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Abstract

Safety-critical systems often incorporate fault-tolerance techniques in

their design, particularly the technique of redundancy. The idea of con-

sistency checking found in redundancy techniques can be more broadly

applied by using knowledge about system parameters and their relation-

ships. Here we present a model of data fusion, which detects failures and

provides good estimates of plant parameters by checking sensor data for

consistency. We illustrate our approach with a boiler system example,

proving that the water level in the boiler is always within its safe range.

Keywords: safety-critical systems, fault tolerance, program verification,

temporal logic

1 Introduction

Safety-critical systems must often avoid, detect, and tolerate failures, and so
often incorporate fault-tolerance techniques in their design. In particular, re-
dundancy is often used [1, 2, 3]. For example, in triple-modular redundancy
[4], a value is obtained by taking the majority of results from three identical
components. This technique provides for both the detection and tolerance of
faults, provided that at most one component fails at a time.
The idea of consistency checking found in redundancy techniques can be

more broadly applied by using knowledge about system parameters and their
relationships. For example, if a single output falls outside its expected range,
a failure must have occurred. Similarly, two outputs can be compared. If they
are not related as expected, a fault must have occurred. The change of outputs
over time can also be taken into account. The goal of data fusion is to use
sensor data to detect sensor failures and to provide good estimates of process
parameters.
Here we present a formal model of data fusion. The basic idea is to detect

sensor failures by estimating plant parameters from sensor outputs and then
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checking them for consistency. Accurate final estimates of parameters are made
by combining estimates calculated from non-failed sensors. The main advantage
of our approach is its flexibility. It can be used for systems without physical
redundancy, and to improve the fault-tolerance of systems with physical redun-
dancy. Another advantage is the ability to combine logical and probabilistic
reasoning. By estimating the likelihood that the failure assumptions of our
model hold, and then proving safety properties from these assumptions, we can
calculate the likelihood that the system will fail.
We illustrate our approach with a boiler system example, proving that the

water level of a boiler system is always in its safe range. In what follows we
describe our data fusion model in the temporal logic TLA [5], instantiate the
model for a boiler system, and prove that the resulting model satisfies certain
important safety properties. We also show how triple-modular redundancy can
be treated as a data fusion problem.

2 The Boiler System

The problem we consider is derived from the Canadian Institute of Risk Research
generic programming competition problem [6]. The aim of the competition
was to construct safe control software for the boiler described in the problem
specification [7]. Figure 1 is a diagram of the boiler. Water enters the boiler
vessel through four pumps, which are either fully on or fully off, and exits the
vessel as steam. The boiler is instrumented with a level sensor, a steaming rate
sensor, and a monitor for each pump. Additionally, there is a sensor that shows
the state of each pump switch. The safety requirement given in the problem
description is that the boiler level must always be within its safe range. A too-
high boiler level risks damage to upstream units; a too-low boiler level risks
boiler vessel fracture.
Although the competition asked for a boiler control system, the precept that

safety should depend on simple, isolated components led us to design instead
a boiler shutdown system. This system provides no control; it simply monitors
the boiler level and signals shutdown if the level has reached its top or bottom
limit. The shutdown system is designed to work correctly regardless of boiler
control regime.
In the absence of sensor failure, it is simple to design a boiler shutdown

system. However, the problem states that all sensors can fail, and that no
properties are guaranteed of failed sensors. For example, all sensors can fail
and give consistent readings suggesting that the boiler level is acceptable, while
in fact the level is outside its safe limits. This example shows that, without
making failure assumptions, we could not hope to design a safe shutdown system.
Our approach is to assume that failures lead to inconsistencies between sensor
readings. We also assume that sensors that have not failed always report correct
values up to the given sensor accuracy.
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Our shutdown system uses the following strategy. All sensors are periodically
read. The readings are represented as intervals to take sensor accuracy into
account. Estimates of boiler parameters are calculated from the readings. The
estimates are then compared to discover inconsistencies, which, together with
the failure assumptions, are used to report failures. Sensors not reported as
failed are guaranteed to be functioning properly. From these sensors we make
the most accurate estimate of water level that is sure to contain the actual
water level. If the interval representing the level estimate is not within the safe
interval, shutdown is signalled.
Consider a scenario in which the boiler is working normally. The sensors will

