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Abstract—The points-to analysis problem is to find the pointer relationships that could arise during program execution. Many points-to

analysis algorithms exist, each making a particular trade off between cost of the analysis and precision of the results. In this paper, we

show how points-to analysis algorithms can be defined as transformed versions of an exact algorithm. We present a set of program

transformations over a general program model and use them to define some existing points-to analysis algorithms. Doing so makes

explicit the approximations involved in these algorithms. We also show how the transformations can be used to define new points-to

analysis algorithms. Our transformations are generic and may be useful in the design of other program analysis algorithms.

Index Terms—Points-to analysis, program analysis, reachability analysis, model checking.
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1 INTRODUCTION

POINTS-TO analysis is an established topic in program
analysis [16]. Algorithms that carry out points-to

analysis efficiently on large programs have been developed
[13], [7], and some commercial compilers incorporate
optimizations that rely on points-to analysis [11]. Also,
points-to analyses have been formalized in the frameworks
of iterative data-flow analysis [21], set constraints [10],
graph reachability [27], and logic programming [29].

Despite all this, one could ask for something more. It is
well known that efficient algorithms for points-to analysis
give approximate results, but less well known is the degree
or nature of the approximation relative to exact results that
could be computed although at high cost. It is rare to see
these approximations spelled out and their properties
studied. Often, existing algorithms apply a series of
independent approximations all at once, even though it is
possible to use them in isolation. Thus, it is hard to
compare algorithms and understand the significance of the
analysis results.

In this paper, we seek a detailed understanding of how
efficiency is achieved in points-to analysis or, put another
way, we seek an understanding of the approximations that
are made in points-to analysis. Our approach is to first
define points-to analysis as a reachability analysis problem
over a labeled transition system (LTS). Using reachability
analysis directly would, in practice, be unnecessarily
expensive for points-to analysis. However, the framework
is still useful because, within it, we can understand how
efficiency is achieved in common points-to analysis algo-
rithms. Next, we define a set of program transformations on
a general program model. For each transformation, we
show the approximation that is introduced with respect to
reachability properties. We then show how the transforma-
tions can be applied to define some of the existing points-to

analysis algorithms, such as Andersen’s [1] and Hind et al.’s
[15]. In effect, we show how the efficient points-to analysis
of a program can be described as reachability analysis on a
transformed version of the program. Our main contribu-
tions are the following:

1. We define five program transformations, combina-
tions of which are used implicitly in several popular
points-to analysis algorithms. With one exception,
these transformations are generic, in the sense that
they do not pertain specifically to points-to analysis.

2. We clarify the relationships between some of the
existing points-to analysis algorithms by refactoring
them as various combinations of generic program
transformations.

In the following section, we present a high-level sketch of
how efficient points-to analysis algorithms can be viewed as
approximate reachability analysis algorithms. In Section 3,
we define the points-to analysis problem. In Section 4, we
define a program model; in Section 5, we show how pointer
programs are captured in the model; and, in Section 6, we
define reachability properties for the model. In the core of
the paper, Section 7, we define five program transforma-
tions: flow-insensitivity, state accumulation, state merging,
local accumulation, and data-flow approximation. In Sec-
tion 8, we briefly describe three existing algorithms for
points-to analysis and show how these can be seen as
reachability analyses of transformed programs. Section 9
briefly summarizes and discusses whether our program
transformations can be viewed as abstract interpretations.

2 OVERVIEW

The points-to analysis problem is to find the pointer
relationships that could arise during program execution.
Consider a points-to analysis of the simple program in
Fig. 1. An analysis of this program with Andersen’s
algorithm [1] works by incrementally building up a set of
points-to facts. Throughout this paper, we use the notation
p! q to denote that the variable p points to, i.e., contains
the address of, the variable q. We begin with the empty set
and then, in one step, add the effect of all statements to
obtain fs! q; x! y; s! p; x! zg and take another step to
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obtain fs!q; x!y; s!p; x!z; p!y; p!z; q! y; q! zg.
Taking another step would not enlarge the set of points-to
facts, so the algorithm terminates.

Fig. 2 (left) depicts the analysis graphically. The nodes of
the figure represent the sets of points-to facts at successive
steps of analysis. The final set is only an approximation of
the points-to relationships that can actually occur during
execution of the program. For example, it is not possible for
p to point to y during any program execution, but p! y is
shown in the final set. On the other hand, if a variable can
point to another variable during program execution, this
fact is in the final set.

Now, consider an exact points-to analysis of this
program, shown on the right of Fig. 2. Each node represents
the set of points-to facts that hold at a particular point in the
program’s execution. Each edge represents the execution of
a program statement and is labeled with the statement.
Asking whether p can point to y during program execution
amounts to asking whether a node containing p! y can be
reached from the node representing the initial program
state (ignoring the outcome of conditionals).

The two graphs in Fig. 2 are similar. Both the nodes
contain sets of points-to facts, and the edges represent the
effect of program statements. This observation leads us to
ask whether Andersen’s analysis can be regarded as a kind
of approximate reachability analysis. In particular, can the
program be transformed so that reachability analysis of the
transformed program gives us Andersen’s analysis?

In answering this question, it is helpful to consider the
differences between the graphs of Fig. 2. In the left-hand
graph, there is no branching, the statement order in the
program is ignored, each node has an outgoing edge, and
no points-to fact is ever removed through an edge. In the
right-hand graph, branching does occur, statement order
matters, and some nodes have no outgoing edges. Although
not illustrated by the right-hand graph, in an exact analysis,
a points-to fact at a node can be deleted through an edge.
The program transformations described later in the paper
are related to these features. For example, we define
program transformations that have the effect of eliminating
branching in the program’s graph, ensuring that a program
state can only “grow” through a program transition, and
ignoring program statement order.

In this paper, we study how various points-to algorithms
can be framed as approximate reachability problems. One
benefit of this work is in making explicit the approxima-
tions behind the algorithms. But, more importantly, the
work suggests how one might derive approximate solutions

to other program analysis problems that can be defined as
reachability problems.

3 POINTS-TO ANALYSIS

We define the points-to analysis problem as a variant of the
intraprocedural, may, flow sensitive, pointer aliasing problem
defined by Landi and Ryder [22].

A control-flow graph (CFG) is a graph representation of a
program in which nodes are program statements and edges
represent control flow. Fig. 3 shows the CFG of the program
in Fig. 1. Every CFG contains distinguished Entry and Exit

statements. A conditional statement is modeled as non-
deterministic control flow from the preceding statement to
the statements of the branches.

The key observation about CFGs is that control and data
are independent. Control flow is defined by the edges of the
CFG and data update by the statements at the nodes.

A pointer program is a CFG in which statements come in
only four forms: p = &q, p = q, p = *q, and *p = q. These
statements borrow syntax from the C language. The &

operator takes the address of a variable and the * operator
dereferences a pointer. Nonpointer statements are not used,
and pointer statements with multiple *s in front of variable
names are rewritten to these four cases by introducing
temporary variables. This reduction is not precise for the
flow-insensitive case [17].
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Fig. 1. A C program involving pointers.

