this case, programs implement features, but there is no feature con-
struct in the programming language. Therefore we assume only that fea-
tures have names, and that these names will appear in programs that
implement them. We can formalize this as follows. Let P and @ stand
for programs, and assume that a program can be interpreted as a labelled
transition system (LTS), which consists of a set of states (including an
initial state) and a transition relation on states. This is a very general
model of program behavior. We write [P] for the LTS obtained as the
interpretation of program P.



To capture that a program implements a feature, assume that transi-

tions of the LTS can be labelled with feature names. We write s 2 s if
there is a transition from a state s to a state s’ labelled with feature name
f. Such a transition represents an action performed to support feature f.
We write £(P) for the feature names found anywhere in [P]. A feature
named f is regarded as being implemented in P if f € £(P). In this way
we can say that a program implements a feature without having a feature
construct.

We also need to be able to describe behavioral properties of programs.
Let ¢ and % stand for formulas of some behavioral specification language.
This means that ¢ and ¥ can be interpreted as sets of LTSs. Assume that
the language is closed under conjunction (written here as ¢ A ). We
write P |= ¢ if program P satisfies the behavioral property ¢.

Now some concepts of feature interaction can be presented. One con-
cept is that two features interact if one of the features can disable the
other. The property disables(f, g) holds of an LTS if either: 1) the LTS

has reachable states s, s’,s” such that s 4 s" and 5% s” but there is no

state ¢ such that s” % t, or 2) the symmetrical case in which f and g are
swapped.

Idea 1 Suppose P is a program with feature names f,g both in L(P).
Then f and g interact in P if P |= disables(f,g).

This idea appears in [7], where it is called “missed trigger interaction”.

One feature can also enable another. We write enables(f, g) if at some
reachable state one of f, g but not the other is enabled, and by following
a transition of the enabled feature one can immediately reach a state in
which the other feature is enabled.

Idea 2 Suppose P is a program with feature names f,g both in L(P).
Then f and g interact in P if P |= enables(f,g).

This idea also appears in [7], where it is called “sequential action interac-
tion”.

Generally, there may be many properties of an LTS that we want to
avoid, such as deadlock, livelock, and non-termination. The ideas above
are easily generalized to any behavioral property.

Idea 3 Suppose P is a program with feature names f, g both in L(P), and
¢ is a behavioral property. Then f and g ¢-interact in P if P = ¢.

For example, in [22, 7], feature interaction is taken to be non-determinism
on input events. In [7] this form of interaction is called “shared trigger
interaction”. A problem with the idea as written here is that ¢ may hold
of P for no reason having to do with f and g. The condition could be
strengthened in various ways; for example, by requiring that ¢ involve
transitions of either f, or g, or both.

The idea above can be used not only to define feature interaction, but
also a notion of a single feature being “bad”: a feature f is bad in P if P
satisfies some undesirable property.



2.2 Feature specification but no feature construct

Here again we have no feature construct, but now each feature has a formal
specification. If ¢ is the specification of a feature, then the idea is that
a program P implements the feature if P |= ¢. Since there is no feature
construct, we let a feature’s specification stand for the feature itself. So
rather than saying “the feature specified by ¢ and the feature specified by
1 interact if ...”, we instead say “the features ¢ and v interact if ...”.

Some concepts of interaction take place purely at the specification
level. One idea is that features interact if their specifications are logically
inconsistent.

Idea 4 Features ¢1 and ¢2 interact if p1 A @2 is inconsistent.

This idea can be found in [4, 13]. In [13] it is called a “Type I” interaction.
The intuition is that if a property is inconsistent, then it is impossible
to implement a system having the property. For reactive systems, it is
perhaps more appropriate to use realizability [20], which is a stronger
notion than consistency, reflecting that a reactive system can enforce a
property regardless of the inputs it receives. Thus, a variant of the above
is:

Idea 5 Features ¢1 and ¢2 interact if 1 A @2 is unrealizeable.

This idea appears in [10]. Work on the use of Alternating-time Tempo-
ral Logic (ATL) to specify features [8] is related to realizability in that
ATL allows one to describe properties that can be satisfied by a system
regardless of the environment.

