
A Fractional Model of the Border Gateway Protocol (BGP)

P.E. Haxell∗

University of Waterloo

Waterloo, ON, N2L 3G1

Email: pehaxell@math.uwaterloo.ca

G.T. Wilfong

Bell Laboratories

Murray Hill, NJ

Email: gtw@research.bell-labs.com

Abstract

The Border Gateway Protocol (BGP) is the interdo-

main routing protocol used to exchange routing infor-

mation between Autonomous Systems (ASes) in the

internet today. While intradomain routing protocols

such as RIP are basically distributed algorithms for

solving shortest path problems, the graph theoretic

problem that BGP is trying to solve is called the sta-

ble paths problem (SPP). Unfortunately, unlike short-

est path problems, it has been shown that instances

of SPP can fail to have a solution and so BGP can fail

to converge.

We define a fractional version of SPP and show

that all such instances of fractional SPP have solu-

tions. We also show that while these solutions exist

they are not necessarily half-integral.

1 Introduction

The internet consists of tens of thousands of subdo-

mains known as Autonomous Systems (ASes) where

each AS is a network of routers controlled by some

administrative agent. The managers of an AS have

the conflicting desires to have their AS connected to

the rest of the internet (i.e., to have routes to des-

tinations (IP addresses) in other ASes and to have

other ASes know how to route traffic to the destina-

tions that it owns) but not to allow too much traffic of

other ASes to transit over their network. In order to
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control these issues, neighboring ASes establish con-

tracts called service level agreements (SLAs) between

each other. These contracts can roughly be thought

of as promises to transit certain traffic for each other.

Thus network operators need some way to encode in

their routers, the routing policies that would let them

meet the requirements of their SLAs. To do this, they

use a protocol known as the Border Gateway Protocol

(BGP) [RL95].

BGP can be thought of as working in the following

manner. Consider some destination d where d is an

IP address or more generally, a block of IP addresses.

The router where d originates will announce via BGP

to some of its neighbors that it “owns” d. Which

neighbors it tells is a function of the economic deals

it has with its neighbors. In turn, these neighbors

might tell some of their neighbors that a route to d is

available through them. In general, a router R might

hear via BGP from a subset of its neighbors, about a

number of different routes to a particular destination

d. BGP then uses the encoded economic policies of the

AS in which it belongs, to choose its most “preferred”

route from amongst those it currently knows about.

Then it selectively tells some neighbors about this

most preferred route via BGP.

Unfortunately, the individual economic goals of

an AS might result in route preferences that conflict

with the preferences of other ASes in such a way

that BGP never converges [VGE00]. In order to

study this phenomenon, BGP has been modeled as a



formal graph theoretic problem called the Stable Paths

Problem (SPP) [GSW02]. We will describe SPP in

Section 2.

It has been shown that some instances of SPP

fail to have a solution. This implies that BGP can

fail to converge (since in these cases there is no stable

solution to which it can converge).

Motivated by some similarities between SPP and

the stable matching problem [GS62] and the fact that

while stable matchings do not always exist, fractional

stable matchings do always exist [Tan91], we define

a fractional version of SPP we call fractional SPP.

Intuitively, SPP and fractional SPP can be thought

of as follows. In both, each node has a preference

ordering of (some of the) paths from itself to the

specified destination. In SPP, each node v “chooses”

a path Pv, and this allows other nodes to choose paths

that contain Pv as a subpath. One can think of each

v as putting a weight of 1 on Pv and 0 on all other

paths from v to the destination. A solution to an

SPP instance then is a set of choices in which each

node selects a path that obeys the above subpath

constraint and no node can change its mind (while

the others remain fixed) and get a more preferred

path. On the other hand, in fractional SPP a node

can fractionally assign weights to paths from itself to

the destination so that it assigns a total weight of no

more than 1. When a node u puts a weight w on a

path P , this constrains the weights the other nodes

can put on paths containing P so that for each other

node these weights total no more w. The intuition is

that normally we view a node’s BGP announcement

of a route P to d as saying that if another node hears

of P then it is permitted to send all of its traffic to

d so that it passes over P . In our fractional model of

BGP, we then think of allowing a node to announce

routes each with a fractional weight w, 0 ≤ w ≤ 1

where the total of the weights on routes offered by

a node is at most 1. The weight is interpreted as

meaning that the node is offering to allow any node

hearing of this route to send (at most) a w fraction of

its traffic to d along this route. The notion of stability

in our fractional model is similar to SPP. Intuitively, a

solution is one in which no node can shift some weight

to more preferred paths given that the other nodes

keep their weights fixed. We will show that, unlike

(integral) SPP, every instance of fractional SPP has a

solution.

