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Abstract

We introduce a game theoretic model of network forma-
tion in an effort to understand the complex system of busi-
ness relationships between various Internet entities (e.g.,
Autonomous Systems, enterprise networks, residential cus-
tomers). This system is at the heart of Internet connectivity.
In our model we are given a network topology of nodes and
links where the nodes (modeling the various Internet en-
tities) act as the players of the game, and links represent
potential contracts. Nodes wish to satisfy their demands,
which earn potential revenues, but nodes may have to pay
(or be paid by) their neighbors for links incident to them.
By incorporating some of the qualities of Internet business
relationships, we hope that our model will have predictive
value. Specifically, we assume that contracts are either
customer-provider or peering contracts. As often occurs in
practice, we also include a mechanism that penalizes nodes
if they drop traffic emanating from one of their customers.

For a natural objective function, we prove that the price
of stability is at most 2. With respect to social welfare, how-
ever, the prices of anarchy and stability can both be un-
bounded, leading us to consider how much we must perturb
the system to obtain good stable solutions. We thus focus on
the quality of Nash equilibria achievable through central-
ized incentives: solutions created by an “altruistic entity”
(e.g., the government) able to increase individual payouts
for successfully routing a particular demand. We show that
if every payout is increased by a factor of 2, then there is
a Nash equilibrium as good as the original centrally de-
fined social optimum. We also show how to find equilibria
efficiently in multicast trees. Finally, we give a character-
ization of Nash equilibria as flows of utility with certain
constraints, which helps to visualize the structure of stable
solutions and provides us with useful proof techniques.
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1 Introduction

The formation of the Internet marked a step away from
centrally planned and controlled networks, and a step to-
wards networks that employ distributed traffic routing con-
trol. Nevertheless, the early Internet adopted a common
standard and agreed upon metrics to make routing deci-
sions. With the advent of competition in the 1990’s, this
ceased to be the case, and today the Internet is composed of
tens of thousands of sub-networks called Autonomous Sys-
tems (AS), each under a single administrative authority with
its own distinct goals in controlling the traffic entering and
leaving its network. A number of other emerging communi-
cation networks also have the characteristic that a collection
of domains, with varying self-interests, participate in such
a multilateral sharing of network resources.

Network management becomes substantially more com-
plex as a result of the inherent interdependence involved in
multi-domain (multilateral) networks. For instance, there
is limited ability to predict how changes in the network, or
in business relationships between domains, affects current
routings [20]. Even obtaining accurate estimates of current
traffic conditions is a nontrivial challenge [7, 15]. Such im-
mediate operational tasks in turn depend on the existence
of a stable system of business relationships between AS’s.
Questions of whether certain AS’s will peer and what type
of service level agreements (SLAs) will be forged between
AS’s are critical for understanding the structural properties
of the networks formed. This paper’s focus is on these
longer-term strategic factors affecting the formation of a
stable network-of-networks.

It is natural to employ game theory to analyze the self-
interested behaviour of domains, and several models have
recently been proposed. These have fallen into two broad
categories: models that address routing issues (e.g., [14,
37]) and those that study network creation (e.g., [1, 13, 31]).
Our objectives are more aligned with the latter class. In par-
ticular, we introduce a network formation model called the
Local Contract Formation Game (LCFG) in an effort to un-
derstand the complex system of business relationships be-
tween Internet domains such as AS’s, residential customers,



and enterprise networks. This system is at the heart of In-
ternet connectivity and by incorporating some of the qual-
ities of these relationships, we hope to capture the essence
of these interactions so that our model will have some pre-
dictive value. We model three key elements of real-world
business interactions between domains. The first element is
that, unlike many models, we assume that monetary trans-
fers and business relationships are strictly local. This mod-
els current practice where links arise as part of a bilateral
agreement between the two endpoints. Such arrangements
depend implicitly on the global structure of the networks
and traffic demands, but are based only on a local bid-ask
type contract between two neighboring domains [27, 28].
Second, we allow the links in the network to be one of
two types: customer-provider or peer-peer [11, 12, 16, 21].
Third, we include a mechanism that penalizes domains if
they drop traffic emanating from one of their customers.
This models the fact that SLA penalties have become com-
monplace in contracts, especially those offered by core net-
work providers [26]. Despite these features, our model re-
mains simple enough to analyze.

In our model, we assume that there are no link capacity
constraints. In other words, links have been sized accord-
ingly to carry all possible traffic; a reasonable assumption
given our focus on long-term effects, as opposed to brief
outages due to traffic bursts. Also, we assume that traffic
demands have a specified path they must follow. While this
fixed route assumption ignores dynamic routing changes in
a network, it seems a necessary first step to understanding
whether a given configuration of business relationships is
stable. Moreover, to understand routing behavior, we must
first understand how/whether the links used by those routes
would themselves form a stable configuration. The model
choice is also driven and justified by our focus on stable
interdomain business relationships, which are longer-term
than routing decisions. As we will see, the fixed route
model already contains considerable complexity. Future
work may be to extend this to allow route generation and
contract formation as a repeated game, where routes de-
pend on the previous contracts, and contracts depend on the
routes during the previous step.