report consistent values, so no failures will be reported. In these circumstances
the level sensor provides the best estimate of boiler level. Suppose that the
level sensor fails. By our failure assumptions it follows that some inconsistency
involving the level reading must occur. If the pump and steam sensors are not
reported as failed, then the boiler level can be estimated from the previous
level reading and estimates of the average pump and steam rates. For example,
to estimate the average pump rate, we assume that the average rate during a
sample period lies between the initial and final values for that period. This
assumption is valid if the sampling rate of the shutdown system is at least as
frequent as the sampling rate of the control system. If the pump or steam sensors
are also reported as failed, however, then our only safe choice is to assume that
the maximum possible change has occurred in water level during the last period.

3 A TLA Model of Data Fusion

In this section we present a formal model of data fusion. It is a general model
that can be instantiated for a particular application by supplying parameters
that specify the plant parameters, the sensors, the mapping from sensors to
plant parameters, and the relationships between plant parameters.
Our model is expressed in TLA – a Temporal Logic of Actions [5]. We briefly

describe here the subset of TLA that we need.
The atomic formulas of TLA are predicates and actions. A predicate is a

boolean expression built from variables and values, such as x > 1. A predicate
can be viewed as a function from states to booleans, where a state is a mapping
from variables to values. An action is a boolean expression built from variables,
primed variables, and values, such as x′ = x + 1. An action can be viewed
as a relation on states, in which primed variables refer to a “new” state and
unprimed variables to an “old” state. Thus, x′ = x+1 holds between two states
if the value of x in the new state is one greater than the value of x in the old
state.
The syntax of TLA formulas is as follows, where P ranges over predicates
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and A ranges over actions:

F ::= P 2A ¬F F1 ∧ F2 2F

Formulas are interpreted relative to an infinite sequence of states. Predicate
P holds of sequence σ if the first state of σ satisfies P . Formula 2A holds of
σ if A(s1, s2) holds of every pair (s1, s2) of states such that s1 is immediately
followed by s2 in σ. Formula ¬F holds of σ if F does not hold of σ. Formula
F1 ∧ F2 holds of σ if both F1 and F2 hold of σ. Finally, formula 2F holds of
σ if F holds of every suffix of σ.
Systems are represented in TLA by formulas of the form P ∧ 2A, where P

describes the initial condition. For example, x = 0 ∧ 2(x′ = x+1) represents a
system in which x is initially 0 and is incremented in every successive state. To
express the correctness condition that a property F holds of a system Sys, we
write Sys⇒ F . For example, letting Sys be the formula x = 0 ∧ 2(x′ = x+1),
we write Sys ⇒ 2(x′ > x) to express that x increases in every successive state
of Sys.
A notational feature of TLA not used here is [A]f , which holds of a pair of

states if either A holds or the value of the expression f is the same in both states.
This feature is needed only for program refinement, which is not considered here.
We also do not use the built-in fairness conditions of TLA, since we prove no
liveness properties. Some basic TLA proof rules, taken from [5], are listed in
Appendix A.

We use the notation
∧

i∈I Pi, where I
def
= {i1, . . . , in} is a finite index set and

Pi is a predicate, as an abbreviation that stands for Pi1 ∧ . . . ∧ Pin when n > 0,
and true otherwise. This notation, which is not defined as part of TLA, is used
instead of ∀i ∈ I.Pi to highlight that we are quantifying only over finite sets
and predicates. Similarly we use

∨

i∈I Pi. Finally, ]i.Pi stands for the number
of i’s for which the formula Pi holds.
Some model variables, such as the variable that represents the sensed boiler

level, take real intervals as values to account for measurement error. All model
variables of type interval have names with an initial upper-case letter. We define
intervals and interval expressions in terms of sets of reals. In the following, the
meaning of an interval expression e is given as a set [e] of reals:

