
User-Driven Abstraction for Model Checking

Glenn Bruns

Bell Labs, Lucent Technologies

Abstract

Model checking has found a role in the engineering of reactive systems. However, model
checkers are still strongly limited by the size of the system description they can check. Here we
present a technique in which a system is simplified prior to model checking by the application
of abstraction rules. The rules can greatly reduce the state space of a system description and
help in understanding why a system satisfies a property. We illustrate the use of the technique
on examples, including Dekker’s mutual exclusion algorithm.

1 Motivation

Model checkers have become an important tool by which engineers can check properties of their
systems. Model checkers have become successful partly because they require no user interaction.
One must only describe the system of interest and the property to be checked. On the other hand,
they provide little insight. With a model checker one can learn that a system satisfies a property,
but not why it satisfies a property. Furthermore, the application of model checkers is limited
strongly by the number of states in the system and in the complexity of the property to be checked.
Here we explore a technique by which an engineer can simplify a system description by removing

features of the description believed to be irrelevant to the property to be checked. Simplification
is performed by applying abstraction rules. For example, one rule allows any shared variable to be
removed. These rules are sound in the sense that if the simplified description satisfies a property,
then the original one does too. However, the simplified description may have a much smaller state
space and therefore be able to be model checked, even if the original description could not.
This approach is also helpful in confirming one’s understanding of how a system works. If the

simplified description satisfies a property, then we know not only that the complete one does too,
but also that our intuition is correct. Put another way, with our abstraction rules one can obtain a
simplified description that does not satisfy a property even though the property is satisfied by the
original description.
Our technique is sketched in the following section of the paper. Then we present abstraction

rules and show how they can be applied to Dekker’s mutual exclusion algorithm. We also discuss
the use of our technique to other examples. We conclude with discussion and related work.

2 Abstraction with Preorders

Here we sketch our approach to simplifying the description of a system relative to a property to be
checked. First of all, we describe systems as expressions in a process algebra. Such processes can
model both normal terminating programs and reactive systems, which engage in ongoing interaction
with their environment. We let E, E ′, F , . . . stand for processes.

1

2

We describe properties of systems as temporal logic formulas. In temporal logic we can express
generic system properties like deadlock freedom as well as application-specific properties. We let φ
and ψ range over temporal logic formulas and write E |= φ to mean that process E satisfies formula
φ, which captures the idea that the system modelled by E has the property expressed by φ.
We want to simplify processes with respect to temporal logic formulas. We take a simplified

process as one that stands in a certain relation to the original process. The kind of process re-
lations we are interested in are preorders, which are reflexive and transitive, but not necessarily
antisymmetric. Suppose ≤ is a process preorder. Then we say process E ′ is an abstract version of
process E if

E ≤ E′.

In this paper we explore preorders in which the abstract process E ′ can do whatever E can do and
possibly more. So abstracting a system can be understood as a kind of “loosening” of its behavior.
We want to show that if an abstract process has a property, then so does the original one. To do

so we find a class of formulas such that every formula φ in the class satisfies this logical condition:

(E ≤ E′ and E′ |= φ)⇒ E |= φ.

The condition reads “if E ′ is an abstract version of E, and E ′ satisfies property φ, then so does E.”
To make abstraction convenient, we do not want to have to prove that E ≤ E ′ whenever a

simplification to E is made. If E describes a complex system this may be hard to do. Instead, we
use a set of predefined rules for abstraction, each of which has the form F ≤ F ′. To keep the set of
rules small, each rule must be able to be applied anywhere within a process. For example, suppose
E has the form E1 | E2, where E1 and E2 are parallel components. Our rules should satisfy this
algebraic condition:

E1 ≤ E′
1 ⇒ (E1 | E2 ≤ E′

1 | E2)

This condition reads “if E ′
1 is an abstract version of E1, then E

′
1 | E2 is an abstract version of

E1 | E2.” The preorders we use for abstraction satisfy this conditions not just for the parallel
composition operator, but for all operators of the process notation.