We study stable business relationships by exploring the
existence and structure of Nash equilibria for the game
LCFG. Nash equilibria are the dominant solution concept
in game theory, and correspond to locally optimal solutions.
While many solution concepts are possible in this context, if
local optimality is not satisfied, then the system is inherently
unstable since some node (player) could act to increase their
payoff. Our goals are to understand the creation of such sta-
ble networks, and how to induce good stable solutions when
none would otherwise form. Interestingly, we will see there
are several attributes of Nash equilibria in LCFG that match
common practice in the Internet. One such is that there al-

ways exist equilibria where no money is exchanged between
peers. Another is that even without any assumption on the
structure of the underlying contract graph, one may assume
that no node forwards traffic from one of its providers to
another. This mirrors the practice of filtering out route an-
nouncements in the Border Gateway Protocol.

Local Contract Formation Game In LCFG we are given
a network topology of nodes and links where the nodes
(modeling domains) act as the players of the game, and the
links represent potential connections or contracts that could
be made. We are also given a set of demands each of which
is a path in the graph. For example, in Figure 1(a), there is
a demand d1 along the path between u1 and u2. A demand
di is active (connected) if appropriate contracts are formed
on all links in the path of di (i.e., the links are “activated”).
If di is active, the utility of di’s endpoints increases (say by
some value λi). For every active demand going through a
node v, however, v suffers 1 unit of disutility, representing
the fact that it costs money to transit traffic through one’s
servers and subdomains. We call this cost the transit cost.
Figure 1(b) shows the change in the nodes’ utility because
demands d1 and d3 are active. The goal of each player v in
this game, then, is to satisfy as many of the demands ending
at v as possible, while having as few demands as possible
going through v.

In such a framework without utility transfer, demands
would never be activated (i.e., connected), since players
have no interest in incurring transiting costs for other play-
ers. When bilateral contracts are introduced, however, two
players may activate a link between them and thus com-
mit to carrying traffic offered across the link. In fact, two
types of contracts are possible: a customer-provider con-
tract where one player (the customer) pays the other player
(the provider) to activate the link and transit the customer’s
traffic; and a peering contract where no payment is ex-
changed because it is in both players’ interests to activate
the link. Figure 1(c) shows the payments ci that occur be-
cause of the formation of these contracts, as well as the im-
pact of these payments on the players’ utilities.

In addition, suppose a provider accepts payment from
a customer (i.e., a contract is formed between them). The
customer agrees to this payment since it then expects the
provider to form the necessary contracts with its other
neighbors to activate demands from the customer (or the
customer’s customers etc). If the provider fails to make such
a payment for a link, then the provider must pay a “penalty”
to its customer. Figure 1(c) shows u6 paying a penalty p to
u5, since u6 is the provider of u5 and u6 failed to form a
contract with u7 that would have activated demand d2.

Thus a player’s total utility consists of the utility for hav-
ing demands activated for which it is an endpoint, payments
to or from neighbors for contracts formed, transit costs for
active demands that go through it and finally, penalties paid
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Figure 1. Utilities and transfers. Directed edges represent customer-provider contracts, with the
provider at the head. The dashed edge (u6, u7) represents an inactive link/contract.

by or to it. A node’s strategy space then consists of choos-
ing which contracts to form and how much to ask/offer for
the formation of such contracts. A node might change its
strategy if by doing so it strictly increased its utility. For
example, in Figure 1, if node u6 changed its strategy and
paid some amount c to node u7 to activate the link between
them, then u6’s utility would increase by p since it would
no longer pay a penalty, but it would decrease by c + 1 due
to the payment of c plus it would incur a transit cost of 1 for
the now active demand d2. Thus if p − c − 1 > 0, then u6

would benefit by changing its strategy.

(a)

λ − L

λ

λ

λ − 2

λ − 1

d1

d2
λ2 = L

λ1 = L

λ1 = L

λ2 = L

L

L

(b)

v

Figure 2. (a) The payments for customer-
provider contracts are shown. (b) Coopera-
tion results in a good NE.
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Figure 3. NE with distant monetary effects.

Nash Equilibria (NE) Formal definitions of LCFG and
its NE’s are given in Section 2, but here we informally il-
lustrate some interesting forms of NE’s. Notice that in any
NE each player must have non-negative total utility for oth-

erwise it could improve its utility to 0 by requesting a large
(“infinite”) amount for each of its incident edges effectively
deactivating or “cutting” these edges. Also, a trivial NE
where no demands are activated can always be achieved by
having all nodes cut all of their incident edges. In this way,
all nodes end up with a total utility of 0.

In Figure 2(a), we have a single demand, of utility λ,
through L + 2 nodes. One may argue that this is a NE if
L ≤ λ − 1. Informally, each internal node would keep (at
least) 1 from its incoming payment to pay for its transit cost,
before passing on any remaining payment to the provider
above it. If each node keeps exactly 1, then the payments
along edges are shown in the figure. Assuming the asking
prices of the providers do not exceed this amount, then the
edges will be formed and the demand will be active as long
as L ≤ λ − 1. Note that the total utility for each internal
node (contract payment received minus contract payment
paid minus 1 for transit) would be 0. If a node “cuts” its
outgoing edge, then it will have to pay a large penalty (in
this case the penalty would actually be at least λ−1) which
is at least as large as the payment it is receiving. Thus the
configuration in Figure 2(a) is stable if L ≤ λ − 1.