One can view SPP as a pure strategy game whose

solutions correspond to Nash equilibria. However it

should be noted that it is not the case that fractional

SPP is just a mixed strategy game and so we cannot

conclude that stable solutions (i.e., Nash equilibria)

exist simply by appealing to Nash’s Theorem [Nas50].

It may also be possible to formulate SPP in terms

of a cooperative game in order to study its core, but

it is not necessary to do so for our purposes and we

therefore choose an elementary treatment.

2 Formal Definition of SPP

The dynamic operation of BGP as outlined in Sec-

tion 1, can be modeled as an equivalent static graph

problem called the stable paths problem (SPP) de-

fined below. The problems are equivalent in the sense

that for any network and for any configuration of BGP

(i.e., encoding of policies) on the routers in the net-

work, BGP has a stable solution that it might converge

to if and only if the corresponding instance of SPP has

a solution.

We now describe SPP as it was defined in Griffin

et al. [GSW02]. Let G be a graph with a distinguished

node d, called the destination. Suppose each node

v 6= d in G has a preference list of simple paths from

v to d. This is an ordered list of some (not necessarily

all) such paths. We use the notation π(v) to denote

the set of paths in the preference list of v, and we write

P < P ′ to mean that P and P ′ are both in some π(v)

and v prefers P ′ to P . We describe the preferences

numerically as follows: for P ∈ π(v), we define U(P ),

the utility of path P , to be c if there are c − 1 paths

P ′ ∈ π(v) where P ′ < P . For a path S we also define



π(v, S) to be the set of paths in π(v) that end with

the path S. (Note that if S is just the “empty” path d

then π(v, S) = π(v).) A solution to an SPP instance is

a (not necessarily spanning) arborescence T in G with

sink node d, with the following stability property. Let

Q be any path, and let v be its starting node. Then

one of the following holds:

• P ⊆ T for some P ∈ π(v) with P ≥ Q,

• there exists a proper final segment S of Q such

that S 6⊆ T .
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Figure 1: SPP instance with no solution.

It is known that not every instance of SPP has

a solution. For example, the instance called BAD

GADGET is an instance of SPP that has no solu-

tion [GW99] and is described as follows (see Figure

1): G is a copy of K4 with vertices a, b, c, and d.

Each of a, b, and c has two paths in its preference list:

a has P1 = ad and P2 = abd, and a prefers P2 to P1.

The preference lists for b and c are analogous: each

prefers to go through its clockwise neighbor than to

go straight to d. The preference lists are shown in the

figure ordered from most preferred to least preferred

in order from top to bottom. It is easily seen that no

solution exists for such an instance of SPP.

3 Fractional SPP

In this section we define a fractional generalization

of SPP that we call fractional SPP. The parameters

defining an instance of fractional SPP are the same as

those for an instance of SPP. That is, we have a graph

with a designated destination node d where each non-

destination node has a preference list, i.e., an ordered

list of some of the paths from itself to the destination

node d. The only difference will be the definition of a

solution which we now describe.

For fractional SPP we define a solution to be an

assignment of a non-negative weight w(P ) to each

path P in π(v) for every v so that the weights satisfy

the three properties listed below.

“Unity” condition: For each node v,
∑

P∈π(v) w(P ) ≤

1.

“Tree” condition: For each node v, and each path S,

we have
∑

P∈π(v,S) w(P ) ≤ w(S).

“Stability” condition: Let Q be a path, and let v be

its starting node. Then one of the following holds:

•
∑

P∈π(v) w(P ) = 1, and each P ∈ π(v) with

w(P ) > 0 is such that P ≥ Q.

• there exists a proper final segment S of Q such

that
∑

P∈π(v,S) w(P ) = w(S), and moreover each

P ∈ π(v, S) with w(P ) > 0 is such that P ≥ Q.

Our aim is to show that every instance of frac-

tional SPP has a solution. Because of a technicality,

we will do this in two stages. First we show that for

any positive constant ǫ, every instance of fractional

SPP has an ǫ-solution, which is defined as follows:

For each node v and each path P ∈ π(v), we assign

a non-negative weight w(P ) such that the following

conditions hold.

“Unity” condition:
∑

P∈π(v) w(P ) ≤ 1 for each v.