A variant of these ideas is to say that a feature interaction occurs
if the conjunction of two feature specifications implies some undesirable
property, such as non-determinism.

Idea 6 Let be a property. Then features ¢1 and ¢z Y-interact if g1 A P2
implies .

The idea of features being inconsistent can be weakened by making it
relative to a base system. We write P < P’ if P’ is a refinement of P,
where we assume only that < is a preorder. Thus, to implement a feature
¢ on a base program P, one would find a program P’ such that P < P’
and P’ |= ¢. Then one can say that two features interact with respect
to a program if the program cannot be refined so that both features are
satisfied.

Idea 7 Features ¢1 and ¢ interact in P if there is no P’ such that P <
P and P' = ¢1 A ¢2.

Logical inconsistency is an obvious notion of conflict between features.
Other notions of conflict can be subtle. For example, in reactive systems
one can consider conflict on input and output events (see [15, 13]). Sup-
pose two features seek to output different messages to the same output
port — should this circumstance constitute conflict? The answer would
seem to depend upon the “semantics” of the output events. For exam-
ple, conflict may be present if the output events cause a binary setting to
toggle, but absent if the events cause a count to be incremented.

Another subtle issue arises in saying what it means for a program to
implement two features specified by ¢ and . If a program P implements



a feature specified by ¢ whenever P = ¢, then it seems right to say that
P implements both ¢ and 1 just when P |= ¢ A 1. But there are other
valid approaches. For example, if features are implemented sequentially
to a base program, we may expect, or even require, that one feature has
priority over another. Thus we may expect logically not that ¢ and
both hold, but that they both hold only in the absence of conflict, and
that in the presence of conflict ¢ but not v holds. This is roughly the idea
behind the use of “theory update” in composing formulas that represent
feature specifications [14].

As in the previous section, some of the ideas here could be applied to
single features. For example, we can ask of a single feature specification
whether it is inconsistent, unrealizeable, or implies a undesirable property
9. In [3], POTS (Plain Old Telephone Service) is specified, and then the
specification is checked to see that deadlock is not possible.

2.3 Feature construct but no feature specification

Now we consider that features are captured in a feature construct, but
have no formal specifications. For example, a feature-based programming
notation might be used, in which features are implemented directly from
informal requirements. There are many notions of feature construct in
the literature; some examples are [5, 6, 13, 11, 19].

We write f for a feature, and P + f for the composition of program P
and feature f. The idea is that a program implements freature f if it has
the form P+ f1+- - -+ fn, where f is identical to some f;. We write P = Q)
to mean that programs P and @ are behaviorally equivalent. For example,
this could mean that LTSs [P] and [Q] are observation equivalent [18].

A variation on the idea of “interaction as conflict” is to regard two
features as interacting if their composition on a base system is not well-
formed. In this view feature composition is a partial operation.

Idea 8 Feature f and g interact in P if (P + f) + g is not well-formed.

This idea appears in [15], where a form of synchronous concurrent com-
position is used to apply features to a base system.

Another basic idea is that two features interact for a program if the
order of application of the features matters.

Idea 9 Features f and g interact in P if (P+ f)+gZ (P+g)+ f.

This idea appears in [17, 6].

A variant is to use a notion of program equivalence based on some
logical language: two programs are equivalent if they satisfy the same
formulas. We write L here for a logical language. For simplicity we assume
that L has negation (with the expected property that, for all programs,
P = ¢ iff P [~ —¢).

Idea 10 Features f and g interact in P if there exists a ¢ in L such that
(P+f)+gF ¢ but (P+g)+ [
This idea appears in [19].

A general notion of feature interaction is that applying both features

to a program will lead to a program with some undesirable property.



Idea 11 Let ¢ be a property. Then features f and g interact in P if
P+f)+gEdor(P+g)+fE.

This idea appears in [5], where feature interaction is defined as a kind of
non-determinism.

To take the algebraic approach further, one could define a feature
construct and a binary composition operator + on features such that
every program can be written as a composition of features. We expect +
to be associative but not necessarily commutative, so that features plus
composition forms a semigroup. Furthermore, the semantics of features
on their own could be defined, and a behavioral equivalence on features
(written f = g) developed. Interaction of features could then be taken to
mean simply non-commutativity.