3 Processes and Properties

We use CCS [14] processes to describe systems. Processes perform actions, which are either names
(a, b, . . .), co-names (a, b, . . .), or the action τ . Names and co-names satisfy a = a. The set of all
actions is denoted Act. Process expressions have the following syntax, where α ranges over actions,
L ranges over sets of non-τ actions, A ranges over process constants, and f ranges over relabelling
functions (functions from Act to Act satisfying f(τ) = τ and f(a) = f(a)):

E ::= A 0 α.E E1 + E2 E1 | E2 E\L E[f]

Additionally, families of process definitions are allowed, having the form {Ai
def
= Ei | i ∈ I}. The

meaning of CCS processes is given as a labelled transition system in which processes are states and
transitions are labelled with actions. If there is a transition from process E to process F labelled
with action α, we write E

a
→F and say “E performs α and becomes F”. We will only briefly

recall the meaning of the CCS operators here. Process 0 is the deadlocked process. Operator . is
action prefixing. Operator + is choice. Operator | is concurrent composition, with synchronization

3

between complementary actions resulting in a τ action. Operator \L is restriction to labels in L
and their complements, written L. Operator [f] is relabelling by f .
We will additionally use a hiding operator \\L. We define it directly for simplicity, but it could

be defined as a derived CCS operator.

E
α
→E′

E\\L
α
→E′\\L

α 6∈ L ∪ L
E

α
→E′

E\\L
τ
→E′\\L

α ∈ L ∪ L

We use a slightly extended modal mu-calculus [12, 16] to express properties of processes. We
present the logic in its positive normal form. Formulas have the following syntax, where L ranges
over sets of actions and Z ranges over variables:

φ ::= Z φ1 ∧ φ2 φ1 ∨ φ2 [L]φ 〈L〉φ νZ.φ µZ.φ

The interesting operators are the modal and fixed-point operators. Informally, E satisfies [L]φ
(resp. 〈L〉φ) if all (resp. some) E ′ that can be reached from E through an a-transition (a ∈ L)
satisfy φ. The fixed-point operators bind free occurrences of Z in φ. Informally, E satisfies νZ.φ
(resp. µZ.φ) if E belongs to the greatest (resp. least) solution of the recursive modal equation
Z = φ. We write E |= φ if E satisfies the closed formula φ. We use tt as an abbreviation for the
(true) formula νZ.Z, and [−L]φ as an abbreviation for [Act− L]φ.
We write the set of all closed modal mu-calculus formulas as µL.

4 Weak Simulation

Intuitively, one process simulates another if it can match any action the other can do, and can
continue to match in this way indefinitely. Here we define a particular kind of simulation relation
on processes called the weak simulation relation and show that it has the logical and algebraic
properties we need.
The term weak indicates that the relation is based on what we can observe of a process. Recall

that in CCS the τ action represents internal activity of a system that cannot be observed. So
to formalize what it means to be observable we define a transition relation on processes in which
τ transitions do not occur. However, transitions can be labelled by the new symbol ε, which
represents the occurrence of zero or more τ actions.

E
ε
⇒F

def
= E(

τ
→)∗F

E
a
⇒F

def
= E

ε
⇒◦

a
→◦

ε
⇒F (a 6= τ)

We write Actobs for the set Act \ {τ} ∪ {ε} of observable actions.

Definition 1 A binary relation R on processes is a weak simulation if (E,F) in R implies, for
all α in Actobs:

Whenever E
α
⇒E′, then F

α
⇒F ′ for some F ′ such that (E′, F ′) ∈ R.

E is weakly simulated by F , written E ≤ F , if (E,F) belongs to some weak simulation R.

If a process E is weakly simulated by another process F , then any sequence of actions that E can

perform can be matched by F . However, the converse does not hold. For example, B
def
= a.b.0+a.c.0

can match every sequence of actions that A
def
= a.(b.0 + c.0) can perform, but B does not weakly

simulate A.
The weakly simulates relation is preserved by all CCS operators, including recursive definition.

4

Theorem 1 ≤ is preserved by all CCS operators.

