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Abstract

The Border Gateway Protocol (BGP) is the interdo-
main routing protocol used to exchange routing infor-
mation between Autonomous Systems (ASes) in the
internet today. While intradomain routing protocols
such as RIP are basically distributed algorithms for
solving shortest path problems, the graph theoretic
problem that BGP is trying to solve is called the sta-
ble paths problem (SPP). Unfortunately, unlike short-
est path problems, it has been shown that instances
of SPP can fail to have a solution and so BGP can fail

to converge.

We define a fractional version of SPP and show
that all such instances of fractional SPP have solu-
tions. We also show that while these solutions exist

they are not necessarily half-integral.

1 Introduction

The internet consists of tens of thousands of subdo-
mains known as Autonomous Systems (ASes) where
each AS is a network of routers controlled by some
administrative agent. The managers of an AS have
the conflicting desires to have their AS connected to
the rest of the internet (i.e., to have routes to des-
tinations (IP addresses) in other ASes and to have
other ASes know how to route traffic to the destina-
tions that it owns) but not to allow too much traffic of

other ASes to transit over their network. In order to
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control these issues, neighboring ASes establish con-
tracts called service level agreements (SLAs) between
each other. These contracts can roughly be thought
of as promises to transit certain traffic for each other.
Thus network operators need some way to encode in
their routers, the routing policies that would let them
meet the requirements of their SLAs. To do this, they
use a protocol known as the Border Gateway Protocol
(BGP) [RL95].

BGP can be thought of as working in the following
manner. Consider some destination d where d is an
IP address or more generally, a block of IP addresses.
The router where d originates will announce via BGP
to some of its neighbors that it “owns” d. Which
neighbors it tells is a function of the economic deals
it has with its neighbors. In turn, these neighbors
might tell some of their neighbors that a route to d is
available through them. In general, a router R might
hear via BGP from a subset of its neighbors, about a
number of different routes to a particular destination
d. BGP then uses the encoded economic policies of the
AS in which it belongs, to choose its most “preferred”
route from amongst those it currently knows about.
Then it selectively tells some neighbors about this

most preferred route via BGP.

Unfortunately, the individual economic goals of
an AS might result in route preferences that conflict
with the preferences of other ASes in such a way
that BGP never converges [VGEO0Q].
study this phenomenon, BGP has been modeled as a

In order to



formal graph theoretic problem called the Stable Paths
Problem (SPP) [GSW02]. We will describe SPP in
Section 2.

It has been shown that some instances of SPP
fail to have a solution. This implies that BGP can
fail to converge (since in these cases there is no stable

solution to which it can converge).

Motivated by some similarities between SPP and
the stable matching problem [GS62] and the fact that
while stable matchings do not always exist, fractional
stable matchings do always exist [Tan91], we define
a fractional version of SPP we call fractional SPP.
Intuitively, SPP and fractional SPP can be thought
of as follows. In both, each node has a preference
ordering of (some of the) paths from itself to the
specified destination. In SPP, each node v “chooses”
a path P,, and this allows other nodes to choose paths
that contain P, as a subpath. One can think of each
v as putting a weight of 1 on P, and 0 on all other
paths from v to the destination. A solution to an
SPP instance then is a set of choices in which each
node selects a path that obeys the above subpath
constraint and no node can change its mind (while
the others remain fixed) and get a more preferred
path. On the other hand, in fractional SPP a node
can fractionally assign weights to paths from itself to
the destination so that it assigns a total weight of no
more than 1. When a node u puts a weight w on a
path P, this constrains the weights the other nodes
can put on paths containing P so that for each other
node these weights total no more w. The intuition is
that normally we view a node’s BGP announcement
of a route P to d as saying that if another node hears
of P then it is permitted to send all of its traffic to
d so that it passes over P. In our fractional model of
BGP, we then think of allowing a node to announce
routes each with a fractional weight w, 0 < w < 1
where the total of the weights on routes offered by
a node is at most 1. The weight is interpreted as
meaning that the node is offering to allow any node

hearing of this route to send (at most) a w fraction of

its traffic to d along this route. The notion of stability
in our fractional model is similar to SPP. Intuitively, a
solution is one in which no node can shift some weight
to more preferred paths given that the other nodes
keep their weights fixed. We will show that, unlike
(integral) SPP, every instance of fractional SPP has a
solution.

