SMOOTHING DIGITIZED CONTOURS

JOHN D. HOBBY!

Abstract. We give a fast linear-time algorithm for finding a smooth polygonal approximation
to a digitized contour such that the digitization of the polygonal contour matches the original input.
The polygonal contour has the minimum possible number of inflections and obeys a localized best-fit
property. Most of the vertices lie on a grid whose resolution is only twice that of the pixel grid, and
the algorithm can be modified to force all vertices to obey this restriction.

Key Words. smoothing, digitized image, polygonal outline, polygonization

1. Introduction. In graphics and computer typesetting, black and white images
are commonly represented as arrays of pixels, and it is convenient to manipulate such
images via the contours that describe black-white boundaries. For instance, if pixels
are thought of as unit squares that tile the plane, the contours that describe the
digitized image of a letter “R” might appear as in Figure la. Of course, the smoother
contours shown in Figure 1b are a much better rendition of the original design on
which the figures are based. In fact, the digitized image was created by applying
a digitization process to smooth contours similar to those in Figure 1b. We give a
smoothing algorithm that computes Figure 1b from Figure la and guarantees that
the digitization process would regenerate Figure la from Figure 1b. This inverse
digitization property is particularly important because it enables the algorithm to
eliminate digitization noise without obliterating subtle curves.

\

(a) (b)

F1G. 1. (a) Digitized contours for a letter “R” from Knuth’s Computer Modern Roman typeface [4];
(b) corresponding smooth polygonal contours.

The digitization of a smooth polygonal contour C), is a well defined curve that
can be computed by a fast linear algorithm similar to Bresenham’s algorithm [1].
Applying the function

ple,y) = ([z =31, v+ 3])

1 AT&T Bell Laboratories, 600 Mountain Ave., Murray Hill NJ 07974.
1

to each point on (), yields a list of points

(1) (mg,ng), (m1,n1), (ma,n2), ..., (Mg, ng),

where (mg, ny) = (mg, ng). Ordinarily, each difference (m;, n;) — (m;_1,n;—1) will be
either (0,£1) or (1, 0) and we may define the digitization D(C}) to be the polygonal
contour whose vertices are given by (1). The definition fails when a negatively sloped
portion of C}, passes through ambiguous points of the form (m—}—%, n—i—%) for integers
m and n, but we can get by with non-ambiguous polygonal contours that contain no
such points. (A definition that does handle ambiguous points appears in [3].) Note
that the definition also applies to non-closed curves in which case (my, ng) # (mg, ng).

The digitization D(C),) is a polygonal contour made of integer-length vertical and
horizontal edges as in Figure la. Any contour Cy with this property is called a digital
contour. In order to have P(C,) = Cjq, a contour C}, must pass sequentially through
the squares

(2) S(mg, no), S(ma,n1), S(ma,n2), ..., S(mg,ng),
where
S(m,n):{(m,y)|m—%<x§m+%andn—%§y<n+%}

is the set of all (z,y) such that p(z,y) = (m,n). Our smoothing process generates
a polygonal contour C, with this property. There are many ways to do this, but
this paper gives a new approach that yields polygonal contours with many desirable
properties.

The algorithm has important applications to image processing and computer type-
setting. It does an excellent job of converting bitmap fonts into polygonal outlines,
and it performs well in typesetting applications where the vertices of the polygonal
outlines must be given to a limited precision. Other possible applications include
scaling bitmap fonts and processing black and white images. The image processing
application uses thresholding and edge detection to produce digital contours, while
subsequent analysis requires smooth contours. (See Montanari [5] for a more detailed
discussion.)

Previous work has concentrated on minimizing the total length of the smoothed
contour subject to constraints on the deviation from the digitized input. In [8], Sklan-
sky deals with constraints essentially identical to those implied by the inverse digi-
tization property, and he outlines a fast linear algorithm for computing a polygonal
contour that will be convex if any convex contour satisfies his constraints. In [5],
Montanari gives a slower algorithm that applies to any digitized contour and deals
with broader classes of constraints.

By minimizing total length, Sklansky and Montanari obtain polygonal contours
that tend to maximize local deviations from the digitized input. A better approach
is to reduce local deviations as much as possible without introducing any extraneous
points of inflection. We therefore begin with two theorems that provide insight into the
set of all contours that minimize the number of points of inflection without violating
the inverse digitization property.

2. Polygonization and Single-Quadrant Paths. We now restrict our atten-
tion to portions of digital contours that are monotone in and y. If o1 and o3 are two
of the four direction vectors (0,+1) and (+1,0) where oy # +03, a {o1,02} digital

2

path is a polygonal line joining the integer grid points
(mO: 77,0), (mla 77,1), (mZa TLZ)’ ey (mk: nk):

in order, where each difference (m;,n;) — (m;_1,n;—1) is of the form l;o1 or l;o5 for
some positive integer ;.

In general, a path that is a {o1, 02} digital path for some directions o1 and o4
is called a single-quadrant digital path. Since the smoothing process converts single-
quadrant digital paths into more general single-quadrant polygonal paths, we define a
{01,032} polygonal path to be a polygonal line joining points

(3) (zo,%0), (z1,91), (22,92), -, (&, yp),

in order, where each difference (2;, y;)—(®i—1, yi—1) is @101+ @909 for some ay;, ag; >
0. In other words, (#;,y;) — (x;-1, ¥i—1) is a nonnegative combination of o1 and o5.