In a sense, for this example there is sufficient utility from
the bottom node of the demand to activate all of the edges.
This suggests a likely candidate for a stable solution: one
where each demand pays for its own transit. That is, a flow
of payments is propagated from the endpoints along the de-
mand path in order to ensure that the internal nodes are will-
ing to incur the transit costs. There are NE’s, however, as in
Figure 2(b), where demands pay for each other’s transit and
improve the overall utility as a result. In this example, de-
mand d2 has plenty of money to pay for its transit on the left
of node v, but requires help to pay for transit on the right,
with the opposite being true for demand d1. Both demand
paths are of length L + 4.

More surprisingly, there are NE’s where payments from
a demand end up at nodes distant from that demand’s con-
nection path, as in Figure 3. Here λ1, λ2 are approximately
L, and it can be shown that a NE exists with all the edges
as active contracts. In such a NE, all the payments starting
at u1 towards u2 would be used to pay for the transit of the



two demands through those nodes from u1 up to u2. There
is a payment from u5 to u2 of λ2 − 1 which is roughly L.
Thus there is about L utility available at u5 to pay for the
transit of d1 along the path from u2 to u3. It is beneficial
for u2 to send the money from d2 towards u3 to pay for d1’s
transit (i.e., pay for the provider edge from u2 to the next
node) since otherwise it would have to pay a large penalty
to its customer node along the path from u1. It would not
have to pay this penalty if it also cut the edge from that cus-
tomer, but then it would have to pay a penalty to u5 since
that would disconnect d2. These examples show that paying
for the transit of others can result in a NE that maximizes
social welfare.1

Our Results As we will show, the prices of anarchy and
stability2 with respect to social welfare in LCFG can both
be unbounded. Moreover, the best (maximum social wel-
fare) NE is not poly-time approximable. This motivates the
questions of when good Nash equilibria exist, and how to
induce a good NE in an instance of LCFG given a small
budget, without altering the game mechanism. Some of our
results are as follows.
• In Section 3 we focus on measuring the degree to which
an instance must be perturbed in order to obtain a Nash
equilibrium as good as the centrally defined social optimum.
Equivalently, one may view this as seeking high quality
NE’s achieved through centralized incentives; that is, so-
lutions created by an altruistic entity able to increase indi-
vidual payouts for particular demands. This entity may be
the government, or any organization interested in the qual-
ity of the overall network. Our main result of this section
shows that if every demand value λ(d) is increased by a fac-
tor of 2, then there is a NE as good as the original centrally
defined social optimum. We also prove generalizations of
this result, that often give us factors much better than 2.
• Instead of the social welfare objective, in Section 4 we
consider a non-mixed sign objective function: the total tran-
sit cost incurred plus the value of the demands that are not
connected. With respect to this (still natural) objective func-
tion, we show that the price of stability of LCFG is at most
2, as well as how to efficiently find a good Nash equilibrium
starting with an approximation to the centralized optimum.
• In Section 5 we show that if the routing network is a mul-
ticast tree (all demands have a node in common), then we
can find the best NE in polynomial time. Unlike our other
results, this problem becomes NP-hard if demands are not
unit-size. For non-unit demands, we can still efficiently find
an interesting non-trivial NE in a multicast arborescence.
• Finally, in Section 6, we provide a structural characteri-
zation of Nash equilibria that is also the basis for most of

1Recall that the social welfare of a solution is the sum of the players’
utilities.

2See [32] for a definition of price of anarchy (known there as the coor-
dination ratio), and [2] for a definition of price of stability.

our technical results. We prove that every NE can be rep-
resented by a flow of utility with certain constraints. Apart
from helping to visualize the general structure of stable so-
lutions, this yields a poly-time algorithm for determining
the existence of Nash equilibria that successfully route a
specific set of demands.

Related Work The notion that an AS benefits from its
demands getting to their destinations, and loses utility from
transiting traffic, was explored in several papers (e.g. [14,
31, 35]). Typically, however, the concentration has been on
short-term routing and pricing schemes, e.g., [23, 25, 30,
33, 36]. While short-term pricing and admission models
are of significant interest, they rely on an underlying set of
business (longer-term economic) relationships. Moreover,
agreements between entities (ISPs, enterprise or residential
customers) tend to be based on more rigid contracts such as
fixed bandwidth, or peak bandwidth contracts [27, 28]. This
is largely due to the complexity (and expense) of monitoring
IP traffic at a packet or flow level.