Idea 12 Features f and g interact if f+gZ g+ f.

In this framework the equivalence = should be defined so that it is a
congruence: f = g implies f+h =g+ h and h+ f = h+ g, for all h.
Algebraic approaches to feature interaction are described in [12, 21].

An obvious idea not listed above is that two particular features interact
if an expected property of their specific combination does not hold. In
other words, two fixed features f and g interact with respect to a base
program P if (P + f)+ g does not satisfy some expected property ¢ (that
depends on f and g). This approach is used in [1]. We mention this
approach only in passing because it does not represent a generic concept
of feature interaction.

2.4 Feature specification and feature construct

Finally we consider the case where a feature construct is used and features
are specified. We write f : ¢ if ¢ is the specification of feature f, and then
say that f implements ¢ if P+ f = ¢ for all programs P. Sometimes (as
in [19]) the feature f will include a specification of the class of programs
to which it can be applied.

In this setting two features can be said to interact if adding a feature
causes an existing feature’s specification to be violated.

Idea 13 Let fi1 : ¢1 and fo be features, and P be a program. Then fi
and fo interact in P if (P + f1) + f2 & é1.
This idea appears in [19].

A closely related idea if that two features interact if one feature’s
specification cannot be met in the presence of the other.

Idea 14 Let f1 and f2 : ¢2 be features, and P be a program. Then f1
and fa interact in P if (P + f1) + f2 = b2.

This also appears in [19].

Another idea focuses on the specification of the base program. Two
features interact if the specification of the base program cannot be met in
the presence of both features.

Idea 15 Let fi and f2 be features, and P : ¢ be a program. Then fi1 and
f2 interact in P if (P + fi) + f2 & ¢, or (P + f1) + f2 & ¢.



3 Prospects

To get a sense of where the field of feature interaction is going, it is
helpful to understand the problems the field is trying to solve. Some
work is focused on specific application domains, such as the interactions
of call-processing features in telecommunication systems. However, from
a broad perspective, feature interaction addresses a fundamental problem
that arises in a common approach to software development, in which:

e informal requirements list new features to be added to an existing
system

e development teams — one for each feature — work independently to
implement a feature on a private version of the base program

e implementing a feature involves modifying multiple files of the base
system

e the final product is obtained by merging the code from each team:;
this is often performed semi-automatically with the help of a version-
control system

A feature interaction can be said to occur when the new version does
not support the features as expected. Other problems faced in this ap-
proach are that it can be hard to trace requirements to code, and hard to
understand the effect of semi-automatic program merging.

Some progress on solving these problems may be possible by provid-
ing support for features in a general-purpose programming language. In
a “features as modules” approach, each team would develop their feature
as a self-contained piece of code with well-defined interfaces, and then
the collection of modules would be applied to the base system, perhaps
by explicitly ordering the features with potential interactions in mind.
A module would be “higher-order”, in the sense that it would describe
modifications to the behavior of the existing code. In aspect-oriented pro-
gramming, advice is much like this concept of feature module. Examples
of work on feature interaction and aspects are [9, 2].

However, a “features as modules” approach may introduce new prob-
lems. For example, would systems described as a large collection of fea-
tures be comprehensible? Would it be practical to define a single total
order on all program features? How could one form packages of features
with well-defined interfaces? Finally, how can introducing a feature con-
struct by itself help in finding feature interactions? Perhaps ideas from
programming languages can help solve problems of feature structure and
scope, while ideas from the feature interaction world can help solve prob-
lems of “advice interaction”.

Acknowledgements

Michael Benedikt, Alan Jeffrey, and Nils Klarlund provided helpful com-
ments on a draft version of this paper. Research supported in part by a
grant from the National Science Foundation: CyberTrust 0430175.



References

1]

[4]

[9]

[10]

[11]

[12]

[13]

R. Accorsi, C. Areces, W. Bouma, and M. de Rijke. Features as
constraints. In Proceedings of FIW’00, pages 210-225. IOS Press,
2000.