Fig. 2. Andersen’s analysis (left) and an exact analysis (right).

Fig. 3. An example control-flow graph.



Definition 1. Given a CFG, the precise points-to problem is to
determine whether a given variable p points to another variable q
after executing some path from Entry to a given node n.

We have omitted two important features of real-world
programs from our problem definition. First, we do not
have procedure call and return statements in our CFGs.
Rather, we fit a program into our restricted CFGs by
approximating calls and returns by gotos, without regard to
valid interprocedural execution [30]. Many papers, e.g.,
[21], [9], have presented ways to avoid this imprecision,
albeit approximately. Our second omission is that we do not
have malloc statements in our CFGs. In fact, adding dynamic
memory allocation to our program representation would
make the precise may-alias problem undecidable ([3],
Theorem 2). Rather, we replace each occurrence of malloc
by a static address to fit our restricted CFGs. Several papers,
e.g., [21], [8], have presented less drastic, yet computable
approximations of dynamic memory allocation.

Even under the restrictions described above, the precise
points-to analysis problem is NP-hard for CFGs with
multilevel pointers [22], [20]. By multilevel pointers, we
mean that pointers can contain addresses of pointer
variables. Practical polynomial-time pointer analysis algo-
rithms for C-like languages compute only approximate
answers to the points-to problem.

4 PROGRAM MODEL

We now define a simple, abstract program model. We say
“program model” and not “programming language”
because, for simplicity, we say nothing about syntax but
instead work directly at the semantic level of sets and
functions.

Assume as given a set State of states. A program over
State is a set of statements, each having the form ðen; nextÞ,
where en : State! Bool is an “enablement” predicate and
next : State! State is a “next state” or “state update”
function. Intuitively, if predicate en holds at the current
program state, then next can be applied to obtain a new
state. We write ProgðStateÞ for the set of programs over
State.

The meaning of a program is defined as a labeled
transition system (LTS), which is a directed graph in which

a node represents a program state and an edge represents
the effect of a program statement.

Definition 2. Let P be a program over State. The LTS for P over
State, written ðP; StateÞ, has State as its node set and a
transition relation defined as follows:

s! s0 ¼4 9ðen; nextÞ 2 P s:t: enðsÞ and s0 ¼ nextðsÞ:

We write s!� s0 if there exists a path from s to s0 within
an LTS.

Some of the program transformations we define require
that control and data are independent, as in CFGs. We
therefore define a class of programs with this property. A
Control-Data program (CD program for short) over Control�
Data is a program in which each statement can be written in
the form ðen; ðcnext; dnextÞÞ, where en : Control! Bool is
an enablement predicate, cnext : Control! Control is a
“control update” function, and dnext : Data! Data is a
“data update” function. We write CDðControl;DataÞ for the
set of CD programs over Control�Data.

Similarly, some of our program transformations require
a simple and fixed control structure. In particular, the
requirement is that the enablement predicate compares
the current control value to a constant and that the
control update function maps the current control value to
a constant. Programs obtained by translation from CFGs
have this property. We write atc for the enablement
predicate �c0:ðc ¼ c0Þ and toc for the control update
function �c0:c. We write CFGðControl;DataÞ for the set
of CD programs over Control�Data for which every
statement can be written in the form ðatc; ðtoc0 ; dnextÞÞ,
and call these programs CFG programs.

We now describe how a CFG can be translated to a CFG
program. For this purpose, it is convenient to use an
alternative graph representation of the CFG in which nodes
represent control points and edges are labeled with
statements. Fig. 4 shows the CFG of Fig. 3 in this
representation. From such a graph, it is simple to derive a
program. Let Control be the set of node labels in the graph
and assume that semantic function ½ � maps statements in
the graph to functions from Data to Data. Then, the
program in CFGðControl;DataÞ representing the graph has
a statement ðatm; ðton; ½stmt�ÞÞ for every edge from m to n
labeled with stmt in the graph. In later sections, we always
present CFGs in the style of Fig. 4.

Translating the CFG in Fig. 3 gives the CFG program of
Table 1, where each line describes a program statement of
the form ðen; ðcnext; dnextÞÞ. Note that en and cnext have the
special form of atc and toc, respectively. The first statement
can be read as “if at control point 1, then apply the data
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Fig. 4. An alternative representation of the CFG in Fig. 3.

TABLE 1
The CFG Program for the CFG in Fig. 3



update meant by statement s = &q and move to new control
point 2.”

The program transformations we define in later sections
are sometimes defined on basic programs, sometimes on
CD programs, and sometimes on CFG programs. Clearly, a
transformation defined on basic programs can be applied to
CD and CFG programs. For example, suppose we have a
CD program P in CDðControl;DataÞ. We can derive a
program P 0 in ProgðControl�DataÞ by deriving from each
statement ðen;ðcnext; dnextÞÞ ofP a statement ðen0;nextÞofP 0,
where en0ðc; dÞ ¼ enðcÞ and nextðc; dÞ ¼ ðcnextðcÞ; dnextðdÞÞ.
A transformation defined on CD programs can be directly
applied to CFG programs.

5 SEMANTICS oF POINTER STATEMENTS

Our translation of CFGs to programs is defined relative to a
semantics that maps statements to data update functions. In
this section, we study the semantics of pointer statements.
We first present a basic semantics for pointer statements in
which variable bindings are represented as a variable-to-
variable mapping. However, points-to analyses are usually
based on a semantics in which variable bindings are
represented by a binary relation on variables. We therefore
consider how one might derive such a relation semantics for
pointer statements from the basic semantics. We show a
general method for performing the derivation and argue
that it is natural because, in a specific formal sense, it gives
the most precise relation semantics that is safe relative to
the basic semantics. Finally, we show that our derived
relation semantics for pointer statements is more precise
than a relation semantics commonly used in the points-to
analysis literature. The material in this section is worked
out in detail because it is useful to see how a pointer
statement semantics itself can be a hidden source of
approximation in points-to analysis.

5.1 Basic Semantics

In denotational semantics, it is common to model variable
bindings as an “environment” or “store” that maps
variables to their values. Given a set Var of variables and
a set V al of values, we define Env ¼ Var! Val? as the set

of environments, where Val? is the set Val extended with
the distinguished constant ?. In the case of pointer
statements, the set Val of values is Var. We now define
the meaning ½stmt� of each pointer statement as a mapping
from environments to environments. When e is an
environment, we write e½x :¼ y� for the environment that
is like e except that x is mapped to y and e? for the
environment that maps all variables to ?.

½p ¼ &q�ðeÞ ¼ e½p :¼ q�
½p ¼ q�ðeÞ ¼ e½p :¼ eðqÞ�
½p ¼ �q�ðeÞ ¼ if eðqÞ¼? then e½p :¼?�else e½p :¼ eðeðqÞÞ�
½�p ¼ q�ðeÞ ¼ if eðpÞ ¼ ? then e? else e½eðpÞ :¼ eðqÞ�

Fig. 5 provides some intuition about the pointer
statements. For each statement, there is a graph showing
how the statement modifies a particular environment. The
solid arrows represent the environment prior to statement
execution; the dotted and solid arrows represent the
environment after statement execution. If we define an
order � on environments by e1 � e2 iff for all variables x,
e1ðxÞ ¼ ? or e1ðxÞ ¼ e2ðxÞ, then each pointer statement is
monotonic.