Motivated by this, several game theoretical models have
addressed the strongly related notion of network formation.
Some of these do not look at contract formation, but instead
assume that edges have intrinsic costs [1, 2, 4, 5, 13, 24, 34].
On the other hand, contract formation models of networks
have been heavily addressed as well, mostly in the eco-
nomics literature (e.g., [17], for a survey see [29]). This
body of work mostly addresses questions distinct from
those studied here. In particular, none of these consider
customer-provider and peering contracts, or measure the
impact of provider penalties. In [6] a very general model
of network formation is considered. Our model is a (very)
special case of theirs, and indeed their characterization of
“stable networks” is analogous to our characterization of a
stable set of strategies in LCFG. The model of [31] is also
quite relevant; their flavor of results is quite different from
ours, however, as they focus on solutions where all demands
are satisfied, and on so-called pairwise-stable equilibria. In
addition, [8, 30] address intra-domain concerns of when it
is wise to form peering contracts, instead of concerns about
the resulting overall network structure.

2 Model and Basic Results

We now formally define an instance of the Local Con-
tract Formation Game (LCFG). We are given a mixed graph
G = (V,E), as described in the Introduction. Undirected
edges represent possible peering contracts. A directed edge
(arc) e = (u, v) is referred to as a provider edge of u and a
customer edge of v. Graph G could be a multi-graph, that
is, there may be several types of contracts possible between
two given nodes. Notice that the direction of an edge is not
meant to indicate traffic flow, but to represent the hierarchi-
cal nature of a typical customer/provider network (cf. [16]).



We are also given a set of demands D on G, each spec-
ified with an unordered pair of nodes st. A demand d is a
request for traffic to be exchanged between s and t; to limit
notation, we assume each demand is unit size, although in
most cases extending our results to demands of variable
sizes is easy.

Traffic for a demand d is carried on some fixed, pre-
specified path P (d) with endpoints s, t. A path from s to
t in G is said to be an upward path if it is a simple di-
rected path. We call a simple path P between s and t a
valid path if P can be written as the concatenation of three
subpaths P = P1P2P3 where P1 is a (possibly empty) up-
ward path from s to some node u, P2 is an empty path or a
peering edge between u and some node v and P3 is a (pos-
sibly empty) upward path from t to v. This definition of a
valid path is the same as the definition of Type-1 and Type-
2 paths in [16], valid signaling paths in [21] and valley-free
paths in [11]. For the remainder of this paper, we assume
that all our paths P (d) are valid. See the end of this section
for why this assumption is the correct one to make.

Notice that in the above definition P (d) specifies exactly
which contracts must be active for demand d to be satisfied.
In fact, all our results still hold if we relax this condition,
and say that demand d is satisfied when there exists any
valid path from s to t on the nodes of P (d) (in other words,
the route is fixed, but not the contracts along this route).

A configuration of our game is determined by a set S of
active edges (i.e. successfully formed contracts). A demand
d is active (i.e., successfully routed) in this configuration
if all edges of P (d) are active. Let Dend(v) be the active
demands having endpoint v, and D(v) be the set of active
demands for which v ∈ P (d). Similarly, for each edge
e, define Dend(e) to be the active demands having e as an
initial or final edge, and D(e) to be the set of active d with
e ∈ P (d). In general, for any S ⊆ V ∪E, D(S) is the set of
active demands that include nodes/edges of S. We denote
by λs(d) the value of the demand d to s if d is active and s
is an endpoint of d. For any node v, the set of active edges
determines a total value to v of:

∑
d∈Dend(v) λv(d). In the

following, we always assume that λv(d) ≥ 2.
The basic goal of nodes (players) is to influence the for-

mation of contracts so as to balance their desire for the val-
ues of connected demands with the cost incurred by tran-
siting the traffic of other nodes. We now discuss the ba-
sic strategies (actions) that players have at their disposal to
achieve their goals.

Strategies: A strategy for a node v consists of bids for
each of its incident edges e. We denote by offerv(e) the
amount v is offering (or demanding if offerv(e) < 0) to
form the business relationship represented by e. Similar to
[6], a contract on edge e with endpoints u and v is formed
if offerv(e) + offeru(e) ≥ 0, the payment offered by one
endpoint of e is greater than the payment demanded by the

other endpoint. In this case e is active for these strategies.
This is slightly different from [6], since if one of our bids is
negative, then the other endpoint transfers an amount equal
to its absolute value. If both endpoint bids are nonnegative,
then the edge is formed with no payments between u and
v. We let cu(e) denote the ultimate payment made to u
for e. A solution S for this game consists of a profile of
strategies, i.e., for each node a list of bids for its incident
edges. Clearly S induces a network configuration S given
by the set of active edges.

Transit Costs: For any configuration of active edges, say
induced by a solution S, define the traffic transited by a
node v (or similarly by an edge e) to be D(v) (or D(e)).
For x ∈ V ∪E, let t(x) be the total amount of traffic that x
is transiting, i.e. t(x) = |D(x)|. We define the cost of tran-
siting for a node x to be t(x). That is, there is a normalized
cost of 1 for each active demand transited. In general, for
any S ⊆ V ∪ E, let t(S) =

∑
s∈S t(s).