(Proofs for the theorems and abstraction rules in the paper can be found in [4].)
To describe the properties that are preserved by the weak simulation relation, we define a modal

operator [[]] that is based on the weak transition relation. A process E satisfies formula [[a]]φ if all
E′ that can be reached from E through a weak a-transition satisfy φ.
We write µIL2 for the set of closed modal mu-calculus formulas containing no modal operators

except [[]]. An example safety property that can be expressed in µIL2 is that no a action can ever
occur. An example liveness property that can be expressed in µIL2 is that a must eventually occur
if system operation never terminates.
If a process F satisfies a formula of µIL2, and F weakly simulates E, then E also satisfies the

formula.

Theorem 2 Let φ be a formula of µIL2. Then

(E ≤ E′ and E′ |= φ)⇒ E |= φ.

5 Abstraction Rules

We now present abstraction rules for ≤. Each rule has the form E ≤ E ′, where E′ is understood
as the abstract version of E.

Proposition 1 (Restriction rules)

E\L ≤ E\\K\L if K ⊆ L ∪ L (1)

E\L ≤ E[f]\L if f(α) = α for α 6∈ L ∪ L (2)

These rules are especially important because they allow actions that are used for process syn-
chronization to be hidden or renamed. Doing so loosens synchronization between components,
which intuitively increases the number of possible system states. However, the rule can allow the
structure of components to be made more regular, which in terms reduces the system state space.

Proposition 2 (Hiding rules)

(α.E)\\L ≤ τ.(E\\L) if α ∈ L (3)

(E + F)\\L ≤ E\\L+ F\\L (4)

(E | F)\\L ≤ E\\L | F\\L if L = L (5)

Proposition 3 (Relabelling rules)

(α.E)[f] ≤ f(α).(E[f]) (6)

(E + F)[f] ≤ E[f] + F [f] (7)

(E | F)[f] ≤ E[f] | F [f] (8)

Proposition 4 (Family rules)

F ≤ merge(Aj , Ak,F) (9)

F{A
def
= A+ E} ≤ F{A

def
= E} (10)

5

Rule 9 allows two constants in a family of process definitions to be “merged”. To merge two
constants one redefines the first of the constants by adding the definition of the second as a choice,

and then renames the second constant to the first. For example, merge(A,B, {A
def
= a.B,B

def
= b.A})

yields {A
def
= a.A + b.A}. In terms of process behavior, this operation can be understood as the

combining to two process states. The rule is used when the difference between two process states
is not important relative to the property to be proved.

Proposition 5 (Basic rules)

E | 0 ≤ E (11)

τ.E ≤ E (12)

A ≤ E if A
def
= E (13)

E ≤ A if A
def
= E (14)

The abstraction rules above are typically applied in certain combinations. The following rules,
which can be derived from the preceding ones, allow abstraction to proceed in coarser steps.

Proposition 6 (Derived rules) Let K and L be sets of actions such that K = K ⊆ L ∪ L, and
let f be a relabelling function satisfying f(α) = α (α 6∈ L ∪ L). Then

(E1 | · · · | En)\L ≤ (E1\\K | · · · | En\\K)\L (15)

(E1 | · · · | En)\L ≤ (E1[f] | · · · | En[f])\L (16)

6 Example

We illustrate our technique by abstracting Dekker’s mutual exclusion algorithm [15] relative to
a safety property and a liveness property. In each case, we show that if the abstract algorithm
satisfies the property, then so does the concrete algorithm.
The purpose of a mutual exclusion algorithm is to control access by a set of processes to a

shared resource so that at most one process has access at any time. A process is said to be in its
critical section when it has access to the resource. The key safety property of a mutual exclusion
algorithm is that at most one process is in its critical section at any time. The key liveness property
is that a process wishing to enter its critical section will eventually be able to do so.
We now present a two-process version of Dekker’s mutual exclusion algorithm. The top level of

the algorithm, written in a concurrent while language, is as follows.

begin
var b1,b2,k;
b1 := false; b2 := false;
k := 1;
P1 par P2

end;

Processes P1 and P2 coordinate via shared variables b1, b2, and k. Process P1 is defined as follows;
P2 is obtained from P1 by interchanging 1 with 2 everywhere. The process does its useful work in
the non-critical section.