Using the semantics above, a state of a pointer program
has the form ðc; eÞ, where c is a control point and e is an
environment. Fig. 6 shows an LTS for the CFG of Fig. 3.
Each state is shown as a rounded rectangle, with the control
point on the left and the environment on the right. For each
program variable x, we write x! y if the environment
maps x to y and write nothing if the environment maps x to
?. Although a CFG and its corresponding LTS may seem to
have similar shapes, they are quite different. Each edge in
the CFG represents a unique control point, while multiple
nodes in the LTS can correspond to a single control point.
For example, in the LTS of Fig. 6, two states are associated
with control point 6.

5.2 Relation Semantics

Points-to analysis algorithms typically model pointer
relationships not as environments, but as relations, as in
Fig. 2. One motivation for doing so is to support a natural
sense of “merging” or “joining” information about pointer
variables.

Given a set Var of variables and a set Val of values, we
define Rel ¼ PowðVar� ValÞ as the set of relations over Var
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Fig. 5. An informal presentation of pointer statement semantics.

Fig. 6. The labeled transition system for the CFG of Fig. 3.



and Val. We can derive a semantics for statements over
relations from a semantics for statements over environ-
ments. Informally, the relation semantics is as follows:
Given a relation R, consider each environment e that is
compatible with R, apply the basic semantics of the
statement to each e, and then combine the resulting
environments. The function � maps a relation R to the set
of compatible environments; the function � forms a relation
from a set E of environments:

�ðRÞ ¼ fe j 8x 2 Var : eðxÞ 2 Val) ðx; eðxÞÞ 2 Rg;
�ðEÞ ¼ fðx; eðxÞÞ j e 2 E and x 2 Var and eðxÞ 2 Valg:

Then, if ½stmt� : Env! Env is the basic semantics for
statement stmt, the derived relation semantics for stmt is
½stmt�rel : Rel! Rel, defined as follows:

½stmt�relðRÞ ¼ �f½stmt�ðeÞ j e 2 �ðRÞg:

Other relation semantics are possible, but, by the theory of

abstract interpretation [6], [18], this semantics is the most

precise semantics that is safe with respect to the basic

semantics. To briefly justify this claim, we note that functions

� and � form a Galois insertion, where an element of Rel is

regarded as an abstract representation of a set of elements of

Env. The relation semantics ½ �rel is a safe approximation of

basic semantics ½ � if it satisfies the condition that f½stmt�ðeÞ j
e in Eg � �ð½stmt�relð�ðEÞÞÞ for every set E of environments.

Lemma 2 of [18] tells us that not only is ½ �rel safe, but it is the
most precise of all safe relation semantics. In other words,

applying any other safe relation semantics to a relationRwill

yield a relation larger in subset ordering than what one

would obtain by applying ½ �rel.
Note that ½stmt�rel is monotonic with respect to the subset

inclusion ordering on Rel. This fact does not depend on
whether ½stmt� is monotonic.

Definition 3. Suppose P 2CDðControl; Var!Val?Þ. Then, the
relation-based version RelðP Þ of P is a program in
CDðControl;PowðVar�ValÞÞ that contains, for each statement
ðen; ðcnext; dnextÞÞ of P , a statement ðen; ðcnext; dnextrelÞÞ.

If a state is reachable in P , then a corresponding state is
reachable in RelðP Þ. To make this precise, we use the
functions � and � defined earlier in this section. We say that
a state ðc; eÞ of a program P and a state ðc; RÞ of RelðP Þ
correspond if �ðfegÞ � R.

Proposition 1. Suppose P 2 CDðControl; Var! Val?Þ. If state
s of P corresponds to a state t of RelðP Þ and s0 is reachable
from s, then a state t0 corresponding to s0 is reachable from t.

Thus, RelðP Þ is an approximation of program P . For
points-to analysis, this means that an analysis using relation
semantics for pointer statements may give a result that
includes pointer relationships that could not actually occur.

5.3 Customary Pointer Statement Semantics

In the previous section, we showed how to derive a
relation-based statement semantics from an environment-
based semantics. This derivation can be used with any
environment-based semantics, but we are interested in

using it to derive a relation-based semantics for pointer
statements. If stmt is a pointer statement and ½stmt� is the
interpretation of the statement as a mapping from environ-
ments to environments, then ½stmt�rel is the interpretation of
the statement as a mapping from relations to relations.

A drawback of a relation-based semantics for pointer
statements defined in this way is that it is hard to read. For
example, suppose we want to understand the relation-
based interpretation of statement ½p ¼ &q�. The definition of
the previous section tells us that

½p ¼ &q�relðRÞ ¼ �ðfe½p :¼ q� j e 2 �ðRÞgÞ:

It is more convenient to have a semantic definition that
works directly on relations. For example, the right side of
the definition above can equivalently be written as
ðR� fðp; rÞ j ðp; rÞ 2 RgÞ [ fðp; qÞg. We now present a direct
relation-based semantics for pointer statements.

To simplify presentation of the semantics, we adopt
some notation. We write R n x for the relation that is like R

except that all pairs of the form ðx; Þ are removed. If R1 and
R2 are relations, then we write R1 v R2 to mean that R1 �
R2 and, if ðx; y1Þ and ðx; y2Þ are elements of R1, then y1 ¼ y2.

For pointer statements, we refer to the binary relation R

on variables that is updated by a statement as a points-to

relation. In keeping with the notation used so far in this
paper, we write an element of a points-to relation as p! q

rather than ðp; qÞ. We now define the meaning of each
pointer statement stmt as a map ½½stmt�� from points-to
relations to points-to relations.

½½p ¼ &q��ðRÞ ¼ R n p [ fp! qg
½½p ¼ q��ðRÞ ¼ R n p [ fp! r j q ! r 2 Rg
½½p ¼ �q��ðRÞ ¼ R n p [ fp! r j 9s : fq ! s; s! rg v Rg
½½�p ¼ q��ðRÞ ¼ fr! s j fp! r; q ! sg v Rg [

fr! s j fr! s; p! tg v R and r 6¼ tg

The definition for p ¼ &q says to update the points-to
relation R by removing all points-to facts of the form p!
and adding p! q.

The definition for p ¼ q says to update R by removing all
points-to facts of the form p! and adding p! r for every
r pointed to by q.

The definition for p ¼ ?q says to update R by removing
all points-to facts of the form p! and adding p! r for all
variables r under the following conditions: 1) there exists a
variable s such that q! s, 2) s! r, and 3) if s happens to
be the same as q, then r can only be q. This third
requirement is needed to ensure that the direct relation
semantics matches the indirect relation semantics of
Section 5.2. It will be explained more below.