[∅]
def
= ∅

[(x, y)]
def
= {z | x ≤ z ≤ y}

[A ⊆ B]
def
= [A] ⊆ [B]

[A ∪B]
def
= {z | ∃x, y ∈ [A] ∪ [B].x ≤ z ≤ y}

[A ∩B]
def
= {z | ∃x, y ∈ [A] ∩ [B].x ≤ z ≤ y}

[A+B]
def
= {x+ y | x ∈ [A] ∧ y ∈ [B]}
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[A−B]
def
= {x− y | x ∈ [A] ∧ y ∈ [B]}

[A · x]
def
= {y · x | y ∈ [A]}

[A/x]
def
= {y/x | y ∈ [A]}

Notice that the interval operators ∪, ∩, +, −, and · are monotonic, and / is
monotonic for A. For example, A ⊆ B ⇒ (A+C) ⊆ (B +C). For convenience,
certain plant variables that take scalar values are represented as intervals of the
form (x, x).
Now we are ready to present a general TLA model of data fusion. We begin

by describing the parameters of the model.

Par a finite set of plant parameter names

Sen a finite set of sensor names

param a mapping giving the parameters of each sensor

Est a finite set of estimators

Each estimator in Est is a function derived from a relationship between

plant parameters. Let e(x1 : p1, . . . , xm : pm) : p
def
= expr be a function, where

xi is a variable for plant parameter pi, and expr is an expression containing
only monotonic interval operators, constants, and free variables x1, . . . , xm. If
the following relationship holds:

xp ⊆ e(x1, . . . , xm)

then e is an estimator of p with arity p1 × · · · × pm → p. If e(x1 : p
′
1, . . . , xk :

p′k, xk+1 : pk+1, . . . , xn : pn) : p
′ def
= expr is a function where expr is restricted

as before, and the following relationship holds:

x′p ⊆ e(x1, . . . , xn)

then e is an estimator of p′ with arity p′1×· · ·×p
′
k×pk+1×· · ·×pn → p′. We write

e : a if e is an estimator with arity a. Relationships of the first form represent
static constraints on plant variables; those of the second form represent dynamic
constraints on plant variables. For example, suppose the static constraint out ⊆
2 · in holds of a system, expressing that the output is no more than twice the

input. The corresponding estimator, written e(x : in) : out
def
= 2 · x, shows how

the output can be estimated in terms of the input.
The variables of the data fusion model are the following:

fs failure status of sensor s (boolean)

rs reported status of sensor s (boolean)

Ap actual value of parameter p (real interval)
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Ms measurement from sensor s (real interval)

ESp,S estimates of parameter p from sensor set S (set of real intervals)

FEp final estimate of parameter p (real interval)

IS inconsistent estimates from sensor set S (set of real interval pairs)

The top-level structure of the model is as follows:

Fusion((Par, Sen, param,Est))
def
=

Assumptions ∧ Plant ∧ Estimate ∧ Consistency ∧ Report ∧ FinalEst

The formula Assumptions models failure assumptions. We assume that if a
sensor has not failed, then the interval it reports contains the actual value of
the parameter it senses. We also assume that the failure of a sensor “causes”
an inconsistency between estimates, in the sense that the inconsistency arises
in the estimates of a sensor set containing s, but not in the same set with s
removed.

Assumptions
def
=

∧

s∈Sen

(

¬fs ⇒ Aparam(s) ⊆Ms

)

∧
∧

s∈Sen



fs ⇒
∨

S⊆Sen

IS ⊂ IS∪{s}





The reasonableness of the second assumption depends on the ways in which
estimates are generated, which in turn depends on the model parameter Est.
The formula Plant models the relationships between plant variables given by

parameter Est. The formula is of the form F1 ∧ . . . Fn, where Fi is based on
estimator ei of Est = {e1, . . . , en}. If ei has arity e : p1 × · · · × pm → p, then Fi

is
Ap ⊆ e(Ap1

, . . . , Apm
).