6

while true do
begin

〈 non-critical section 〉;
b1 := true
while b2 do

if k = 2 then begin
b1 := false;
while k = 2 do skip;
b1 := true

end;
〈 critical section 〉;
k := 2;
b1 := false

end;

Informally, the b variables are “request” variables and the k variable is a “turn” variable.
Variable bi is true if Pi is requesting entry to its critical section; variable k is i if it is Pi’s turn to
enter its critical section. Only Pi writes on variable bi, but both processes read bi.
Translating the algorithm to CCS (from [17]) gives the following family of definitions. Actions

reqi, enteri, and exiti have been added to indicate requests to enter, entrance to, and exit from
the critical section by process i. A shared variable name (e.g., b1) in a restriction operator stands
for the read and write actions of the variable (e.g.,{b1rt, b1wt, b1rf, b1wf}). The definitions of B2f
and P2 are omitted, since they are symmetrical to B1f and P1 .

K1
def
= kr1 .K1 + kw1 .K1 + kw2 .K2

K2
def
= kr2 .K2 + kw1 .K1 + kw2 .K2

B1f
def
= b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t
def
= b1rt .B1t + b1wf .B1f + b1wt .B1t

P1
def
= b1wt . req1 .P11

P11
def
= b2rf .P13 + b2rt .(kr1 .P11 + kr2 . b1wf .P12)

P12
def
= kr1 . b1wt .P11 + kr2 .τ.P12

P13
def
= enter1 . exit1 . kw2 . b1wf .P1

Dekker
def
= (P1 | P2 | B1f | B2f | K1)\{b1, b2, k}

6.1 Safety

The property of mutual exclusion is that at most one process can be in its critical section at any
time. The property can be expressed as formulaME of µIL2 requiring that enter and exit actions
alternate:

Cycle(L1, L2)
def
= νX1.[[L2]] ff ∧ [[−L1, L2]]X1 ∧ [[L1]]

νX2.[[L1]] ff ∧ [[−L1, L2]]X2 ∧ [[L2]]X1

ME
def
= Cycle({enter1, enter2}, {exit1, exit2})

Dekker’s algorithm satisfies the property of mutual exclusion because a process sets its request
variable to true before attempting to enter its critical section, and waits for the request variable

7

of the other process to be false before actually entering it. Dekker’s algorithm can be abstracted
greatly with respect to mutual exclusion because much of the algorithm’s design deals with the
problem of ensuring liveness.
We now apply abstraction rules to remove other details from the algorithm. To make the

presentation concise, we will redefine the constants of the algorithm at each step, rather than use
new ones, and will present only the constant definitions that were affected by the abstraction step.
As a preliminary step we remove the indices of the enteri and exiti actions by relabelling, and
hide the reqi actions, yielding process Dekker1 below.

P1
def
= b1wt .P11

P11
def
= b2rf .P13 + b2rt .(kr1 .P11 + kr2 . b1wf .P12)

P12
def
= kr1 . b1wt .P11 + kr2 .τ.P12

P13
def
= enter . exit . kw2 . b1wf .P1

By the correspondence rule of [3] we have

Dekker |= ME ⇔ Dekker1 |= Cycle({enter}, {exit}).

Formula Cycle({enter}, {exit}) is also a formula of µIL2. In all further abstraction steps we use
only the abstraction rules of Section 5, which all preserve the property Cycle({enter}, {exit}).
Our informal explanation of why Dekker’s algorithm satisfies mutual exclusion mentions only the

request variables, not the turn variable k. We therefore hide k-related actions {kr1, kw1, kr2, kw2}
and their complements using derived rule 15, and move the hiding inward using the hiding rules.
We refer to Dekker of the resulting family as Dekker 2.