The definition for ?p ¼ q is harder to paraphrase. The
first clause of the union introduces new points-to facts: If p
points to some r and q points to some s, then add r! s,
except if p and q are the same, then r and s must also be the
same. The second clause of the union copies existing facts in
R, less the ones that must be removed: A fact of the form
t! must be removed from R if the only points-to fact in R

of the form p! is p! t. Note also that if R contains no
fact of the form p! , then no points-to facts in R are
copied by the second clause.
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Proposition 2. Let stmt be a pointer statement and R �
Var� Var be a points-to relation. Then,

½½stmt��ðRÞ ¼ ½stmt�relðRÞ:

This semantics for pointer statements on relations differs
from the semantics commonly found in the points-to
analysis literature (e.g., in [15] and [1]). The difference is
entirely captured by our use of the v relation. If the
standard subset relation � is used instead, then one gets
the customary semantics.

We prefer our relation semantics to the customary one
because, as explained above, our semantics is the most
precise relation semantics that is safe with respect to the
basic semantics. To see that using � instead of v would
lose precision, suppose we have points-to relation R ¼ fq !
q; q! rg and pointer statement p ¼ �q. Applying ½½p ¼ ?q�� to
R yields R [ fp! qg. If � were used instead of v , then
applying ½½p ¼ ?q�� to R would yield R [ fp! q; p! rg.
Notice that the use of v in the definition of ½½p ¼ ?q�� prevents
us from selecting q for s together with r for r, which would
have (imprecisely) given p! r.

However, because we want to relate our work to existing
algorithms, we define the customary semantic function k k
for pointer statements as the function that is like ½½ �� above
except that � is used in place of v .

Definition 4. Suppose P in CDðControl; Var! Var?Þ is a
pointer program. Then, RelPtrðP Þ of P is a program in
CDðControl;PowðVar�VarÞÞ that contains, for each statement
ðen; ðcnext; ½stmt�ÞÞ of P , a statement ðen; ðcnext; kstmtkÞÞ.

Given a CD program P on pointer statements, program
RelPtrðP Þ is a version of P that operates on points-to
relations using the customary semantics for pointer state-
ments. In contrast, RelðP Þ is a version of P that operates on
points-to relations using the relation semantics for pointer
statements. Also, while Relð Þ can be applied to any
CD program on environments, RelPtrð Þ can be applied
only to CD programs on pointer statements.

5.4 Ordering Program States

Some of the program transformations we define assume
that an order relation � is defined on program states such
that ðState;�Þ is a lattice. If we have a CD program in
CDðControl;DataÞ and an order �c exists for control values
and �d for data values such that ðControl;�cÞ and
ðData;�dÞ are lattices, then we can take the product of
these lattices as the lattice on states. So, if ðc1; d1Þ and ðc2; d2Þ
are states of the program, then ðc1; d1Þ � ðc2; d2Þ iff c1 �c c2
and d1 �d d2. The join operation _ of the product lattice can

be derived from the join operations _c and _d of the control
and data lattices by ðc1; d1Þ _ ðc2; d2Þ ¼ ðc1 _d c2; d1 _d d2Þ.

If we have a CD program in which the data values are
points-to relations, then the data values naturally form a
lattice under subset ordering. However, if the control values
are single control points corresponding to nodes in a CFG,
then there is no natural ordering on control values. In this
case, sets of control points can be used instead of single
control points.

Definition 5. Suppose P 2 CDðControl;DataÞ. Then, CSetðP Þ
of P is a program in CDðPowðControlÞ; DataÞ that contains,
for each statement ðen; ðcnext; dnextÞÞ of P , a statement
ðen0; ðcnext0; dnextÞÞ, where

en0ðCÞ ¼ 9c 2 C : enðcÞ; ðcnext; dnextÞÞ;
cnext0ðCÞ ¼ fcnextðCÞ j c 2 Cg:

If P is a CFG program, then CSetðP Þ is also a CFG
program. A statement ðatc; ðtoc0 ; dnextÞÞ of P becomes
ðatfcg; ðtofc0g; dnextÞÞ of CSetðP Þ.

In the following sections, all pointer program examples
assume the program has the form CSetðRelPtrðP ÞÞ, where P
is a CFG program. Note that if P is a CFG program, then so
is CSetðRelPtrðP ÞÞ. The control values of CSetðRelPtrðP ÞÞ are
sets of control points; they form a lattice under subset
ordering. The data values of CSetðRelPtrðP ÞÞ are points-to
relations; they also form a lattice under subset ordering.
Furthermore, in each statement ðen; ðcnext; dnextÞÞ of
program CSetðRelðP ÞÞ, functions cnext and dnext are
monotonic and predicate en is monotonic in the sense that,
if C1 � C2 and enðC1Þ, then enðC2Þ.

Table 1 shows the program P for the CFG in Fig. 3.
Table 2 shows the points-to-based version CSetðRelPtrðP ÞÞ.

6 PROGRAM ANALYSIS

In this paper, we consider only reachability properties of
programs which express that, from a given state, some other
state is reachable that satisfies a certain state predicate.
Given an LTS ðP; StateÞ and a state s of State, we write
s; ðP; StateÞ � EF� if a state satisfying state predicate � is
reachable from s.

Definition 6. Let ðP; StateÞ be an LTS with s in State. Then
s; ðP; StateÞ � EF� holds iff there exists an s0 in State such
that s!� s0 and �ðs0Þ.

For points-to analysis, we write state predicates as

propositional logic formulas built up from atomic proposi-

tions of the form x! y and cp ¼ i (“cp” is meant to suggest
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“control point”). We define the interpretation of these

propositions on states of a pointer program P according to

the structure of the program’s data and control sets.

Consider a proposition x! y, where x and y are elements

of a set Var. If P has states of the form ðc; eÞ, where e :

Var! Var? is an environment, then x! y holds at ðc; eÞ if
eðxÞ ¼ y. If P has states of the form ðc; RÞ, where R is a

points-to relation, then x! y holds at ðc; RÞ if x! y 2 R.

Next, consider a proposition cp ¼ i, where cp is an element

of a set Control. If P has states of the form ðc; dÞ, with c in

Control, then cp ¼ i holds at ðc; dÞ if c ¼ i. If P has states of

the form ðC; dÞ, with C in PowðControlÞ, then x! y holds at

ðC; dÞ if i 2 C.
For example, suppose P is the program of Table 1.

Letting Control be the control points of P and Var be the
variables of P , we have State ¼ Control� ðVar! Var?Þ.
Then, ð1; e?Þ; ðP; StateÞ � EFðx! zÞ because there is a path
in the LTS for this CFG that leads to a state in which the
environment maps x to z.

The precise points-to problem of Section 3 can now be
expressed as a reachability problem.

Definition 7. Suppose P is a pointer program with initial state
ðc0; d0Þ. The precise points-to problem of whether p! q holds
after node n can be written

ðc0; d0Þ; ðP; StateÞ � EFðcp ¼ n ^ p! qÞ:

We emphasize that the role of LTSs in this paper is
definitional; there is no need to build an explicit LTS-like
structure to perform reachability analysis. For example, the
analysis can be done with depth-first search in which
storage is required only to represent the states that have
already been explored. We will see that even simpler search
algorithms can be used for reachability analysis with some
classes of programs.