If ei has arity e : p
′
1 × · · · × p′k × pk+1 × · · · × pn → p′, then Fi is

A′p ⊆ e(A′p1
, . . . , A′pk

, Apk+1
, . . . , Apn

).

The formula Estimate models how plant parameters can be estimated. It
has the form G ∧ H, where the following formula G expresses that estimates
can be made directly from sensor measurements:

∧

p∈Par

∧

S⊆Sen

∧

s∈S

(param(s) = p)⇒Ms ∈ ESp,S .

The formulaH expresses that estimates can be made indirectly using estimators.
H has the form H1 ∧ . . . ∧ Hn, where each Hi is based on estimator ei of
Est = {e1, . . . , en}. If ei has arity e : p1 × · · · × pm → p, then for all parameters
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p in Par and all sensor sets S included in Sen, Hi contains a conjunct of the
form

E1 ∈ ESp1,S ∧ . . . ∧ Em ∈ ESpm,S ⇒ e(E1, . . . , Em) ∈ ESp,S .

If ei has arity e : p
′
1 × · · · × p′k × pk+1 × · · · × pn → p′, then for all parameters p

in Par and all sensor sets S included in Sen, Hi contains a conjunct of the form

E1 ∈ ES′p1,S
∧ . . . ∧ Ek ∈ ES′pk,S

⇒ e(E1, . . . , Ek,FEpk+1
, . . . ,FEpn

) ∈ ES′p,S .

The final estimate variables FEp are used for estimates of parameters in the pre-
vious state because the failure status of sensors in the set S may differ between
the previous and next states.
The formula Consistency models estimate inconsistencies. Two estimates

are taken to be inconsistent if they do not overlap. The set IS contains all
inconsistencies found between estimates possible from the sensor set S.

Consistency
def
=

∧

S⊆Sen

IS = {(E1, E2) |
∨

p∈Par

∨

E1,E2∈ESp,S

E1 ∩ E2 6= ∅}

Notice that IS is monotonic: S1 ⊆ S2 ⇒ IS1
⊆ IS2

.
The formula Report models the criteria for sensor failure reporting. A sensor

s is reported as failed if there are inconsistencies arising from a set S containing
s, and if there are fewer inconsistencies arising from S itself.

Report
def
=

∧

s∈Sen

rs =
∨

S⊆Sen

IS ⊂ IS∪{s}

It is important that not all sensors found in every set S such that IS 6= ∅ are
reported because, since I is monotonic, this would mean that a single inconsis-
tency would lead to the reporting of all sensors as failed.
The formula FinalEst models the final estimates of plant parameters. The

final estimate of a parameter p is the intersection of all estimates that can be
made from sensors not reported as failed.

FinalEst
def
=

∧

p∈Par

FEp =
⋂

ESp,{s∈Sen|¬rs}

Figure 2 gives a graphical overview of the data fusion model. The boxes
informally describe the types of the variables. The names to the right of the
boxes give the variable names of the model. The arrows show how the values of
one variable are determined by values of other variables by parts of the model.

4 Modelling the Boiler System

The boiler system model has two components. The first is an instantiation
of the data fusion model; the second defines the shutdown condition from the
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Figure 2: Variables of the Data Fusion Model

estimated boiler level. We first define the boiler-specific parameters of the data
fusion component. The set Par contains the following plant parameter names:

l boiler level

s steam rate

pumpi ith pump on/off (1 ≤ i ≤ 4)

pavg average pump rate

savg average steam rate

np number of operating pumps

The set Sen contains the following sensor names:

lm level meter

sm steam meter

pii motor on/off indicator for pump i (1 ≤ i ≤ 4)

pmi pump monitor for pump i (1 ≤ i ≤ 4)