One can view SPP as a pure strategy game whose
solutions correspond to Nash equilibria. However it
should be noted that it is not the case that fractional
SPP is just a mixed strategy game and so we cannot
conclude that stable solutions (i.e., Nash equilibria)
exist simply by appealing to Nash’s Theorem [Nas50].
It may also be possible to formulate SPP in terms
of a cooperative game in order to study its core, but
it is not necessary to do so for our purposes and we

therefore choose an elementary treatment.

2 Formal Definition of SPP

The dynamic operation of BGP as outlined in Sec-
tion 1, can be modeled as an equivalent static graph
problem called the stable paths problem (SPP) de-
fined below. The problems are equivalent in the sense
that for any network and for any configuration of BGP
(i.e., encoding of policies) on the routers in the net-
work, BGP has a stable solution that it might converge
to if and only if the corresponding instance of SPP has

a solution.

We now describe SPP as it was defined in Griffin
et al. [GSWO02]. Let G be a graph with a distinguished
node d, called the destination. Suppose each node
v # d in G has a preference list of simple paths from
v to d. This is an ordered list of some (not necessarily
all) such paths. We use the notation 7(v) to denote
the set of paths in the preference list of v, and we write
P < P’ to mean that P and P’ are both in some 7(v)
and v prefers P’ to P. We describe the preferences
numerically as follows: for P € m(v), we define U(P),
the utility of path P, to be c if there are ¢ — 1 paths
P’ € n(v) where P’ < P. For a path S we also define



m(v,5) to be the set of paths in m(v) that end with
the path S. (Note that if S is just the “empty” path d
then m(v,S) = w(v).) A solution to an SPP instance is
a (not necessarily spanning) arborescence T' in G with
sink node d, with the following stability property. Let
Q@ be any path, and let v be its starting node. Then
one of the following holds:

e P C T for some P € w(v) with P > Q,

e there exists a proper final segment S of @) such
that S Z T

Figure 1: SPP instance with no solution.

It is known that not every instance of SPP has
a solution. For example, the instance called BAD
GADGET is an instance of SPP that has no solu-
tion [GW99] and is described as follows (see Figure
1): G is a copy of K, with vertices a, b, ¢, and d.
Each of a, b, and ¢ has two paths in its preference list:
a has P, = ad and P, = abd, and a prefers P, to P;.
The preference lists for b and ¢ are analogous: each
prefers to go through its clockwise neighbor than to
go straight to d. The preference lists are shown in the
figure ordered from most preferred to least preferred
in order from top to bottom. It is easily seen that no

solution exists for such an instance of SPP.

3 Fractional SPP

In this section we define a fractional generalization
of SPP that we call fractional SPP. The parameters
defining an instance of fractional SPP are the same as
those for an instance of SPP. That is, we have a graph
with a designated destination node d where each non-

destination node has a preference list, i.e., an ordered

list of some of the paths from itself to the destination
node d. The only difference will be the definition of a
solution which we now describe.

For fractional SPP we define a solution to be an
assignment of a non-negative weight w(P) to each
path P in 7(v) for every v so that the weights satisfy
the three properties listed below.

“Unity” condition: For each node v, 3 pe .,y w(P) <
1.

“Tree” condition: For each node v, and each path .S,
we have > pc ., o) w(P) < w(S).

“Stability” condition: Let @ be a path, and let v be
its starting node. Then one of the following holds:

® > penyw(P) = 1, and each P € m(v) with
w(P) > 0 is such that P > Q.

e there exists a proper final segment S of @) such
that > pe(, 5 W(P) = w(S), and moreover each
P € m(v,S) with w(P) > 0 is such that P > Q.

Our aim is to show that every instance of frac-
tional SPP has a solution. Because of a technicality,
we will do this in two stages. First we show that for
any positive constant e, every instance of fractional

SPP has an e-solution, which is defined as follows:

For each node v and each path P € 7(v), we assign
a non-negative weight w(P) such that the following
conditions hold.