Lynne Blair and Jianxiong Pang. Aspect-oriented solutions to fea-
ture interaction concerns using AspectJ. In Feature Interactions in
Telecommunications Systems VII, pages 87-104. I0S Press, 2003.

J. Blom, B. Jonsson, and L. Kempe. Using temporal logic for mod-
ular specification of telephone services. In L. G. Bouma and Hugo
Velthuijsen, editors, Feature Interactions in Telecommunications Sys-
tems, pages 197-216, Amsterdam, The Netherlands, May 1994. 10S
Press.

Johan Blom, Bengt Jonsson, and Lars Kempe. Using temporal logic
for modular specification of telephone services. In W. Bouma and
H. Velthuijsen, editors, Feature Interactions in Telecommunications
Systems, 1994.

Jan Bredereke. Automata-theoretic criteria for feature interactions
in telecommunications systems. Technical Report 273/95, Dept. of
Comp. Sci., Univ of Kaiserslautern, December 1995.

G. Bruns, P. Mataga, and 1. Sutherland. Features as service trans-

formers. In Feature Interactions in Telecommunications Systems V.
10S Press, 1999.

M. Calder, M. Kolberg, E. Magill, D. Marples, and S. Reiff-
Marganiec. Hybrid solutions to the feature interaction problem. In
Feature Interactions in Telecommunications Systems VII, pages 187—
205. IOS Press, 2003.

F. Cassez, M. D. Ryan, and P.-Y. Schobbens. Proving feature non-
interaction with alternating-time temporal logic. In Language Con-
structs for Describing Features, pages 85—104. Springer Verlag, 2001.

Rémi Douence and Pascal Fradet and Mario Stidholt. A framework
for the detection and resolution of aspect interactions. In Proceed-
ings of the ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering. Springer-Verlag, Lecture
Notes in Computer Science 2487.

Amy P. Felty and Kedar S. Namjoshi. Feature specification and auto-
matic conflict detection. ACM Transactions on Software Engineering
and Methodology, 12(1):3-27, January 2003.

K. Fisler and S. Krishnamurthi. Modular verification of
collaboration-based software designs. In Proceedings of FSE 01,
2001.

Christophe Gaston, Marc Aiguier, and Pascale Le Gall. Algebraic
treatment of feature-oriented systems. In Language Constructs for
Describing Features. Springer Verlag, 2001.

Robert J. Hall. Feature combination and interaction detection vis
foreground/background models. Computer Networks, 32(4):449-469,
2000.



[14]

[15]

[16]

[17]

[21]

[22]

H. Harris and M. D. Ryan. Theoretical foundations of updating
systems. In Proceedings of FSE 2003. IEEE Computer Society Press,
2003.

Jonathan D. Hay and Joanne M. Atlee. Composing features and re-
solving interactions. In SIGSOFT ’00/FSE-8: Proceedings of the 8th
ACM SIGSOFT international symposium on Foundations of software
engineering, pages 110-119. ACM Press, 2000.

Dirk O. Keck and Paul J. Kuehn. The feature and service interaction
problem in telecommunications systems: A survey. IEEE Trans.
Softw. Eng., 24(10):779-796, 1998.

Cornel Klein, Christian Prehofer, and Bernhard Rumpe. Feature
specification and refinement with state transition diagrams. In Fea-
ture Interactions in Telecommunications Systems IV. 10S Press,
1997.

R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

Malte Plath and Mark Ryan. Feature integration using a feature
construct. Sci. Comput. Program., 41(1):53-84, 2001.

A. Pnueli and R. Rosner. On the synthesis of a reactive module. In
POPL ’89: Proceedings of the 16th ACM SIGPLAN-SIGACT sympo-
sium on Principles of Programming Languages, pages 179-190. ACM
Press, 1989.

Christian Prehofer. From inheritance to feature interaction or com-
posing monads. Technical Report TUM-19715, Technische Univeritét
Miinchen, 1997.

B Stepien and L Logrippo. Feature interaction detection by using
backward reasoning with LOTOS. In S.T. Vuong and S.T. Chanson,
editors, Protocol Specification, Testing and Verification XIV, pages
71-86. Chapman & Hall, 1995.