Penalties: Finally, a provider must pay penalties to its
customers if it fails to meet its obligations. The existence
of such penalties is the only difference between peering and
customer-provider edges in our model. For node v and de-
mand d with v ∈ P (d), define pv(d) = 0 except in the
following cases. Consider a demand d with endpoints s
and t. The demand is penalty-enabled for v if there is a
nonempty active directed subpath of P (d) from an endpoint
of P (d) up to v, the last edge obviously being a customer-
provider edge e = (u, v). Assume the endpoint of P (d) in
this subpath is s. If v fails to form a contract activating the
next edge of P (d) for a penalty-enabled demand d, then v
pays a penalty pv(d) = λs(d) − 1 to u, and symmetrically
pu(d) = −pv(d). This models the fact that a customer of
v wants to send traffic on P (d), but v is unable to activate
its incident edges in P (d), thereby failing in its provider
duties.

Note that our results hold with other penalty models as
well, such as penalizing a provider v for lost demands, even
if the “culprit” edges are not incident to v. Intuitively, a
node s should be compensated for loss of any λ-value from
one of its demands d routed through one of its (paid for)
connections to a provider. The benefit to s is λs(d) − 1
(since s receives λs(d) value if d is active but has a cost of
1 for transit of d). If penalties were any smaller, there would
be instability in the system, since providers would prefer to
pay a penalty instead of forwarding a customer’s traffic. On
the other hand, our results, including hardness results, still
hold if the penalties were allowed to be higher.

The Utility Function: Given the utility for an active de-
mand, the transiting costs, and the penalties, the utility of
node v (for a solution S) is utility(v) (or utilityS(v)), as fol-
lows.



utility(v) =
∑

d∈Dend(v)

λv(d)− t(v)+
∑

e

cv(e)−
∑

d

pv(d)

(1)
Equation (1) may seem complicated, but its components

are quite intuitive. A node v gains the value of λv(d) for
each active demand that it originates, loses 1 for every de-
mand it transits, gets payment cv(e) according to the con-
tract it makes with its neighbor on e (either positive if v is
paid or negative if it pays) and loses pv(d) for penalties (ei-
ther positive or negative depending on whether it pays or
receives the penalty).

Nash Equilibria Given a solution S, a deviation for a node
v is a solution where v changes its strategy while all others
remain as in S. A best deviation for a node v is a deviation
for v that results in the highest payoff to v over all possible
deviations for v. In the case that a best deviation for v is to
stay with its original strategy, we say that v is stable. If all
nodes are stable in a solution S, then S is said to be a Nash
equilibrium (or NE). We call a NE nontrivial if it has at least
one active demand (and trivial otherwise). We say that S, a
set of edges, induces a NE when there is a NE whose set of
active edges is S.

Discussion of Filtering and Valid Paths Here we dis-
cuss the “no-filtering” and valid path assumptions in our
model. An important property in our model is that strate-
gies of a node consist of the amount of money it is of-
fering/demanding for various connection agreements (i.e.,
edges). It is not part of a node’s strategy to decide which
demands it will transit; it must transit all active demands
that pass through it. At first glance, this might seem unre-
alistic, since AS’s can do anything they desire with traffic,
including not forwarding it or filtering away particular pack-
ets. However, consider the case where we drop these restric-
tions, allow demands to follow paths that are not valid and
allow arbitrary filtering of traffic. When would it be in the
interest of node v to not transit an active demand d ∈ D(v)?
If v is an endpoint of d, then v does not lose anything by
transiting d, since we assume λv(d) ≥ 2. If d = st does
not originate at v, then there must be two edges of P (d)
incident to v. If at least one of these edges is a customer
edge, then v would have to pay a penalty of λs(d) − 1 (or
λt(d) − 1) to its customer for not transiting d. But then the
penalty would be at least as much as the cost to transit so
there is no gain in filtering such traffic. In fact, the only time
when v would gain by filtering a demand d is when the two
edges of d incident to v are both non-customer edges. In this
case, v can refuse to transit d, save itself the transit cost, and
not lose any utility since it has no customers that it would
owe penalties to. In fact, this is exactly the type of demand
(route) filtering that is done in the Internet today [12, 16].
Because it is always in v’s interest to filter in such a case,

we can simply assume that all demands with such routes
have been filtered out, which is equivalent to assuming that
all demands follow valid paths and that additional filtering
is unnecessary.

2.1 Basic Results and Useful Observations

In our model a trivial Nash equilibrium always exists. A
solution where all players v set all offerv(e) to a large neg-
ative number results in no active edges, and is a Nash equi-
librium with all nodes having a utility of 0. Moreover, for
every Nash equilibrium there is an equivalent one where the
payments demanded on inactive edges are infinite. Without
loss of generality, we assume from this point on that this
holds for all inactive edges in any stable solution we con-
sider. Thus we can now think of deviations as a node “cut-
ting” edges since forming extra contracts is not an option for
a single player in such a solution. Cutting is achieved either
by a customer offering less money or a provider requiring
more money.

Intuitively (and in practice) money is paid from cus-
tomers to providers (not the other way around) and peering
connections typically involve no money changing hands at
all. In our model definition, we did not enforce this to be
so. However, this property is inherent in our definition of
the players’ utilities, as the following proposition illustrates
(all proofs not given immediately can be found in [3], the
full version of this paper).

Proposition 2.1 For every Nash equilibrium A, there ex-
ists another Nash equilibrium B with the same active edges,
and all strictly positive payments only being paid from cus-
tomer to provider.