The function param maps sensors to the parameter they sense:

param(p)
def
=















l if p = lm
s if p = sm
pumpi if p = pii (1 ≤ i ≤ 4)
pumpi if p = pmi (1 ≤ i ≤ 4)
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Notice that some parameters are not sensed directly, and that others are sensed
by more than one sensor.
The set Est contains the following estimators:

e1() : l
def
= Ll

e2(x : l, y : pavg
′, z : savg′) : l′

def
= x+ (y − z)

e3(x : np, y : np
′) : pavg′

def
= (x ∪ y) ·K

e4(x : s) : savg
′ def
= x+ Lδs/2

e5(x :
∏

1≤i≤4

pumpi) : np
def
= ]i.(xi = (1, 1))

Here the interval constant Lp is the physical limit of parameter p, K is the
pump rate per pump, and Lδs is the maximum possible change in steam rate
during any sample period. To clarify the meaning of these estimators, we show
the data fusion formula Plant derived from them:

Plant
def
= Al ⊆ Ll

∧ A′l ⊆ Al + (A
′
pavg −A′savg)

∧ A′pavg ⊆ (Anp ∪A
′
np) ·K

∧ A′savg ⊆ As + Lδs/2

∧ Anp ⊆ ]i.Apumpi
= (1, 1)

The first conjunct simply states that the actual boiler level is always within
the interval Ll. The second is derived from the mass balance equation for the
boiler, which states that the water accumulated in the vessel is equal to the
water pumped in less the water lost as steam. The third states that the average
pump rate for a period must lie between the pump rates at the beginning and
end of the period. This fact depends on the assumption that at most one
change in pump state can occur during a single step. The fourth states that the
average steam rate for a period can only differ from the actual steam rate at the
beginning of the period by at most half the maximum change in steam rate. The
final conjunct relates the number-of-pumps parameter to the individual pump
parameters.
The data fusion formula Estimate derived from Est is as follows, where the

conjuncts are written according to the order of the cases described in Section 3:

Estimate
def
=

∧

S⊆Sen

(lm ∈ S ⇒Mlm ∈ ESl,S

∧ sm ∈ S ⇒Msm ∈ ESs,S

∧ pii ∈ S ⇒Mpii ∈ ESpumpi,S
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∧ pmi ∈ S ⇒Mpmi
∈ ESpumpi,S

∧ e1 ∈ ESl,S

∧ (
∧

1≤i≤4

Ei ∈ ESpumpi,S)⇒ e5(E1, E2, E3, E4) ∈ ESnp,S

∧ E1 ∈ FEpl
∧ E2 ∈ ES′pavg,S ∧ E3 ∈ ES′savg,S ⇒ e2(E1, E2, E3) ∈ ES′l,S

∧ E1 ∈ FEnp ∧ E2 ∈ ES′np,S ⇒ e3(E1, E2) ∈ ES′pavg,S

∧ E ∈ ES′s,S ⇒ e4(E) ∈ ES′savg,S)

For notational convenience, we collect the boiler parameters into a four-tuple:

Boiler
def
= (Sen, Par, param,Est)

The Shutdown component of the boiler system model states that the shut-
down variable up holds whenever the estimated boiler level is within the safe
bounds:

Shutdown
def
= up = FEl ⊆ Safe

The constant Safe is the safe boiler level interval.
The top-level boiler system description:

BSys
def
= 2(Fusion(Boiler) ∧ Shutdown)

5 Properties of the Boiler System

We will now prove some properties of the boiler system model. For all but one
of these properties the proofs depend only on the general data fusion model, not
the boiler-specific parameters. The first property concerns failure reporting: if
a sensor fails it should be reported. This property can be formalised in TLA as
follows:

Failures Reported
def
= 2

∧

s∈Sen

(fs ⇒ rs)

Theorem 1 BSys⇒ Failures Reported

Proof. Suppose fs. Then by a failure assumption in Assumptions there exists
an S such that

IS ⊂ IS∪{s}.

This is just the definition of reporting in Report, so rs. Therefore, by the
deduction principle, Fusion(Boiler) ∧ Shutdown⇒

∧

s∈Sen(fs ⇒ rs). TLA rule
STL4 then gives 2(Fusion(Boiler) ∧ Shutdown)⇒ 2

∧

s∈Sen(fs ⇒ rs). 2
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The most important property of the boiler system is that if the shutdown
variable up is true, then the boiler level is within its safe bounds. This property
can be formalised by

Safety
def
= 2(up⇒ Al ⊆ Safe).