K1
def
= τ.K1 + τ.K1 + τ.K2

K2
def
= τ.K2 + τ.K1 + τ.K2

P1
def
= b1wt .P11

P11
def
= b2rf .P13 + b2rt .(τ.P11 + τ. b1wf .P12)

P12
def
= τ. b1wt .P11 + τ.τ.P12

P13
def
= enter . exit .τ. b1wf .P1

The actions related to variables b1 and b2 cannot all be hidden, as variables b1 and b2 play a
part in ensuring mutual exclusion. However, only some of the b-related actions are involved. We
can hide the actions that represent when a b variable is read with value true. The effect is to allow
P1 to proceed as if b2 is true whether b2 is true or not. Thus P1 can elect not to enter its critical
section even if b2 is false. Similarly P2 can wait instead of entering its critical section.
Applying derived rule 15 with actions {b1rt, b2rt} and their complements, and moving hiding

inward with the hiding rules gives the following.

B1f
def
= b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t
def
= τ.B1t + b1wf .B1f + b1wt .B1t

P1
def
= b1wt .P11

P11
def
= b2rf .P13 + τ.(τ.P11 + τ. b1wf .P12)

P12
def
= τ. b1wt .P11 + τ.τ.P12

P13
def
= enter . exit .τ. b1wf .P1

8

We now remove all τ actions by repeatedly applying basic rule 12, and then apply family rule
10 to remove all unguarded occurrences of constants.

B1f
def
= b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t
def
= b1wf .B1f + b1wt .B1t

P1
def
= b1wt .P11

P11
def
= b2rf .P13 + b1wf .P12

P12
def
= b1wt .P11

P13
def
= enter . exit . b1wf .P1

Next we want to merge the states that are are outside the critical section but have not yet
requested entry to the critical section. To prepare for this we apply basic rule 14 to introduce
constants P14 and P24 .

P1
def
= b1wt .P11

P11
def
= b2rf .P13 + b1wf .P12

P12
def
= b1wt .P11

P13
def
= enter . exit .P14

P14
def
= b1wf .P1

Family rule 9 is now applied to merge constants P1 , P12 , and P14 . Similarly, constants P2 ,
P22 , and P24 of P2 are merged. Constants K1 and K2 are then removed using basic rule 11 to
obtain the following family. We refer to Dekker of this family as Dekker 3.

B1f
def
= b1rf .B1f + b1wf .B1f + b1wt .B1t

B1t
def
= b1wf .B1f + b1wt .B1t

P1
def
= b1wt .P11 + b1wf .P1

P11
def
= b2rf .P13 + b1wf .P1

P13
def
= enter . exit .P1

Dekker
def
= (P1 | P2 | B1f | B2f)\{b1, b2}

The abstract algorithm contains little more than the protocol for handling the request vari-
ables to ensure mutual exclusion. While process Dekker has 153 states, Dekker 3 has only 16
states. With a tool like the Concurrency Workbench [7] it is easy to show that Dekker 3 sat-
isfies Cycle({enter}, {exit}). Since Dekker 3 was obtained by abstraction rules that preserve
Cycle({enter}, {exit}) we know Dekker 1 also satisfies Cycle({enter}, {exit}). Then, since

Dekker1 |= Cycle({enter}, {exit})⇒ Dekker |= ME

we know Dekker |= ME .
The soundness of our abstraction of Dekker’s algorithm does not depend on the assumptions

we made about the shared variables in it. For example, our decision to hide actions of variable k
was based on the assumption that k plays no part in ensuring mutual exclusion. Regardless of the

9

truth of this assumption, the algorithm will satisfy the formula expressing mutual exclusion if the
abstract version of it does. Since mutual exclusion does hold in the abstract algorithm, we know
not only that it also holds in the concrete algorithm, but also that our assumption about variable
k’s role in mutual exclusion is correct.

6.2 Liveness

An important liveness property for mutual exclusion algorithms is that if one process requests entry
to its critical section, then it will not wait forever while the other processes continue to enter their
critical sections. Here we use our abstraction rules to show that Dekker’s algorithm satisfies this
property, with process 2 as the requesting process.
Dekker’s algorithm satisfies this property only under the fairness assumption that the requesting

process continues to execute after it requests entry to its critical section. We handle the fairness
assumption by incorporating it into the formula we use to express the liveness property. However,
we must also revise process 2 by adding “probe” action p2, which continues to occur while process
P2 is waiting to enter its critical section.