Thus we now only consider NE’s where positive pay-
ments are never made to a node’s peers or customers. To
simplify notation, we let c(e) be the nonnegative payment
on e from the customer to the provider.
Price of Anarchy and Stability An optimal central-
ized solution, that we denote by OPT, is a configuration
that maximizes the social welfare function

∑
v∈V utility(v).

Notice that all the contract payments and penalties cancel
out, so this objective function is just

∑
d=st∈D(V )(λs(d) +

λt(d) − ‖P (d)‖) where ‖P (d)‖ is the number of nodes in
‖P (d)‖. We say that a solution is a best Nash equilibrium
if it maximizes the social welfare function over all possible
Nash equilibria. We use the notation W (S) to denote the
social welfare of a solution S.

The example in Figure 2(a) with L = λ shows that there
are instances of LCFG in which a best Nash equilibrium has
no active demands and hence 0 social welfare, whereas OPT
has non-zero social welfare. This implies that the price of
anarchy [32] and price of stability [2] can both be infinite in
LCFG. In this example, all the edges are active in OPT, so



W (OPT ) = 2L − (L + 2) = L − 2. However, there is no
nontrivial NE in this instance. To see this, note that in a NE,
each node must have non-negative utility. In order to cover
the cost of transit, each internal node must keep at least 1
from any payment from their customer. This cannot happen
since there are L + 1 such nodes, and the total payment
offered by the bottom node is at most L.

Our focus now is to study when nontrivial Nash equi-
libria exist, and how good they can be in terms of social
welfare. Unfortunately, the following holds.

Theorem 2.2 Finding a nontrivial Nash equilibrium is NP-
complete even when G is an arborescence. Moreover, there
is no polynomial-factor approximation algorithm for find-
ing the best Nash equilibrium.

See [3] for the proof of this and other hardness results.
Theorem 2.2 shows the intractability of finding NE’s of any
value, let alone close to W (OPT ). There may also not
exist a good quality approximate NE (where players only
deviate if they substantially improve their utility) because
of the example in Figure 2(a). This drives our focus on how
to add incentives to achieve a good NE.

3 Creating Good Nash Equilibria

As noted above, since all Nash equilibria in LCFG may
be of very poor quality, we must allow incentive schemes if
we hope to form good Nash equilibria. We consider incen-
tives in the form of payments by some central authority to
players, under the constraint of some total budget B.

There are several forms of incentives an entity could of-
fer to players, four of which are as follows:

1. For some or all players, give some amount of money to a
player only if it follows a particular strategy.
2. For some or all players, for some or all edges incident to
a player, give some amount of money to a player only if it
does not cut this edge.
3. Increase the penalties for not delivering particular de-
mands.
4. Increase the values of particular demands (λs(d)’s).

We define a Type-i Nash equilibrium as a NE in an in-
stance of LCFG where we also employ incentives of form i,
i = 1, 2, 3, 4, as described above. In this paper, we consider
Type-4 Nash equilibria, since they are more general than the
others because of the following theorem.

Theorem 3.1 Let Ni be the collection of sets of edges that
induce a Type-i Nash equilibrium, with a fixed incentive
budget B. Then, N1 = N2 ⊆ N4, and N3 ⊆ N4.

To prove this theorem, we first need to prove the useful
Lemma 3.2. The proofs of both Lemma 3.2 and Theorem
3.1 are in the full version [3].

Lemma 3.2 Suppose there is a node v with 2 best devia-
tions, cutting S1 and S2. Then, cutting S1 ∩ S2 is also a
best deviation of v.

3.1 A Nash Equilibrium as good as OPT

The main result of this section is that if we increase the
λ-values for every demand by a factor of 2, then in the re-
sulting game instance there is a Nash equilibrium whose
active edges are exactly the active edges of OPT. For the
results in this section, we assume λs(d) = λt(d) for s, t
being endpoints of d and we write λ(d) to be this common
value. If this were not the case, then instead of increasing
λs(d) by a factor of 2, the results hold if we set λs(d) to
λs(d) + λt(d), which is still a factor of 2 increase in total.

Theorem 3.3 Let E∗ be the set of active edges in OPT. If
we increase λ(d) by a factor of 2 for every d, then E∗ in-
duces a Nash equilibrium.

To prove this, we first need to show a sufficient condi-
tion for a given set S of active edges to induce a Nash equi-
librium. Consider the following bipartite b-matching prob-
lem MP (S) with node sets A and B where A has a node
for every (s, d) pair where s is an endpoint of active de-
mand d, and B contains a node for every active non-peering
edge in S. For each e ∈ B we define the capacity of e to
be x(e) = |D(e)| − |Dend(e)|. The capacity x(s, d) for
each node (s, d) ∈ A is defined as λs(d) − 2. For every
(s, d) ∈ A, there is an edge in MP (S) between (s, d) and
all nodes in B representing non-peering edges in P (d) di-
rected away from s (i.e., that are reachable from s via a
directed subpath of P (d)). The basic idea here is that if in
an x-matching an amount y is matched between s ∈ A and
e ∈ B then y utility is somehow transferred from s to the
head v of e to cover some of v’s transit costs.