We prove Safety by showing two general properties of estimation in the
data fusion model. First, all estimates of a parameter from non-failed sensors
contain the actual parameter value. Secondly, as a simple consequence, the final
estimate of a parameter always contains the actual parameter value.

Lemma 1 BSys⇒ 2

(

∧

p∈Par

∧

S⊆Sen

∧

E∈ESp,S
(
∧

s∈S ¬rs)⇒ Ap ⊆ E
)

Proof. By induction over the length of inference of ESp,S from Fusion. We
suppose, for an arbitrary state, that E ∈ ESp,S has been deduced from Fusion.
We then prove that Ap is contained in E, i.e. that E is a good estimate, from
the induction hypothesis that all estimates deduced from shorter inferences are
also good.
For the base case we have

Ms ∈ ESp,S ,

where s ∈ S and param(s) = p. By assumption, ¬rs. By Theorem 1 we know
that ¬rs ⇒ ¬fs, and then from the assumption about sensors in Assumptions

we have Ap ⊆Ms.
For the first inductive case we have

e(E1, . . . , Em) ∈ ESp,S

where Ei ∈ ESpi,S , for 1 ≤ i ≤ m. Since Ei ∈ ESpi,S was proved by a shorter
inference, by the induction hypothesis and

∧

s∈S ¬rs we get Api
⊆ Ei for 1 ≤

i ≤ m. Then
Ap ⊆ e(Ap1

, . . . , Apm
) ⊆ e(E1, . . . , Em)

by an inequality in Plant and the monotonicity of estimators.
For the second inductive case we have

e(E1, . . . , Ek,FEpk+1
, . . . ,FEpn

) ∈ ES′p,S

where Ei ∈ ES′pi,S
, for 1 ≤ i ≤ k. As in the last case we obtain A′pi

⊆ E′i for
1 ≤ i ≤ k by the induction hypothesis. For FEpi

we have

FEpi
=
⋂

ESpi,{s∈Sen|¬rs}.

Suppose E ∈ ESpi,{s∈Sen|¬rs}. Since this is proved by a shorter inference,
by the induction hypothesis we obtain Api

⊆ E. Therefore Api
⊆ FEpi

for
k + 1 ≤ i ≤ n. Then

A′p ⊆ e(A′p1
, . . . , A′pk

, Apk+1
, . . . , Apn

) ⊆ e(E1, . . . , Ek,FEpk+1
, . . . ,FEpn

)
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by an inequality in Plant and the monotonicity of estimators. 2

Lemma 2 BSys⇒ 2

(

∧

p∈Par Ap ⊆ FEp

)

Proof. By definition, FEp =
⋂

ESp,{s∈Sen|¬rs}. Lemma 1 tells us, for each E
in ESp,{s∈Sen|¬rs}, that Ap ⊆ E. Therefore Ap ⊆ FEp. 2

Having shown that final estimates always contain the actual parameter value,
it is easy to see that the shutdown strategy is safe.

Theorem 2 BSys⇒ Safety

Proof. By the definition of Shutdown, up ⇒ FEl ⊆ Safe. By Lemma 2, Al ⊆
FEl. Therefore, by the transitivity of ⊆ and TLA rule STL5 we have BSys ⇒
2(up⇒ Al ⊆ Safe). 2

The Failures Reported and Safety properties would be trivially satisfied by a
system that reports all sensors as failed. The final property we show of the boiler
model is that there are no false alarms: at least one of the sensors reported as
failed must have actually failed. Letting Sr be {s ∈ Sen | rs}, this property can
be formalised as follows:

No False Alarms
def
= 2(Sr 6= ∅ ⇒

∨

s∈Sr

fs)

Before proving that the boiler has this property, we show that inconsistencies
can only arise from a set of sensors if some sensor in the set has failed.