The LTS of a CFG can be regarded as an “interpreted

CFG”—it contains all possible executions represented by the

CFG. While we have defined points-to analysis as a

reachability property of the LTS, an alternative is to define

it as a more involved property of the CFG itself. For

example, in [32], [28], a CFG-like structure is used in which

nodes represent program control points and edges are

labeled with program actions. An example action is

isModifiedx, which signifies that the program represented

by the edge modifies variable x. Program properties such as

liveness are then be expressed as formulas of a fixed-point

temporal logic and can be checked with a model checker

directly over the CFG-like structure. The same approach

could be used to define and check the points-to analysis

problem, but, for exact points-to analysis, the temporal logic

formula is complicated, and the size of the formula grows

exponentially in the number of program variables. For this

reason, we choose to define points-to analysis as reach-

ability on an LTS.

7 PROGRAM TRANSFORMATIONS

In this section, we define some basic program transforma-
tions that can be used to derive existing points-to analysis
algorithms. We present control-flow insensitivity
(Section 7.1), state accumulation (Section 7.2), state mer-
ging (Section 7.3), and local accumulation (Section 7.5) as
independent transformations.

We also show how a transformation used in logic
programming can be used to increase efficiency
(Section 7.4), and that data-flow analysis (Section 7.6)
can be defined using local accumulation plus control-flow
insensitivity.

We use the CFG of Fig. 3 as a running example
throughout these subsections. We also give additional
examples where necessary to illustrate points not exhibited
by the running example.

7.1 Control Flow Insensitivity

A program analysis is said to be flow-insensitive if the order
of program statements is ignored or if the result of program
analysis does not depend on the order of program
statements. We use the term to describe programs for
which all statements are always enabled. Thus, in a flow-
insensitive program, statements can be executed in any
order.

Definition 8. Let P ¼ fðen1; next1Þ; . . . ; ðenn; nextnÞg be a

program. Then, the flow-insensitive version FIðP Þ of P is

fðen; next1Þ; . . . ; ðen; nextnÞg, where enðsÞ ¼4 true.

This transformation can be applied to basic programs
and, hence, to CD and CFG programs. Applying it to a
CD program yields a CD program, but applying it to a
CFG program does not necessarily yield a CFG program.

Table 3 shows the flow-insensitive version of the program
of Table 2. It is easy to see that if a reachability property
holds of a program P , then it will also hold of FIðP Þ. If a
state is reachable in P via some path, then that path will also
be able to be traced in FIðP Þ. However, making a program
flow insensitive loses precision in the sense that a reach-
ability property may hold of FIðP Þ but not P .
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Proposition 3. Let P be a program over State, with s 2 State,

and � be a predicate on State. Then,

s; ðP; StateÞ � EF�, s; ðFIðP Þ; StateÞ � EF�:

We could also define a weaker notion of flow insensi-

tivity in which all statements are enabled in a state as long

as some statement is. In other words, the enablement

condition for every statement in the program would be

enðsÞ ¼4
W
feniðsÞ j i 2 f1; . . . ; ngg.

Transformations like this one have been studied in the

model checking literature as abstraction techniques [2], [5],

[25]. Much of this work focuses on making precise the

logical effect of abstractions like flow insensitivity. For

example, it is known that, by combining states of an LTS,

one obtains an LTS that simulates the original one [5].

Furthermore, if the abstracted LTS satisfies a temporal

logic formula of a particular class, then so does the

original LTS [2].

7.2 State Accumulation

In performing points-to analysis, we search for a program

state in which a particular pointer relationship holds. Along

a search path from a state to one of its successors, it may be

that the pointer relation at the successor state is larger or

smaller than in the source state. We might hope to find a

particular pointer relationship more quickly by redefining

statements so that the pointer relation always increases

when traveling from a state to a successor state.
To formalize this idea, we assume the elements of State

form a complete lattice ðState;�Þ. Actually, it would be

enough to assume that ðState;�Þ be a partial order with join

and a bottom element ?, but, for simplicity, we will assume

that ðState;�Þ is a complete lattice in all that follows:

Definition 9. Let ðState;�Þ be a complete lattice. Then:

1. A state predicate � : State! Bool is up-closed if
ðs � s0 and �ðsÞÞ implies �ðs0Þ.

2. A state function next : State! State is monotonic
if s � s0 implies nextðsÞ � nextðs0Þ.

3. A statement ðen; nextÞ is monotonic if en is up-closed
and next is monotonic.

4. A program is monotonic if all its statements are.
5. A statement ðen; nextÞ is accumulative if s �

nextðsÞ for all s in State such that enðsÞ.
6. A program is accumulative if all its statements are.

Note that an accumulative statement is not necessarily

monotonic. For instance, let State be f0; 1; 2g, ordered by

the arithmetic order and let nextðxÞ be: If x ¼ 0, then 2, else
x. Then, next is accumulative but not monotonic.

Definition 10. Let P ¼ fðen1; next1Þ; . . . ; ðenn; nextnÞg be a

program. Then, the accumulated version ACðP Þ of P is

fðen1; next
0
1Þ; . . . ; ðenn; next

0
nÞg, where

next0iðsÞ ¼
4
s _ nextiðsÞ:

State accumulation can be applied to basic programs and,
hence, also to CD and CFG programs. Applying it to a
CD program yields a CD program. To see this, suppose we
have a CD program with statement ðen; ðcnext; dnextÞÞ.
Applying the transformation tells us that, in the transformed
program, we have a corresponding statement ðen; nextÞ,
wherenextððc; dÞÞ¼ ðc; dÞ _ ðcnext; dnextÞðc; dÞ. Bydefinition
of ðcnext; dnextÞ and the way _ is defined for CD program
states (see Section 5.4), we have that the transformed
statement can equally be written ðen; ðcnext0; dnext0ÞÞ, where
cnext0ðcÞ ¼ c _ cnextðcÞ and dnext0ðdÞ ¼ d _ dnextðdÞ. How-
ever, applying state accumulation to aCFGprogramdoes not
necessarily yield a CFG program.

As mentioned in Section 5.5, in a pointer program over
points-to relations, the states form a complete lattice and
every program statement is monotonic. Table 4 shows the
accumulated, flow-insensitive version of the program of
Table 3.

Theorem 1. Let P be a monotonic program over State with s in

State and � be an up-closed predicate on State. Then,

s; ðP; StateÞ � EF�) s; ðACðP Þ; StateÞ � EF�:

In making a program accumulative, one loses precision.
Fig. 7 shows a CFG program for which the LTS of the
accumulated version has fewer states than the LTS of the
original program.

Flow insensitivity and accumulation are independent
transformations. Fig. 8 shows a CFG program (CFG 1) for
which accumulating the flow-insensitive version loses
precision compared to just the flow-insensitive version.
The former produces x! y (see rightmost diagram in Fig. 8)
while the latter does not. By contrast, CFG 2 in Fig. 8 shows
a CFG program for which the accumulative version is more
precise than the flow-insensitive version. The latter pro-
duces q! y (via execution of p=&y followed by q=p), while
the former does not in any execution.