P2
def
= b2wt . req2 .P21

P21
def
= b1rf .P23 + b1rt . p2 .(kr2 .P21 + kr1 . b2wf .P22)

P22
def
= kr2 . b2wt .P21 + kr1 . p2 .τ.P22

P23
def
= enter2 . exit2 . kw1 . b2wf .P2

The following µIL2 formula expresses that process 2 will not wait forever to enter its critical
section while process 1 continues to enter its critical section, provided that process 2 continues to
execute while waiting.

Live
def
= νX.[[− req2]]X ∧

[[req2]]µY .νX1.[[− enter1, enter2, p2]]X1 ∧ [[enter2]]X ∧ [[enter1]]
νX2.[[− enter1, enter2, p2]]X2 ∧ [[enter2]]X ∧ [[p2]]Y

Paraphrasing the formula gives: “after req2 occurs, no path containing infinitely many enter1 and
p2 actions but no enter2 actions, can occur”. Informally, Dekker’s algorithm satisfies this property
because Process 1 will only enter its critical section if process 2’s request variable is false, and will
set the turn variable to 2 upon leaving its critical section. If Process 2 has requested entry but
not yet entered its critical section, and the turn variable is set to 2, then it will eventually set its
request variable to true and keep it true until after it exits its critical section.
To abstract Dekker’s algorithm relative to this formula, we first hide both exit actions and

action req1. This step is justified by the correspondence rule of [3]. Then we hide all actions
corresponding to reads of b variables of value true, to all reads and writes of b1 variables, and
to reads of k of value 2. Finally all τ actions are removed and some constants are merged. The
abstract form of the algorithm is as follows.

B2f
def
= b2rf .B2f + b2wf .B2f + b2wt .B2t

B2t
def
= b2wf .B2f + b2wt .B2t

K1
def
= kr1 .K1 + kw1 .K1 + kw2 .K2

K2
def
= kw1 .K1 + kw2 .K2

10

P1
def
= b2rf .P13 + kr1 .P1

P13
def
= enter1 . kw2 .P1

P2
def
= b2wt . req

2
.P21

P21
def
= P23 + p

2 .P21 + kr1 . b2wf .P22

P22
def
= b2wt .P21 + kr1 . p2 .P22

P23
def
= enter2 . kw1 . b2wf .P2

Dekker
def
= (P1 | P2 | B2f | K1)\{b2, k}

7 Other Examples

Dekker’s algorithm was presented as our main example because it is a non-trivial algorithm but
simple enough to work through in detail. We have used our abstraction rules on other examples,
including other the mutual exclusion algorithms of Dijkstra [9], Knuth [11], and Peterson [15]. For
example, using our abstraction operations we reduced a three process version of Dijkstra’s algorithm
from 10570 to 109 states. In abstracting two-process versions of the algorithms we found that all
the algorithms reduce to virtually the same 16 state algorithm. Thus, abstraction shows that the
same idea is used to achieve safety in all the algorithms. However, in abstracting the processes
with respect to liveness, different algorithms are reached.
We have used our abstraction technique with preorders other than weak simulation. In [4] we

use the anonymous ready simulation preorder to abstract prioritized CCS processes [6]. The sole
abstraction rule here is the adding of priorities to a process. Using this rule we have been able to
check a property of Ben-Ari’s concurrent garbage collection algorithm [1], which we could not do
at all without abstraction.

8 Discussion and Related Work

We have presented a general technique for abstracting a system description relative to a property to
be checked, and illustrated it by developing abstraction rules for CCS processes. We would like to
develop similar abstraction rules for notations that are more suitable for the description of complex
systems. One possibility is value-passing CCS [14], which we used in our work in abstraction using
priorities. Other possibilities include concurrent while languages, LOTOS [2], CRL [10], or even
a programming language such as C. The main problem faced in using a higher-level notation is
to establish the algebraic condition we need to apply the technique. One way to deal with this
problem is to try to define the notation in terms of a low-level notation like CCS. Then if the
algebraic condition we need holds of CCS, it also holds of the higher-level notation.
The possibilities for automation with our technique are not clear. In the example we presented

the abstraction rules were selected and applied manually. It would not be difficult to provide tool
support for the automatic application of rules. A more interesting question is whether it would be
worthwhile to try to select abstraction rules automatically. A problem is that there may be many
abstracted forms of an algorithm that have small state spaces but fail to satisfy the property of
interest.
There is existing work on abstraction using preorders, but none that gives abstraction rules.