Lemma 3 BSys⇒
∧

S⊆Sen
(

IS 6= ∅ ⇒
∨

s∈S fs
)

Proof. By contradiction. Assume that IS 6= ∅ and
∧

s∈S ¬fs. By the first
assumption and Consistency there exists a p in Par and E1,E2 in ESp,S such
that E1 ∩E2 = ∅. By the second assumption and Theorem 1, which states that
all failures are reported,

∧

s∈S ¬fs. Then by Lemma 1 we have that Ap ⊆ E1

and Ap ⊆ E2, so E1 ∩ E2 6= ∅, a contradiction. 2

Theorem 3 BSys⇒ No False Alarms

Proof. By contradiction. Assume that Sr 6= ∅ and
∧

s∈Sr
¬fs. By the first

assumption and Reporting there exists an S contained in Sen such that IS 6= ∅,
and therefore by Lemma 3 there exists an s in Sen such that fs. By the second
assumption this sensor s must not be in Sr. But this contradicts Theorem 1,
which states that if fs, then rs and hence s ∈ Sr. 2
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Figure 3: Triple-Modular Redundancy

6 Modelling Triple-Modular Redundancy

The data fusion model of Section 3 uses a pessimistic policy for reporting: if an
inconsistency is ever introduced into a set of estimates by taking into account
an additional sensor s, then s is reported as failed. This policy is compatible
with the weak failure assumptions of the model. The data fusion model can be
modified when stronger failure assumptions are made.
Consider the technique of triple-modular redundancy (TMR) [4]. In TMR

(see Figure 3), an input (in) is sent to three modules (m1,m2, and m3), which
each compute a result (x1,x2, and x3) and send it to a voter. The voter produces
the majority value as output (out). If the voter detects a difference between the
majority output and the input of module i, then a failure (rmi

) is reported.
Note that TMR provides both failure detection and fault tolerance.
Suppose we try to model the voter with our data fusion model. The voter

input ports are taken as sensors, and the input is taken as the sole plant pa-
rameter. The data fusion parameters are then:

Sen
def
= {s1, s2, s3}

Par
def
= {in}

param(si)
def
= in for 1 ≤ i ≤ 3

Est
def
= ∅

Imagine that in = 10, that sensors 1 and 2 have not failed and therefore
output 10, and that sensor 3 has failed and outputs 20. According to our data
fusion model, all sensors are reported as failed, because

Is1,s2,s3 = {10, 20}

Is1,s2 = ∅

Is1,s3 = {10, 20}
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Is2,s3 = {10, 20}

Is1 = ∅

Is2 = ∅

Is3 = ∅

Sensor 1 is reported because Is3 = ∅ but Is1,s3 = {10, 20}, suggesting that s1

has caused a failure. It is easy to find the sets that lead to the reporting of
sensors 2 and 3 as also failed.
The erroneous reporting of sensors 1 and 2 occurs because our data fusion

model makes only weak failure assumptions. We can make the data fusion model
work for TMR by strengthening the failure assumptions and failure-reporting
conditions. We add to Assumptions the following conjunct, which expresses a
single-failure assumption:

fsi
⇒

∧

j∈{1,2,3}

(

j 6= i⇒ ¬fsj

)

The formula Report is changed to express that a sensor s is reported failed if
inconsistencies arise from all pairs of sensors containing s:

rs =
∧

S⊇{s}

(|S| = 2⇒ IS 6= ∅)

The properties Failures Reported and No False Alarms hold of this revised
model. However, they hold because each estimate comes from exactly one sen-
sor, so that every inconsistency involves exactly two sensors. Thus, these proper-
ties depend on the TMR-specific parameters of the revised model. The property
2(Ain ⊆ FEin) also holds of the TMR model. Informally, it holds because if
one module fails, then by the single failure assumption the others do not, and
their values must be the same correct value. Then the failed module is reported,
and the others are not, causing the correct value to be output.