Lemma 3.4 If an x-matching exists in MP (S), then S in-
duces a Nash equilibrium.

Note that the existence of a NE on S does not always
imply the existence of an x-matching in MP (S). Only a
subset of NE’s can be described by such matchings, as they
are essentially solutions where the λ utility of each demand
is used to pay for transit on its own demand path (although
it may be used to pay for transit of other demands on those
nodes). In such a solution, utility flows from a demand end-
point s, down its demand path, until it ends up at the node v
that MP (S) assigns to it, and is used to pay for v’s transit.
The NE’s in Figure 2 are both of this type, while the NE in
Figure 3 is not. In fact, all NE’s can be interpreted as a flow
of utility, as we illustrate in Section 6.

Using Lemma 3.4, we can now prove Theorem 3.3.
Since we are dealing with the optimal centralized solution,



cutting any set of edges in OPT decreases the social wel-
fare. We can use this fact to form a matching MP (OPT )
as above after increasing all λ(d) values by a factor of 2.
For the full proof, see the full version [3].

Extensions of Theorem 3.3 We now show that there is
no need to increase λ by a factor of 2, when we can instead
increase it by an additive term. Let P1 and P2 be the two
maximal directed paths in P (d) for demand d starting at the
two endpoints of d. Note that Pi might just consist of an
endpoint of d. Let δi be such that ‖P (d)‖ = δi‖Pi‖, where
‖P‖ is the number of nodes in path P . These values δ1 and
δ2 represent the imbalance of this path. If we let δd be the
smaller of these, we can now present the following theorem.

Theorem 3.5 To form a Nash equilibrium on the same
edges as OPT, it is enough to increase λ(d) to become
Aλ(d) + (1 − A

2 )(‖P (d)‖/δd), for any 0 ≤ A ≤ 2. In

particular, it is enough to set λ(d) to be 3
2λ(d) + ‖P (d)‖

4 .

This theorem shows that in many graphs, it is not nec-
essary to increase every single λ by a factor of 2. The
amount of money we need actually depends on the length
of demand paths, as well as the imbalance between the two
directed parts of the paths. Unfortunately, assuming that
‖P1(d)‖ = ‖P2(d)‖ does not improve these bounds, even
in the special case where all the paths P (d) are confluent.
See [3] for more results of this flavor.

Relative Difference We can also generalize the result of
Theorem 3.3 as follows. Define the relative difference of
a Nash equilibrium N compared to OPT in terms of social
welfare as rel(N) = (W (OPT ) − W (N))/Λ, with Λ =∑

d∈D(OPT ) λ(d). This says that in terms of social welfare,
the difference between OPT and N is small relative to the
total value of the active demands in OPT.

The following theorem gives us a bound on relative dif-
ference. For the case where ε = 1, this is exactly Theorem
3.3, where we can form a NE with no relative difference.

Theorem 3.6 If for all d we set λ(d) to (1 + ε)λ(d), then
there is a NE N such that rel(N) ≤ (1 − ε).

4 A Different Objective Function and Price
of Stability

In LCFG, the social welfare can be positive or negative,
and so is a mixed-sign objective. We have shown that if
we consider OPT to be the solution maximizing social wel-
fare, then the prices of anarchy and stability can both be
unbounded. This often occurs with mixed-sign objectives
in optimization problems, but such objectives can often be
transformed into natural same-sign objective functions that
give better approximation ratios (see e.g. [19]). Consider
the objective of

∑
d∈D(V ) ‖P (d)‖+

∑
d=st�∈D(V )(λs(d) +

λt(d)). In this objective, we want to minimize the transit
cost in the entire solution, and we also look to minimize
the total λ-value of demands that are not connected. This
is the objective function used in [31]. Notice that the min-
imum of this objective is also the solution with maximum
social welfare, so the change of objective only matters for
approximations.

As in the previous section, assume that λs(d) = λt(d),
and call this value λ(d). Then the following holds (there is
a corresponding result for the case that λs(d) �= λt(d)).

Theorem 4.1 With respect to the non-mixed sign objective
function above, the price of stability is at most 2.

The proof of the above theorem (which can be found in
the full version [3]) does not only give us an existence result,
but also an approximation algorithm that runs in polynomial
time. Given any solution S, we can find a Nash equilibrium
that is at most twice as expensive as S. This is done by at-
tempting to find a matching similar to MP (S) from Lemma
3.4. If we find such a matching, then we are done, and oth-
erwise obtain a set of edges that can be taken out from the
current solution without greatly increasing the cost.

5 Multicast Settings

In this section, we consider the special case of multicast
demands. By multicast we mean that all demands have one
endpoint in common. Approximating the best NE in a mul-
ticast DAG is NP-hard, but in the case where the underlying
graph is a tree, we can find a best Nash equilibrium in poly-
nomial time via a complex dynamic program.

Theorem 5.1 In a multicast tree, we can find the best Nash
equilibrium in polynomial time if all demands are unit-size.