Lynch [13] abstracts I/O automata using the simulation preorder, but requires that a simulation
relation be invented and checked. The logical effect of abstraction with simulation is not given; it
is only stated that simulation is a stronger relation than trace inclusion. Clarke et al [5] abstract
finite-state, procedural programs by mappings on program inputs and outputs. No abstraction

11

operations on control structure are given. The technique is justified by showing that a kind of
homomorphic mapping on transition systems preserves CTL∗ formulas with only the universal path
quantifier. This mapping is stronger than the simulation relation, and permits only operations that
immediately reduce the state space. Cleaveland and Riely [8] abstract value-passing CCS processes
by mappings on data domains. They show that an abstract value-passing process is greater in
the specification preorder than the original process. The abstraction operations do not operate on
process structure, and their logical effects are not given.

References

[1] Mordechai Ben-Ari. Algorithms for on-the-fly garbage collection. ACM Transactions on Programming
Languages and Systems, 3(6):333–344, 1984.

[2] T. Bolognesi and E. Brinksma. Introduction to the specification language LOTOS. In van Eijk, Vissars,
and Diaz, editors, The Formal Description Technique LOTOS. Elsevier, 1989.

[3] Glenn Bruns. A practical technique for process abstraction. In Proceedings of CONCUR ’93, LNCS
715, pages 37–49, 1993.

[4] Glenn Bruns. Process Abstraction in the Verification of Temporal Properties. PhD thesis, University of
Edinburgh, 1997. Published as report ECS-LFCS-98-380 by the Department of Computer Science.

[5] Edmund M. Clarke, Orna Grumberg, and David E. Long. Model checking and abstraction. In Pro-
ceedings of the 19th Annual ACM Symposium on Principles of Programming Languages, pages 343–354,
1992.

[6] Rance Cleaveland and Matthew Hennessy. Priorities in process algebra. Information and Computation,
87(1/2), 1990.

[7] Rance Cleaveland, Joachim Parrow, and Bernhard Steffen. The Concurrency Workbench: A semantics
based tool for the verification of concurrent systems. ACM Transactions on Programming Languages
and Systems, 15(1):36–72, 1993.

[8] Rance Cleaveland and James Riely. Testing-based abstractions for concurrent systems. In Proceedings
of CONCUR ’94, LNCS 836, pages 417–432, 1994.

[9] E.W. Dijkstra. Solution of a problem in concurrent programming control. Communications of the ACM,
8(9):569, 1965.

[10] J.F. Groote and A. Ponse. The syntax and semantics of µCRL. Technical Report CS-R9076, Centre
for Mathematics and Computer Science, CWI, 1990.

[11] D.E. Knuth. Additional comments on a problem in concurrent programming control. Communications
of the ACM, 9(5), 1966.

[12] D. Kozen. Results on the propositional mu-calculus. Theoretical Computer Science, 27:333–354, 1983.

[13] Nancy A. Lynch. Multivalued possibilities mapping. In J.W. de Bakker, W.-P. de Roever, and G. Rozen-
berg, editors, Stepwise Refinement of Distributed Systems, pages 519–543, 1989. LNCS 430.

[14] Robin Milner. Communication and Concurrency. Prentice Hall International, 1989.

[15] J.L. Peterson and A. Silberschatz. Operating System Concepts. Addison Wesley, 1985.

[16] Colin Stirling. An introduction to modal and temporal logics for CCS. In A. Yonezawa and T. Ito,
editors, Concurrency: Theory, Language, and Architecture, pages 2–20, 1989. LNCS 491.

[17] D. Walker. Automated analysis of mutual exclusion algorithms using CCS. Formal Aspects of Comput-
ing, 1:273–292, 1989.