“Unity” condition: }_p () w(P) < 1 for each v.

“e-Tree” condition: For each node v, and each path
S, we have 3 pc ., o) w(P) < w(S) +e.

“e-Stability” condition: Let () be a path, and let v be

its starting node. Then one of the following holds:

° Zpeﬂ(v)w(P) = 1, and each P € w(v) with
w(P) > 0 is such that P > Q.

e there exists a proper final segment S of @) such
that 3 pc, (.5 W(P) = w(S) + €, and moreover



each P € 7(v,S) with w(P) > 0 is such that
P>Q.

In the next section we show that for every € > 0,
every instance of fractional SPP has an e-solution.
Then in the following section we apply a standard
compactness-type argument to conclude that every

instance has an exact solution.

4 Approximate Solvability of Fractional SPP

The main tool in our proof is an important result due
to Scarf [Sca67]. The idea of applying Scarf’s Lemma
to a stability type problem was used by Aharoni and
Fleiner in [AFO03].

THEOREM 4.1. (Scarf’s Lemma) Let n < m be posi-
tive integers, let b € Ry, and let B and C be n x m

matrices with the following properties:

e the first n columns of B form an identity matriz,
and the set {x € R' : Bx = b} is bounded,

e cach entry c;, for k > n satisfies ci; < ci < ¢4

for each j #1i, j <n.

Then there exists v € R such that Bx = b and the
set of columns S of C that correspond to the support
supp(x) = {k : z; # 0} of © form a dominating set.
This means that for every column j, there exists a row

i such that c;,, > c;j for every k €supp(x).

We will apply Scarf’s Lemma to matrices B and C'

defined from an instance of fractional SPP as follows.

DEFINITION 4.1. Let a graph G with preference lists
be a given instance of fractional SPP. Let N =
{(v,P): P C Q for some Q € w(v)} (note the proper
We let m = n+t
where t is the number of paths in U. The n Xt matriz
B’ is indexed by N U U, with entries as follows: the
(v, P),Q)-entry is =1 if P = Q, is 1 if Q € n(v, P),
and is 0 otherwise.

containment), and set n = |NJ|.

The matrix B is formed by attaching an n X n

identity matriz to B’ on the left.

Let M be a number larger than the size of any
preference list. The matriz C' is defined as follows: if
Q € w(v, P) then the ((v, P),Q)-entry is the utility ¢
of Q € w(v,P), and if Q ¢ w(v, P) then the entry is
M.

The matriz C' is formed by attaching a n X n
matriz to C' on the left, in which each diagonal entry
1s smaller than each entry of C', and each off-diagonal

entry is larger than each entry of C'.

Let us emphasise that the empty path is used in
the index set NV, even though it is not an element of the
union U = U,7(v). Note then in particular that when
P is the empty path, there is no —1 entry in the row
(v, P). Observe that the matrices B and C' as defined
here are of the form required in the assumptions of
Scarf’s Lemma.

LEMMA 4.1. Let G with preference lists be an instance
of fractional SPP, and let B, C, N, n and m be
as defined in (4.1). Let ¢ > 0 be given, and let
b(e) € R™ be the vector with coordinates indexed by N
defined as follows: for the empty path P, each (v, P)-
coordinate of b(e) is 1, and for all other paths the
(v, P)-coordinate is €. Then each coordinate of each
element x of the set {x € R : Bx = b(e)} lies in the
interval [0,1 4 €.

Proof. Suppose the vector
(9(v1, P1), ... g(vs, Py),w(Py) ..., w(P)) is a
non-negative solution to Bx = b(e). By defini-

tion of B, we have first of all (looking at rows
(v, P) for the empty path P = d) that for each
v, g(v,d) + X gerw(@) = 1. This tells us
that g(v,d) < 1 and w(Q) < 1 for each v and
@ € U. Now for each P of length at least 1 we have
9, P) — w(P) + Y gerw,pw(@) = ¢ telling us
that each g(v,P) < w(P)+ € < 1+ e Thus each
coordinate of the solution lies in the interval [0,1 + €].
|



Our last preliminary lemma is a technical result
that essentially tells us that the solution provided by

Scarf’s Lemma gives a stable solution to SPP.