“ǫ-Tree” condition: For each node v, and each path

S, we have
∑

P∈π(v,S) w(P ) ≤ w(S) + ǫ.

“ǫ-Stability” condition: Let Q be a path, and let v be

its starting node. Then one of the following holds:

•
∑

P∈π(v) w(P ) = 1, and each P ∈ π(v) with

w(P ) > 0 is such that P ≥ Q.

• there exists a proper final segment S of Q such

that
∑

P∈π(v,S) w(P ) = w(S) + ǫ, and moreover



each P ∈ π(v, S) with w(P ) > 0 is such that

P ≥ Q.

In the next section we show that for every ǫ > 0,

every instance of fractional SPP has an ǫ-solution.

Then in the following section we apply a standard

compactness-type argument to conclude that every

instance has an exact solution.

4 Approximate Solvability of Fractional SPP

The main tool in our proof is an important result due

to Scarf [Sca67]. The idea of applying Scarf’s Lemma

to a stability type problem was used by Aharoni and

Fleiner in [AF03].

Theorem 4.1. (Scarf’s Lemma) Let n < m be posi-

tive integers, let b ∈ Rn
+, and let B and C be n × m

matrices with the following properties:

• the first n columns of B form an identity matrix,

and the set {x ∈ Rm
+ : Bx = b} is bounded,

• each entry cik for k > n satisfies cii < cik < cij

for each j 6= i, j ≤ n.

Then there exists x ∈ Rm
+ such that Bx = b and the

set of columns S of C that correspond to the support

supp(x) = {k : xk 6= 0} of x form a dominating set.

This means that for every column j, there exists a row

i such that cik ≥ cij for every k ∈supp(x).

We will apply Scarf’s Lemma to matrices B and C

defined from an instance of fractional SPP as follows.

Definition 4.1. Let a graph G with preference lists

be a given instance of fractional SPP. Let N =

{(v, P ) : P ⊂ Q for some Q ∈ π(v)} (note the proper

containment), and set n = |N |. We let m = n + t

where t is the number of paths in U . The n× t matrix

B′ is indexed by N ∪ U , with entries as follows: the

((v, P ), Q)-entry is −1 if P = Q, is 1 if Q ∈ π(v, P ),

and is 0 otherwise.

The matrix B is formed by attaching an n × n

identity matrix to B′ on the left.

Let M be a number larger than the size of any

preference list. The matrix C′ is defined as follows: if

Q ∈ π(v, P ) then the ((v, P ), Q)-entry is the utility c

of Q ∈ π(v, P ), and if Q /∈ π(v, P ) then the entry is

M .

The matrix C is formed by attaching a n × n

matrix to C′ on the left, in which each diagonal entry

is smaller than each entry of C′, and each off-diagonal

entry is larger than each entry of C′.

Let us emphasise that the empty path is used in

the index set N , even though it is not an element of the

union U = ∪vπ(v). Note then in particular that when

P is the empty path, there is no −1 entry in the row

(v, P ). Observe that the matrices B and C as defined

here are of the form required in the assumptions of

Scarf’s Lemma.

Lemma 4.1. Let G with preference lists be an instance

of fractional SPP, and let B, C, N , n and m be

as defined in (4.1). Let ǫ ≥ 0 be given, and let

b(ǫ) ∈ Rn be the vector with coordinates indexed by N

defined as follows: for the empty path P , each (v, P )-

coordinate of b(ǫ) is 1, and for all other paths the

(v, P )-coordinate is ǫ. Then each coordinate of each

element x of the set {x ∈ Rm
+ : Bx = b(ǫ)} lies in the

interval [0, 1 + ǫ].

Proof. Suppose the vector

(g(v1, P1), . . . , g(vs, Pt), w(P1) . . . , w(Pt)) is a

non-negative solution to Bx = b(ǫ). By defini-

tion of B, we have first of all (looking at rows

(v, P ) for the empty path P = d) that for each

v, g(v, d) +
∑

Q∈π(v) w(Q) = 1. This tells us

that g(v, d) ≤ 1 and w(Q) ≤ 1 for each v and

Q ∈ U . Now for each P of length at least 1 we have

g(v, P ) − w(P ) +
∑

Q∈π(v,P ) w(Q) = ǫ, telling us

that each g(v, P ) ≤ w(P ) + ǫ ≤ 1 + ǫ. Thus each

coordinate of the solution lies in the interval [0, 1 + ǫ].



Our last preliminary lemma is a technical result

that essentially tells us that the solution provided by

Scarf’s Lemma gives a stable solution to SPP.