7 Related Work

The data fusion problem appears to be known as analytical redundancy in control
theory [8, 9]. The main difference between the two approaches is that analytical
redundancy is a probabilistic decision process, while data fusion is a logical
one. In the data fusion model presented here, only sensor failure is handled,
while some formulations of analytical redundancy handle sensor, component,
and actuator failure. A more technical distinction is found in the notion of
consistency in the two approaches. In our data fusion model, consistency is
absolute: two estimates, represented by intervals, are consistent if they overlap.
In analytical redundancy consistency is statistical: two estimates, represented
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as points in state space, are relatively consistent if the distance between them
is small.
Our boiler system example is a hybrid system [10], as it contains interact-

ing digital and analog devices. The only problem we faced in modelling the
continuous boiler behaviour within our discrete boiler system model was to ap-
proximate the average pump and steam rates with sampled pump and steam
rates. To approximate these rates we made two assumptions about the sampling
period. First, that a pump can be changed at most once during any sampling
period, and secondly, that the maximum change in steam rate during a sampling
period is bounded by the constant LδS . We made no other assumptions about
the maximum time between samples and did not assume a uniform sampling
rate.
The data fusion model can be compared to software fault-tolerance schemes,

such as recovery blocks [11, 12]. In a recovery block, alternative computations
are tried in turn until an acceptable result is obtained. Here, all alternative
computations are tried, and the intersection of the acceptable results are com-
bined to give the narrowest possible estimate. Since data fusion is also used for
fault detection, it is important that all computations are performed even after
an acceptable result is found.
We have mentioned that the data fusion model provides for the combination

of statistical and logical methods. The likelihood that the properties of a data
fusion model hold is bounded from below by the likelihood that the failure
assumptions hold. The analysis of a storage management system in [13] also
combines logical and probabilistic reasoning, but there failures are able to make
data unavailable, but not corrupted. For example, if a processor crashes during
a disk write then the half-written block is assumed to be unreadable. The
correctness of the system is proved from the assumption that at least one disk
is always error-free.

8 Conclusions

We have presented a general model of data fusion and have used it to prove safety
properties of a generic boiler system. There are other desirable properties of
the data fusion model that we have neither stated nor proved. For example, we
would like the set of estimates for every parameter and sensor set to be finite
and unique. We believe this property holds of our model. We would also like
to show that our final estimates are optimal in the sense of being as accurate as
possible in light of actual sensor failure.
In data fusion models a key issue is the choice of compatible failure assump-

tions and reporting conditions. For example, it was easy to prove that failures
are reported in our data fusion model because the assumptions and reporting-
conditions are similar. In the TMR example of Section 6 the assumptions and
reporting conditions were quite different. Ideally, a data fusion model would
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have failure assumptions that are easy to assess, and reporting conditions that
are easy to compute. Another key issue concerns the allowed failure modes of
sensors. We have assumed that arbitrary failures are possible. What could be
shown if we were to assume that sensors have fail-stop [14] behaviour?
We claim that our approach to data fusion allows logical and probabilistic

reasoning to be combined. However, we have not attempted to estimate the like-
lihood that failure assumptions of our model hold for the boiler system. While
it might be easy to estimate that sensors report values within their specified ac-
curacy when they have not failed, it would probably be difficult to estimate that
failed sensors lead to inconsistencies, as a detailed knowledge of the likelihood
and behaviour of failure modes is needed. Furthermore, the system context is
relevant. For example, a sensor that fails to a 0 reading will produce a consistent
failure in contexts where a 0 reading is expected.
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A Some TLA Proof Rules

STL1
F provable by propositional logic

F

STL2 ` 2F ⇒ F

STL3 ` 22F ≡ 2F

STL4
F ⇒ G

2F ⇒ 2G

STL5 ` 2(F ∧ G) ≡ (2F ) ∧ (2G)

STL6 ` (32F ) ∧ (32G) ≡ 32(F ∧ G)

INV1
P ∧ A ⇒ P ′

P ∧ 2A ⇒ 2P

INV2 ` 2P ⇒ (2A ≡ 2(A ∧ P ∧ P ′))
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