While all the other results in this paper extend to non-unit
demands, this one does not. If, however, the underlying tree
is actually an arborescence (i.e. all edges are directed to-
wards the sink), then we can find a non-trivial Nash equilib-
rium with nice properties, even for non-unit demands. See
[3] for details.

6 Nash Equilibrium As A Flow of Payments

In this section we provide a structural characterization
of Nash equilibria that helps visualize the “movement” of
money in a Nash equilibrium. It is also a useful tool for
many of our proofs.

In the following, we assume that S is a fixed set of edges
and we look for node strategies (i.e., values c(e)) that in-
duce a NE with S as the active set of edges. The basic
framework is as follows. We define a flow problem in a



graph G(S) such that every feasible flow in G(S) corre-
sponds to a stable set of payments c(e). Such “Nash flows”
are obtained by stitching together n circulation problems,
one local to each node. For any fixed set of edges S, our
results yield a compact LP formulation for the polyhedron
of Nash equilibria (viewed as payments on edges).

Before formally defining the node circulation problems,
we give some intuition on the constraints for a stable set of
payments. Specifically, for every node v, think of each edge
incident to v as a separate entity that has a budget equal to
the utility it is bringing (or taking) from v. It may possi-
bly use its budget to pay for its own transit or to lend to
other edges. We show that a critical property of any NE is
that edges cannot lend too much. We call this the bounded
lending constraint. The following remark is an informal
statement of the results in this section.

Remark 6.1 If for all v, its incident edges can pay their
transit costs in v, and no edge exceeds the bounded lending
constraint (defined below), then the payments form a Nash
equilibrium. Conversely, every Nash equilibrium can be ex-
pressed in this manner.

Nash circulations and flows. We start by forming a cir-
culation problem at a given node v. The problem instance
for v has a node ve for every active edge e incident to v, as
well as an extra node s that represents the “outside world”
(see Figure 4 where 4 copies of the same node s are dis-
played). The node s is the origin of all utility obtained by
v, as well as the sink of all utility v must spend on transit
costs, provider payments, and the utility v keeps as profit.
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Figure 4. (Left) Node v with incident customer
and provider edges. (Right) The correspond-
ing circulation gadget, with the 4 s-labeled
nodes being the same. Edges are labeled as
“capacity/lower bound”.

For each customer edge e, we introduce an arc (s, ve)
and the flow on this arc, denoted by c′(e), represents the
utility that v perceives as coming from e. This includes the
payment c(e) given to v, as well as values for any active
demand d originating at v, i.e., d ∈ Dend(e). Similarly, if v
is paying a penalty pv(e), then v has extra incentive to cut
e. Thus, c′(e) = c(e) +

∑
d∈Dend(e)(λv(d) − 1) − pv(e)

is the utility that v sees coming from e. Note that a given
flow c′(e) uniquely determines the payment c(e), and vice
versa.3 Similarly for each provider edge, we add an edge
(cf , s) where the flow c′(f) on this edges represents the
utility v perceives as leaving on a provider edge f . For a
given payment c(f), we have the equality c′(f) = c(f) −∑

d∈Dend(f)(λv(d) − 1) − pv(f).
Transit: For any active demand d ∈ D(v) − Dend(v),

we assign one of the edges in P (d) incident to v to own the
demand. A provider/peer edge will never own a demand,
so if d uses a customer edge e as well as a provider/peer
edge, then we set e to be the owner. Otherwise, it uses two
customer edges e, f and we pick an owner arbitrarily. Now
for each customer edge e, we include an arc (ve, s) with a
lower bound equal to the number of demands it owns. These
arcs represent utility lost due to transit.

Bounded Lending: For any active pair of edges e, f in-
cident to v, let P (e, f) denote the set of penalty-enabled
demands where v would have to pay a penalty to the other
endpoint of e if f were not active. Then, we form an edge
(ve, vf ), with capacity

∑
d∈P (e,f)(λu(d) − 1) − O(e, f),

where u is the endpoint of d below e, and O(e, f) is the
number of active demands in P (e, f) that e owns. Thus
edges are allowed to transfer money to each other, but only
after paying for the transit of the demands they own. We
call this the bounded lending constraint.

Finally, to represent profit which is kept by node v, for
every node ve we add an extra edge (ve, s), with lower
bound 0 and infinite capacity. Figure 4 illustrates this point
with arcs into the “profit copy” of node s. Note that c′(e)’s
can actually be negative if pv(e) is large. Thus in fact, we
would also include reverse arcs (ve, s) in the construction
and let c′(e) be the flow on (s, ve) minus that on (ve, s).

Lemma 6.2 Node v is stable with payment vector c if and
only if there exists a circulation where the flow on corre-
sponding edges is c′.

One can hook up the circulation gadgets above to form a
graph G(S), where feasible flows uniquely determine Nash
equilibrium payments with active edges S, and vice versa.

Theorem 6.3 An edge set S induces a Nash equilibrium
with payment vector c if and only if G(S) has a feasible
flow with values c′ on corresponding edges.

3If we end up with some c(e) < 0, it just means that v is stable, even
with c(e) = 0.



Corollary 6.4 For any active edge set S, we can polytime
compute an NE payment vector c for S (or determine that
none exists) that optimizes any linear objective function.
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