LEMMA 4.2. Let S be a dominating set of columns in
C. Suppose S is also the support of some non-negative
solution z*(¢) to Bx = b(e) for some ¢ > 0.

Let ZZT*(O[) = (ga(vhpl),---,ga(vs,Pt),
Wo(P1)...,wo(Pr)) be a mnon-negative solution
to Bz = b(a) for some a > 0, whose support is

contained in S. Then the weight function w, satisfies

the a-stability condition.

Proof. Let @ be a path. Let z*(e) =
(ge(v1, P1)s ooy ge(vs, Pr), we(Pr) . .. we(F)).

Suppose that the column in C’ indexed by @Q
is dominated in C in the row (v, P). Then
ge(v,P) = 0, as the ((v,P),(v,P))-entry of
C is smaller than all entries in C’, and hence
also go(v,P) = 0. Therefore if P = d we get
Yo pren(up)We(P) = 1 and 3 p e, pywa(P) =1,
and if P # d then Y p o, pywe(P') = we(P) + €
and 3 p/c(y, p) Wa(P') = wa(P) + a. Now we claim
that @ € m(v, P). Suppose not: then the ((v, P), Q)
entry of C'is M, and so by definition of C”, none of
the paths P’ with w.(P’) # 0 are in 7(v, P). But in
this case > pic ., pyWe(P') = 0, contradicting the
fact that this value is 1 or we(P) +¢€ > 0. (We remark
that this is where ¢ > 0 was needed.) Therefore
Q € w(v, P). Finally, note that by definition of C’, all
P’ € (v, P) for which w(P’) # 0 are preferred by v
to @ (or are equal to Q). Hence also all P’ € (v, P)
for which w,(P’) # 0 are preferred by v to Q or
are equal to . Thus w, satisfies the a-stability

condition. m

Now we are ready to use Scarf’s Lemma to show
that every instance of fractional SPP has a e-solution
for any € > 0. As mentioned previously, the matrix C
will capture the notion of stability, while the matrix

B will guarantee the unity and tree conditions.

THEOREM 4.2. Let € > 0, and let a graph G with
preference lists be an instance I of fractional SPP.
Let matrices B and C be as defined in (4.1). Then
there exists a mon-negative solution x* to Bx = b(e),
whose support S is dominating in C. This gives an

e-solution of I.

Proof. By Lemma 4.1,

Bx = b(e)} is bounded.
ply Scarf’s Lemma to obtain a solution z* =
(9(v1, P1),...,g(vs, P),w(Py)...,w(P;)) whose sup-
port is dominating in C. We claim that the weight

the set {r € RT
We may therefore ap-

function w is an e-solution to I.

The unity condition follows because for each v, we
have g(v, d)+3> e () w(Q) = 1. The e-tree condition
holds because for each P of length at least 1 we have
9(v, P) = w(P) + X ger(w,p) w(Q) = €. To verify the
e-stability condition we apply Lemma 4.2 to S with
a = € and z*(e) = z*(a) = x*. Therefore w is an

e-solution to I as required. W

5 Exact Solution

In this brief section we show that Theorem 4.2 in
fact implies that every instance of SPP has a solution
(i.e. a O-solution). To find it, we will just consider
an infinite sequence of e-solutions where € tends to
0, and show that some subsequence of these solutions

converges to an exact solution.

THEOREM b5.1. FEwvery instance I of fractional SPP
has a solution.

Proof. Let a graph G, together with preference lists of
paths for each node, be the given instance I. Let the
matrices B and C' be as in (4.1). For the sequence 1 >
271> 272> .. of positive constants converging to 0,
consider the sequence of vectors b(271),b(272),... as
defined in Lemma 4.1.

For each ¢ > 1, by Theorem 4.2 there is a non-
b(27%), whose
support is dominating in C'. Let S be a subset of

negative solution z*(27%) to Bx =



columns of B that occurs as the support of z*(27%)
... be the

... for which

for infinitely many 4, and let ¢; > €2 >
infinite subsequence of 27! > 272 >
S is the support of the solution. Since €; < 1 for
each ¢, by Lemma 4.1, there exists a subsequence
a1 > g > ...0f €1 > €y > ... such that the solutions
(o), 2*(a2), . ..

every coordinate lies in [0,2]. The support of z* is

converge to a vector x*, in which

contained in S, and by continuity z* is a solution to
Bz = b(0).