7.3 State Merging

In our program model, multiple statements can be enabled
at a state. In searching for a state in which a particular
pointer relationship holds, each transition out of a state
must be explored. An alternative approach is to consider all
transitions at once by merging the destination states.

Definition 11. Let P ¼ fðen1; next1Þ; . . . ; ðenn; nextnÞg be a

program. Then, the merged version MGðP Þ of P is

fðen; nextÞg, where

enðsÞ ¼4
W
feniðsÞ j i 2 f1; . . . ; ngg;

nextðsÞ ¼4
W
fnextiðsÞ j eniðsÞ and i 2 f1; . . . ; ngg:
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State merging can be applied to basic programs and,
hence, also to CD and CFG programs. Applying it to a CD
program yields a CD program, for the same reason that
state accumulation does, as explained in the previous
section. Applying it to a CFG program does not necessarily
yield a CFG program.

The key feature of a merged program is that it has a
single state update function. The LTS for a merged program
is therefore linear in structure, and reachability analysis
involves simply applying the state update function repeat-
edly until the state of interest is found or until a previously
encountered state is met.

Note that merging preserves monotonicity of a program
and also preserves accumulativity provided that some
program statement is enabled in every element of State.
Table 5 shows the merged, accumulated, flow-insensitive
version of the program of Table 2.

Fig. 9 shows a CFG program for which the LTS of the

1. original version,
2. merged version,
3. accumulative version, and
4. merged, accumulative version

are all different. Merging reduces the number of states in
the LTS.

States that are reachable in a program are also reachable

in the merged version of the program.

Theorem 2. Suppose that P is a monotonic program over

ðState;�Þ, s 2 State, and � is up-closed. Then,

s; ðP; StateÞ � EF�) s; ðMGðP Þ; StateÞ � EF�:

Generally, states reachable in the merged version of a

program P may not be reachable in P itself. However, if P

is accumulative and � is up-closed, then P and MGðP Þ have
exactly the same set of reachable states. The key in showing

this is that ðstmt1; stmt2ÞðsÞ � ðstmt1 _ stmt2ÞðsÞ for all

states s. Combining this fact with Theorem 2 gives us that

merging loses no precision for reachability analysis of

monotonic and accumulative programs.

Theorem 3. Suppose P is a monotonic and accumulative

program over ðState;�Þ, s 2 State, and � is up-closed. Then,

s; ðP; StateÞ � EF� , s; ðMGðP Þ; StateÞ � EF�:

7.4 Computing State Efficiently

The merged, accumulated, flow-insensitive version of our

example program has the form fð�s:true; nextÞg, where

next is accumulative. Programs of this form are easy to

analyze for reachability of an up-closed state predicate:

Start with the state of interest and apply next repeatedly

until a fixed point is reached (a fixed point is guaranteed if
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State is a lattice with finite height). Then, check the fixed-
point value to see if the predicate holds of it.

The cost of performing this analysis depends not only on
the height of the lattice, but also on the cost of applying the
function. In this section, we present a program transforma-
tion to reduce the cost of the function application. This
transformation is unlike the transformations presented in
previous sections. First, it is not generic; it can be applied
only to accumulative programs having a sole statement that
is always enabled. However, many programs can be put in
this form, including pointer programs. Second, we do not
define a program transformation operation here. We
instead show the transformation idea and explain why it
reduces the complexity of state updating. Understanding
the transformation is important in understanding how cubic
complexity is achieved in points-to analysis.

Suppose we are doing reachability analysis of a CFG
program that contains pointer statement x ¼ ?y. Intuitively,
applying the statement involves adding x! w to points-to
relation R if there exist variables z and w such that y! z
and z! w belong to R. The merged, accumulative, flow-
insensitive version of the program will have dnext of the
form:

dnextðRÞ ¼ R [ fx! w j 9z:fy! z; z! wg � Rg [ . . .

A straightforward implementation of this function would,
for the clause of dnext representing x ¼ ?y, iterate over
every element y! z of R, then search for an element z! w
in R. If there were n pointer variables, processing this clause
alone could take n2 steps. Furthermore, in a pointer
program, there could be n2 such clauses because there
could be n2 statements of the form u ¼ �v in the program,
giving an overall running time for dnext of Oðn4Þ.

We now transform dnext to dnext0, which operates on a
state consisting of points-to relation R and a new relation S.
We write x,!y for pairs ðx; yÞ when working with S.

dnext0ððR;SÞÞ ¼
ðR [ fx! w j 9z:x,!z 2 S and z! w 2 Rg [ . . . ;
S [ fx,!z j y! z 2 Rg [ . . .Þ:

The idea behind the transformation is as follows:
Processing the clause shown explicitly on the first line can
take n2 steps as before, but now there can be at most n such
clauses, one for each program variable. The worst-case
running time for this line is thus Oðn3Þ. Processing the
clause on the second line can take at most n steps, but there
can be most n2 such clauses, so the worst-case running time
for this line is Oðn3Þ. The overall running time for dnext0 is
therefore Oðn3Þ.

Correctness of the transformation can be understood in
terms of the algorithm sketched above for reachability
analysis. The program function is applied repeatedly from a
state until a fixed point is reached. This implies that it is
enough to show that dnext and dnext0 reach the same fixed-
point value. They need not update R in the same way along
the path to the fixed point.

The complexity results mentioned here can be worked
out in detail by writing dnext and dnext0 as Datalog
programs and using McAllester’s Theorem 1 in [24]. The
idea of expressing points-to analysis as a logic program is
not new. In [29], Shapiro and Horwitz give a Datalog
formulation of the points-to analysis problem. In [27], Reps
shows how the problem can be formulated as a
CFL-reachability problem via a chain-form Datalog pro-
gram. In [14], Heintze and Tardieu give a demand-driven
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algorithm for points-to analysis that uses the same idea to
improve on a less efficient demand-driven algorithm. Use
of McAllester’s theorem improves on earlier work as it
clarifies how bottom-up evaluation would give Oðn4Þ with
the original rule and Oðn3Þ with the revised rules; also, it
does not rely on the notion of “chain form” rules.

7.5 Local Accumulation

In the accumulative version of a program, the execution of a
program statement leads to a new program state at least as
large (according to some order) as the old program state. In
terms of a CFG program execution, this means that, along
an execution path, the program state will never decrease in
passing from one control point to the next.

We can define a weaker notion of accumulation for CFG
programs. Along an execution path, the program data value
may decrease, but the value computed for a given control
point will always be at least as great as the value last
computed for the control point on the same execution path; the
control point may get a smaller value along another
execution path in the CFG. Such a program is “locally
accumulative” with respect to control points.

Our transformation for local accumulation takes a
program in CFGðControl;DataÞ and produces a program
in CFGðControl; Control! DataÞ. Following Schmidt [28],
we call a mapping M : Control! Data that labels control
points with data values a memo table. We write M½c :¼ x� for
the memo table like M except that c is mapped to x. Also,
we define the memo table M? by M?ðcÞ ¼ ? for all c in
Control. We assume here that Data and State are complete
lattices (see Section 7.2).