Lemma 4.2. Let S be a dominating set of columns in

C. Suppose S is also the support of some non-negative

solution x∗(ǫ) to Bx = b(ǫ) for some ǫ > 0.

Let x∗(α) = (gα(v1, P1), . . . , gα(vs, Pt),

wα(P1) . . . , wα(Pt)) be a non-negative solution

to Bx = b(α) for some α ≥ 0, whose support is

contained in S. Then the weight function wα satisfies

the α-stability condition.

Proof. Let Q be a path. Let x∗(ǫ) =

(gǫ(v1, P1), . . . , gǫ(vs, Pt), wǫ(P1) . . . , wǫ(Pt)).

Suppose that the column in C′ indexed by Q

is dominated in C in the row (v, P ). Then

gǫ(v, P ) = 0, as the ((v, P ), (v, P ))-entry of

C is smaller than all entries in C′, and hence

also gα(v, P ) = 0. Therefore if P = d we get
∑

P ′∈π(v,P ) wǫ(P
′) = 1 and

∑
P ′∈π(v,P ) wα(P ′) = 1,

and if P 6= d then
∑

P ′∈π(v,P ) wǫ(P
′) = wǫ(P ) + ǫ

and
∑

P ′∈π(v,P ) wα(P ′) = wα(P ) + α. Now we claim

that Q ∈ π(v, P ). Suppose not: then the ((v, P ), Q)

entry of C is M , and so by definition of C′, none of

the paths P ′ with wǫ(P
′) 6= 0 are in π(v, P ). But in

this case
∑

P ′∈π(v,P ) wǫ(P
′) = 0, contradicting the

fact that this value is 1 or wǫ(P )+ ǫ > 0. (We remark

that this is where ǫ > 0 was needed.) Therefore

Q ∈ π(v, P ). Finally, note that by definition of C′, all

P ′ ∈ π(v, P ) for which wǫ(P
′) 6= 0 are preferred by v

to Q (or are equal to Q). Hence also all P ′ ∈ π(v, P )

for which wα(P ′) 6= 0 are preferred by v to Q or

are equal to Q. Thus wα satisfies the α-stability

condition.

Now we are ready to use Scarf’s Lemma to show

that every instance of fractional SPP has a ǫ-solution

for any ǫ > 0. As mentioned previously, the matrix C

will capture the notion of stability, while the matrix

B will guarantee the unity and tree conditions.

Theorem 4.2. Let ǫ > 0, and let a graph G with

preference lists be an instance I of fractional SPP.

Let matrices B and C be as defined in (4.1). Then

there exists a non-negative solution x∗ to Bx = b(ǫ),

whose support S is dominating in C. This gives an

ǫ-solution of I.

Proof. By Lemma 4.1, the set {x ∈ Rm
+ :

Bx = b(ǫ)} is bounded. We may therefore ap-

ply Scarf’s Lemma to obtain a solution x∗ =

(g(v1, P1), . . . , g(vs, Pt), w(P1) . . . , w(Pt)) whose sup-

port is dominating in C. We claim that the weight

function w is an ǫ-solution to I.

The unity condition follows because for each v, we

have g(v, d)+
∑

Q∈π(v) w(Q) = 1. The ǫ-tree condition

holds because for each P of length at least 1 we have

g(v, P ) − w(P ) +
∑

Q∈π(v,P ) w(Q) = ǫ. To verify the

ǫ-stability condition we apply Lemma 4.2 to S with

α = ǫ and x∗(ǫ) = x∗(α) = x∗. Therefore w is an

ǫ-solution to I as required.

5 Exact Solution

In this brief section we show that Theorem 4.2 in

fact implies that every instance of SPP has a solution

(i.e. a 0-solution). To find it, we will just consider

an infinite sequence of ǫ-solutions where ǫ tends to

0, and show that some subsequence of these solutions

converges to an exact solution.

Theorem 5.1. Every instance I of fractional SPP

has a solution.

Proof. Let a graph G, together with preference lists of

paths for each node, be the given instance I. Let the

matrices B and C be as in (4.1). For the sequence 1 >

2−1 > 2−2 > . . . of positive constants converging to 0,

consider the sequence of vectors b(2−1), b(2−2), . . . as

defined in Lemma 4.1.