We claim that the weight function w associated
with «*
conditions follow as before from the fact that z* is
b(0).
condition we apply Lemma 4.2 with 0 in place of «

is a solution to I. The unity and tree

a solution to Bz = To verify the stability
and €7 in place of e. Therefore w is a solution to I as
required. W

6 Half-integral Solutions

Consider the fractional SPP instance I whose graph
and preference lists are as shown in Figure 1. If each
node assigns a weight of 1/2 to each of the two paths
in its preference list, it is straightforward to verify that
this is a fractional solution to I and in fact, it is the

only fractional solution.

The above example might lead one to believe
that perhaps there is a half-integral solution for
all instances of fractional SPP just as there is for
all instances of the fractional stable matching prob-
lem [Tan91]. However this is not the case as the fol-

lowing example illustrates.

Consider the fractional SPP instance shown in
Figure 2. The preference lists for ay, b; and ¢ are
analogous to those for a, b and ¢ respectively in Figure
1, i.e., they all prefer the path through their clockwise
neighbor over the direct path to d;. The node d; is
the destination node and so we think of it as having a
single path d; in its preference list. For 2 < i < n
define the path P; to be a;_1d;_1a;—2d;—5...a1d;.
Then the preference list of paths for d; is d; P;. The

Figure 2: fractional BGP is not half-integral

preference list of paths for a; is a;b;d; P; followed by
a;d; P;. For b; the preference list is b;c;d; P; followed by
b;d; P; and finally the preference list for ¢; is c;a;d; P;
followed by c¢;d; P;. Since any solution for this instance
must have a1, by and ¢; assign a weight of 1/2 to each
of their paths, we know in particular that the weight
on Po = ajdy is 1/2. Then the weight that dy can
assign to its single path do P, is at most 1/2 since that
path ends with P,. Thus the total weight that any
of ag, b2, co can assign to their paths is at most 1/2
since they all end with de P. It is then easy to check
that in fact in a solution, dy assigns a weight of 1/2
to its path and each of ag, bo, and ¢y assigns a weight
of 1/4 to each of their paths. In general, a simple
inductive argument shows that the only solution for
this instance is when for any 7, 1 < ¢ < n, node d;
assigns a weight of 1/2¢~1 to its one path and each of
a;, b; and ¢; assigns a weight of 1/2¢ to each of its two

paths.



7 Discussion

A solution (if it exists) to an instance of SPP is a
not necessarily spanning arborescence 7' that includes
the destination d. The arborescence T' determines a
routing in the network of routers running BGP, i.e.,
it determines how packets to d will be routed. In
particular, a packet destined for d is routed from its
originating node v to d along the path from v to d in
T.

In fractional SPP, a solution (which we have
shown always exists) corresponds to a structure that
is more general than a tree. The question arises as
to whether this more complicated structure can be
interpreted as some kind of “fractional routing”. That
is, can it be interpreted as a description of how packets
are to be routed in some corresponding network of
routers? One way to describe such a fractional routing
is as follows. If a node v assigns a weight of w(P) to
a path P, then it will route a w(P) fraction of the
packets it originates destined for d so that they travel
along P. This could easily be accomplished with a

connection oriented style of routing such as MPLS.

Griffin et al. [GSWO02] observed that much as
other routing protocols such as RIP and OSPF can
be viewed as distributed algorithms for solving the
shortest paths problem, BGP can be viewed as a
distributed algorithm for solving the stable paths
problem. Then as we have seen, some instances of
the stable paths problem have no solutions and so it
can be the case that BGP will fail to converge. Now
that we have defined a fractional stable paths problem
that is always guaranteed to have a solution, it would
be interesting to develop a distributed algorithm, i.e.,
a protocol, that would solve the fractional stable paths
problem. The development of such a protocol remains

an open problem.
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