Definition 12. Suppose P 2 CFGðControl;DataÞ. The locally
accumulative version LAðP Þ of P is a program in
CFGðControl; Control!DataÞ such that, for every state-
ment ðatc; ðtoc0 ; dnextÞÞ in P , there is a statement ðatc;
ðtoc0 ; dnext0ÞÞ in LAðP Þ, where

dnext0ðMÞ ¼M½c0 :¼Mðc0Þ _ dnextðMðcÞÞ�:

Table 6 shows the locally accumulative version of the

program of Table 2. No control point is repeated along

either of the two program paths, so, in this example, the

locally accumulative version computes the same informa-

tion as the original. Fig. 10 shows a program for which the

locally accumulative version is less precise than the

original: On path 1-2-3-5-3-4, the former produces extra

pairs q! z and p! y at control point 4.
Taking the locally accumulative version of a program

preserves reachability properties and sometimes introduces

no approximation. In the following results, a state predicate�

defined on State ¼ Control�Data is interpreted on a state

of the form ðc;MÞ in State0 ¼ Control� ðControl! DataÞ.
We define that in such cases �ðc;MÞ ¼ �ðc;MðcÞÞ.
Proposition 4. Suppose P 2 CFGðControl;DataÞ, dnext in

every statement ðatc1 ; ðtoc2 ; dnextÞÞ of P is monotonic,

ðc; dÞ 2 State, and � is up-closed. Then,

ðc; dÞ; ðP; StateÞ � EF�)
ðc;M?½c :¼ d�Þ; ðLAðP Þ; State0Þ � EF�:

A statement ðen; ðcnext; dnextÞÞ of a CD program is

distributive if dnextða _ bÞ ¼ dnextðaÞ _ dnextðbÞ. A program

is distributive if every statement in it is distributive. A

predicate � is existential if �ðx _ yÞ , �ðxÞ or �ðyÞ.
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Theorem 4. In addition to the conditions of Proposition 4,

suppose P is distributive and � is existential. Then,

ðc; dÞ; ðP; StateÞ � EF�)
ðc;M?½c :¼ d�Þ; ðLAðP Þ; State0Þ � EF�:

7.6 Data Flow Approximation

Given a program P in CFGðControl;DataÞ, data-flow

analysis [6], [26] of P computes the result of the following

metaprogram. Its termination is ensured if Data is finite
and every data update function dnext : Data! Data is
monotonic.

global M : Control! Data

initially, 8i;MðiÞ ¼ ?
repeat until no change to M

pick a statement ðatc; ðtoc0 ; dnextÞÞ
Mðc0Þ ¼Mðc0Þ _ dnextðMðcÞÞ

end

Data-flow analysis can be understood as an efficient but
approximate variant of local accumulation. In particular,
data-flow analysis is the reachability analysis of the flow-

insensitive, locally accumulative version of a program. Note
that the use of term “flow-insensitive” here refers to the
locally accumulative version of a program and not the
original program.

Theorem 5. Suppose P 2 CFGðControl;DataÞ with initial

state ðc; dÞ, P is monotonic, M is the result of data-flow

analysis on P , and � is up-closed. Then,

ðc;M?½c :¼ d�Þ; ðFIðLAðP ÞÞ; State0Þ � EF�,
9i : �ði;MðiÞÞ:

The efficiency of data-flow analysis comes from the fact
that it can visit at most jControlj � lengthðDataÞ states,
where lengthðDataÞ is the length of longest chain in Data.

By contrast, the untransformed program may visit up to
jControlj � jDataj states.

Table 7 shows the flow-insensitive, locally accumulative

version of the program of Table 2, and Fig. 11 shows a path
in the corresponding LTS. Data-flow analysis gives a less
precise result than local accumulation: The former produces
q! z and p! y, while the latter does not. (This example is

motivated by Landi [19].)
For monotonic CFG programs in which the data-update

function of each statement is distributive and for state

predicates that are up-closed and existential, data-flow
analysis is exact.

Theorem 6. Suppose P 2 CFGðControl;DataÞ with initial
state ðc; dÞ, P is monotonic and distributive, and � is up-closed
and existential. Then,

ðc; dÞ; ðP; StateÞ � EF� ,
ðc;M?½c :¼ d�Þ; ðFIðLAðP ÞÞ; State0Þ � EF�:

Data-flow analysis is also related to uninterpreted LTSs.
Schmidt [28] shows how modal mu-calculus formulas can
be used to express meet-over-all-path (MOP) properties
over uninterpreted LTSs. It is well known that, for
distributive problems, data-flow analysis computes the
same MOP answer [12], [23], but, in general, it may
compute a safe approximation.
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8 POINTS-TO ANALYSIS AS

REACHABILITY ANALYSIS

8.1 Existing Algorithms

We describe briefly the intraprocedural versions of two

algorithms for computing safe but approximate answers to

the precise points-to problem. Note that we limit our focus

to just the core ideas of these algorithms; the actual

algorithms handle much more detail than we describe here.

8.1.1 HBCC Algorithms

We sketch the algorithm given in Hind et al. [15]. Our

presentation uses points-to relations, while the original uses

alias graphs. The algorithm is given by a set of data-flow

equations over a CFG in its conventional representation. We

assume that each program statement p is associated with In

and Out sets, which are collections of points-to facts. The

analysis iterates over the following set of equations for each

statement, until convergence:

In½p� ¼
[

q2predðpÞ
Out½q�;

Out½p� ¼ ðIn½p� �MustKillpðIn½p�ÞÞ [GenpðIn½p�Þ:

The equation for Out½p� essentially computes ðpÞ as defined
in Section 5. For each statement, MustKill and Gen can be

gleaned from the structure of ðpÞ.
Hind et al. also give a flow-insensitive1 algorithm in

which the control-flow graph is transformed into a large

“switch” inside a single loop, and MustKill for each

statement is ignored.

In ¼
[

q2statements

Out½q�;

Out½p� ¼ In [GenpðInÞ:

8.1.2 Andersen’s Algorithm

Andersen’s algorithm [1] is generally presented as the

following set of rules. The idea is to generate facts using the

following rules until no more facts can be generated; the

final set of facts is the answer for all program points.

p ¼ &q : PointsToðp; qÞ
p ¼ q : PointsToðp; rÞ  PointsToðq; rÞ
p ¼ ?q : PointsToðp; rÞ  PointsToðq; sÞ; PointsToðs; rÞ
?p ¼ q : PointsToðr; sÞ  PointsToðp; rÞ; PointsToðq; sÞ

It is well known that this algorithm can be implemented in

time cubic in the number of variables. However, the rules

do not directly suggest a cubic-time implementation. This

issue was explored in Section 7.4.
Some authors [31], [7], [29], [16] have proposed algo-

rithms to compute an approximation of Andersen’s algo-

rithm by storing PointsTo facts approximately but

compactly. We discuss the representation used in [31] in

Section 8.3 below.

8.2 Reachability Analysis

We now define each of the three algorithms just sketched as

the reachability analysis of a transformed program. We

assume below that program P is a pointer program over a

points-to relation, obtained from a CFG by the translation of

Section 4, and then transformed by the RelPtrð Þ and CSetð Þ
transformations of Section 5.