For each i ≥ 1, by Theorem 4.2 there is a non-

negative solution x∗(2−i) to Bx = b(2−i), whose

support is dominating in C. Let S be a subset of



columns of B that occurs as the support of x∗(2−i)

for infinitely many i, and let ǫ1 > ǫ2 > . . . be the

infinite subsequence of 2−1 > 2−2 > . . . for which

S is the support of the solution. Since ǫi < 1 for

each i, by Lemma 4.1, there exists a subsequence

α1 > α2 > . . . of ǫ1 > ǫ2 > . . . such that the solutions

x∗(α1), x
∗(α2), . . . converge to a vector x∗, in which

every coordinate lies in [0, 2]. The support of x∗ is

contained in S, and by continuity x∗ is a solution to

Bx = b(0).

We claim that the weight function w associated

with x∗ is a solution to I. The unity and tree

conditions follow as before from the fact that x∗ is

a solution to Bx = b(0). To verify the stability

condition we apply Lemma 4.2 with 0 in place of α

and ǫ1 in place of ǫ. Therefore w is a solution to I as

required.

6 Half-integral Solutions

Consider the fractional SPP instance I whose graph

and preference lists are as shown in Figure 1. If each

node assigns a weight of 1/2 to each of the two paths

in its preference list, it is straightforward to verify that

this is a fractional solution to I and in fact, it is the

only fractional solution.

The above example might lead one to believe

that perhaps there is a half-integral solution for

all instances of fractional SPP just as there is for

all instances of the fractional stable matching prob-

lem [Tan91]. However this is not the case as the fol-

lowing example illustrates.

Consider the fractional SPP instance shown in

Figure 2. The preference lists for a1, b1 and c1 are

analogous to those for a, b and c respectively in Figure

1, i.e., they all prefer the path through their clockwise

neighbor over the direct path to d1. The node d1 is

the destination node and so we think of it as having a

single path d1 in its preference list. For 2 ≤ i ≤ n

define the path Pi to be ai−1di−1ai−2di−2 . . . a1d1.

Then the preference list of paths for di is diPi. The

a1 b1

c1

d1

a2

c2

d2

an

bn

cn

dn

b2

Figure 2: fractional BGP is not half-integral

preference list of paths for ai is aibidiPi followed by

aidiPi. For bi the preference list is bicidiPi followed by

bidiPi and finally the preference list for ci is ciaidiPi

followed by cidiPi. Since any solution for this instance

must have a1, b1 and c1 assign a weight of 1/2 to each

of their paths, we know in particular that the weight

on P2 = a1d1 is 1/2. Then the weight that d2 can

assign to its single path d2P2 is at most 1/2 since that

path ends with P2. Thus the total weight that any

of a2, b2, c2 can assign to their paths is at most 1/2

since they all end with d2P2. It is then easy to check

that in fact in a solution, d2 assigns a weight of 1/2

to its path and each of a2, b2, and c2 assigns a weight

of 1/4 to each of their paths. In general, a simple

inductive argument shows that the only solution for

this instance is when for any i, 1 ≤ i ≤ n, node di

assigns a weight of 1/2i−1 to its one path and each of

ai, bi and ci assigns a weight of 1/2i to each of its two

paths.



7 Discussion

A solution (if it exists) to an instance of SPP is a

not necessarily spanning arborescence T that includes

the destination d. The arborescence T determines a

routing in the network of routers running BGP, i.e.,

it determines how packets to d will be routed. In

particular, a packet destined for d is routed from its

originating node v to d along the path from v to d in

T .

In fractional SPP, a solution (which we have

shown always exists) corresponds to a structure that

is more general than a tree. The question arises as

to whether this more complicated structure can be

interpreted as some kind of “fractional routing”. That

is, can it be interpreted as a description of how packets

are to be routed in some corresponding network of

routers? One way to describe such a fractional routing

is as follows. If a node v assigns a weight of w(P ) to

a path P , then it will route a w(P ) fraction of the

packets it originates destined for d so that they travel

along P . This could easily be accomplished with a

connection oriented style of routing such as MPLS.

Griffin et al. [GSW02] observed that much as

other routing protocols such as RIP and OSPF can

be viewed as distributed algorithms for solving the

shortest paths problem, BGP can be viewed as a

distributed algorithm for solving the stable paths

problem. Then as we have seen, some instances of

the stable paths problem have no solutions and so it

can be the case that BGP will fail to converge. Now

that we have defined a fractional stable paths problem

that is always guaranteed to have a solution, it would

be interesting to develop a distributed algorithm, i.e.,

a protocol, that would solve the fractional stable paths

problem. The development of such a protocol remains

an open problem.
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