1. Given a program P , the HBCC flow-sensitive
algorithm computes reachability analysis on
FIðLAðP ÞÞ as it is based on data-flow analysis. Its
complexity is Oðn6Þ, where n is the number of
pointer variables. Note that data update functions in
the points-to program model are not necessarily
distributive. Consider dnext for the statement ?s ¼ x

on two Data elements A ¼ fx! u; s! pg and B ¼
fx! v; s! qg. It can be seen that dnextðA [BÞ >
dnextðAÞ [ dnextðBÞ. Therefore, local accumulation
(and data-flow analysis) are inexact, which is to be
expected in a polynomial-time “solution” to this
NP-hard problem.

2. Given a program P , the HBCC flow-insensitive
algorithm computes reachability analysis on
FIðACðP ÞÞ. Its complexity is Oðn4Þ; it runs faster
but computes a less precise result than the
previous case.

3. Given a program P , Andersen’s algorithm computes
reachability analysis on MGðFIðACðP ÞÞÞ. It also
uses the program transformation of Section 7.4 to
compute the fixed point of the merged program
more efficiently, in Oðn3Þ time. Although it com-
putes the same answer as the HBCC flow-insensitive
algorithm, it runs faster by exploiting the structure
of its statements.

8.3 Storage Shape Graphs

In Section 5, we discussed how pointer relationships can be

represented as variable to value mappings and as points-to

relations. Other representations are also used. Steensgaard’s

algorithm [31] takes a program as input and computes a

storage shape graph, which is a conservative representation of

the pointer relationships that can occur during program

execution. Fig. 12 shows a CFG and the storage shape graph

that Steensgaard’s algorithm computes from it. One can
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1. As is customary in pointer analysis literature, the term “flow
insensitive” is used here to also imply absence of “kill” in the data transfer
functions. By contrast, we have defined FI as transformation that alters
only the control, leaving the data transfer functions unchanged.

Fig. 12. A CFG and the storage shape graph computed from it using

Steensgaard’s algorithm.



conclude from this graph that x cannot point to y during
any program execution. A storage shape graph has the
property that 1) each program variable is associated with at
most one node of the graph, and 2) each node has at most
one outgoing edge. (Note that [4] uses the term “storage
shape graph” for representing the shape of heap-based data
structures. In this paper, we use the term as Steensgaard
does in [31], where the graph represents points-to relation-
ship between scalar variables.)

Steensgaard’s analysis can be defined as reachability
analysis on a transformed version of the input program. To
do this, first abstract the program so that its statements
operate on a storage shape graph rather than a points-to
relation. Next, apply the state accumulation and flow
insensitivity transformations to the abstract program. To
make the reachability analysis work, it is also necessary to
interpret the state predicate x! y appropriately for storage
shape graphs.

This scheme uses the state accumulation transformation,
so we must show that programs that operate on storage
shape graphs are monotonic.

First, we define an abstraction mapping from points-to
relations to storage shape graphs. A shape graph can be
represented as a pair ð	; 7!Þ. The nodes of the graph are the
equivalence classes of the equivalence relation 	 on
variables, and 7! is the points-to relation on nodes. Our
abstraction function �maps a points-to relation R to storage
shape graph ð	; 7!Þ as follows: We define 	 as the least
relation satisfying

x 	 y ¼ ðx ¼ yÞ or ð9u;w : u 	 w and u! x and w! yÞ

and, letting ½x� be the equivalence class of 	 to which x
belongs, we define that ½x� 7! ½y� if there exists a u in ½x� and
a w in ½y� such that u! w. A semantics for pointer
statements over storage shape graphs can be defined
analogously to the semantics for pointer statements over
points-to relations in Section 5.

Next, we show that the states of the program on storage
shape graphs form a lattice. Let � be a concretization
function that maps a storage shape graph ð	; 7!Þ to the
points-to relation R in which x! y 2 R if ½x� 7! ½y�. Then,
we can define an order relation � on storage shape graphs
by g1 � g2 ¼ �ðg1Þ � �ðg2Þ and a join operation _ on storage
shape graphs by g1 _ g2 ¼ �ð�ðg1Þ [ �ðg2ÞÞ. (An implemen-
tation of _ would work directly on storage shape graphs for
efficiency reasons.) The pointer statements on storage shape
graphs are monotonic with respect to this lattice. Using
these definitions, Steensgaard’s algorithm computes
FIðACðP ÞÞ, where P is defined on storage shape graphs.

Other program transformations can be applied to pointer
programs on storage shape graphs. For example, one can
derive a new algorithm that computes FIðLAðP ÞÞÞ. This
algorithm will yield less precise results than Hind et al.’s
algorithm, but has the possible advantage of a smaller state
space because storage shape graphs are more compact than
points-to relations. It is more precise than Steensgaard’s, but
incomparable to Andersen’s analysis. We do not examine
this algorithm in detail here; the purpose of mentioning it is
to show how algorithms can be created easily by using our
program transformations as basic building blocks.

Fig. 13 shows a program for which, at control point 3,
Andersen’s, Hind’s, Steensgaard’s, and the algorithm just
described (called DF-Steen in the figure) all give different
points-to relations. In this figure, the storage shape graphs
(for the Steensgaard and DF-Steen cases) are represented as
points-to relations obtained by applying the concretization
function � above to the storage shape graphs.

9 DISCUSSION

We defined a number of program transformations on a
general program model and showed how efficient points-to
analysis can be defined as the reachability analysis of a
transformed pointer program. The program transforma-
tions we defined are general and can be used not only to
recreate some of the existing points-to algorithms but also to
devise new points-to algorithms. Section 8.3 contains an
example of such an algorithm. Our program transforma-
tions can also be used outside of points-to analysis. For
example, in Section 7.6, we showed how data flow analysis
can be defined as the reachability analysis of a transformed
program.

Since our transformations map a program to an abstract
version of the program, it makes sense to ask whether they
could be defined naturally through the framework of
abstract interpretation [6]. To do so, we would capture the
effect of our program transformations as abstract semantic
interpretations and then, for correctness, show that the
concrete and abstract meanings of a program are related
via Galois connections. Some of the transformations we
have defined fit well within the general framework of
abstract interpretation. In deriving a program over rela-
tions from a program over environments (Section 5), we
explicitly defined abstraction function � and concretization
function � and used the framework of abstract interpreta-
tion to prove the relationship between the original and
derived programs. The role of abstract interpretation in
deriving a program over storage shape graphs from a
program over relations (Section 8.3) is similar.

The local accumulation transformation (Section 7.5) may
be an interesting candidate for the application of abstract
interpretation, but we did not use the framework of abstract
interpretation for the results of Section 7.5. The transforma-
tions of control flow insensitivity, state accumulation, and
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Fig. 13. Left: An example CFG. Right: Diagrams showing points-to

relations at fixed point for control point 3 and various algorithms.



state merging can be defined using abstract interpretation,
but doing so is uninteresting as the abstraction and
concretization functions are just the identity function.
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