A {01, 05} digital path with vertices (m;, n;) for 0 < i < k is said to be polygoni-
zable if for each positive ¢ < k, at least one of the vectors (m;, n;) — (mi—1,n;-1)
or (mjy1,ni41) — (my,n;) has length one. The polygonization of such a path is
the {o1,02} polygonal path obtained by connecting with straight lines the points
%(mi+mi+1,ni+ni+1) for 0 < i < k. In other words, the polygonization P(P) of a
single-quadrant digital path P is obtained by connecting the midpoint of every edge
in P as shown in Figure 2.

F1G. 2. A polygonizable {(1,0), (0,1)} digital path and its polygonization. The bold dots mark the
points %(mi—l—mi+1,ni+n,‘+1) that are vertices of the polygonization.

If a {01,092} polygonal path P passes through points P; and P, in that order,
P, — P will always be a nonnegative combination of o1 and o3. Thus the subpath
of P from P; to P, contains all points z on P such that both z — P; and P, — 2
are nonnegative combinations of o1 and o3. Another important operation on single-
quadrant polygonal paths is a simple extension formed by lengthening the first and
last edges; i.e., @ is a simple extension of P if P is a subpath of @, whose first and
last edges overlap nontrivially with those of Q.

The smoothing algorithm assumes that polygonal paths can be extended in order
to achieve a desired digitization. Thus we say that a single-quadrant polygonal path P
is digitally extensible to a single-quadrant digital path @ if @ can be expressed as the
digitization of a subpath of a simple extension of P.

The two theorems below on digital extensibility are based on Lemmas 5.2.1
and 5.2.2 of [3], so we only justify them informally here. Theorem 2.2 depends on
the concept of a digital transformation; i.e., an affine transformation that is 1 to 1
and onto on the set Z2? + (%, %) of points (z,y) where z = y = % modulo 1. All
such transformations are of the form T'(z,y) = (r—%, y—%)A + (m—|—%, n—i—%), where
m and n are integers and A is a two-by-two integer matrix with determinant +1.

3

Some applications of digital transformations are discussed by Rothstein and Weiman
in [7, 6]

THEOREM 2.1. If P is a polygonizable single-quadrant digital path, then the
polygonization P(P) is digitally extensible to P.

THEOREM 2.2. If P is a polygonizable single-quadrant digital path and there is
a digital transformation T such that T(P(P)) is @ {(1,0), (0,1)} digital path, then a
non-ambiguous {(1,0), (0,1)} polygonal path Q is digitally extensible to T(P(P)) if
and only if T=Y(Q) is digitally extensible to P.

Figure 3 illustrates the ideas behind Theorems 2.1 and 2.2. Figure 3a shows a
{(1,0), (0,1)} digital path P and the corresponding sequence of squares (2) through
which a path must pass in order to have P as its digitization. The polygonization P(P)
is not shown in the figure, but it could be formed by joining the bold dots with a
polygonal line. Theorem 2.1 simply says that P(P) passes through the indicated
squares when its first and last edges are suitably extended.

)\
h

|

nda|

+
5=
|
I

——

E=2
(a) (b) (c) (d)
Fiac. 3. (a) A {(1,0), (0,1)} digital path and squares where p(z,y) is constant; (b) the polygoni-

zation transformed to yield a {(1,0), (0,1)} digital path; (c) the same figure untransformed; (d) a
superposition that illustrates Theorem 2.2.

If P is the path shown in Figure 3a, Figure 3b shows the {(1,0), (0,1)} digital
path T(P(P)), where

T(xay):(%‘*'x_y; _l’-{'?y) and T_l(I,y):(Qaj-f—y_l’I_*_y_%)

The squares in Figure 3b are where a path () must pass in order to have T(P(P))
as its digitization. Figure 3¢ is simply the result of applying 7' to Figure 3b to
obtain a sequence of parallelograms through which 771(Q) must pass. Figure 3d
illustrates Theorem 2.2 by superimposing the relevant portions of Figures 3a and 3c.
The path T~1(Q) that passes through the parallelograms when its first and last edges
are extended will also pass through the squares in Figure 3d when the first and last
edges are extended sufficiently.

3. The Smoothing Algorithm. Theorems 2.1 and 2.2 suggest a simple re-
cursive smoothing algorithm: Given a digital contour, break it into single-quadrant
digital paths, take the polygonization of each path, and repeat for each polygonization
that can be transformed into a single-quadrant digital path. If P is a single-quadrant
digital path, Theorem 2.1 ensures that P(P) is digitally extensible to P. If there is
a single-quadrant digital path of the form T(P(P)), Theorem 2.2 ensures that we
may recursively obtain a polygonal path @ that is digitally extensible to T(P(P)),
and T~1(Q) will be digitally extensible to P. Naturally, we extend the concept of
polygonization so that we can compute P(P(P)) instead of T=1(P(T(P(P)))). Thus,
the recursive process just repeatedly polygonizes the polygonization.

4

To facilitate such repeated polygonization, we need a representation that captures
the essential similarities between digital paths and digital transformations thereof.
Any polygonal path with rational edge slopes can be represented as a root (zg, yo)
and a list of edge nodes €1, €s, ..., e, where each edge node e; contains a numeric
length parameter {(e;) and a direction vector d(e;) of the form (a;,b;) for relatively
prime integers a; and b;. The corresponding polygonal path has vertices (z;,y;) =
> =1) - d(eg).

If 01 # +03 are two vectors of the form (£1,0) or (0,+1), a {01, 02} digital path
representation has (zg,yo) € Z% and each I(e;) € Z, where Z is the set of integers. In
addition, the directions d(ey), d(ez), ..., d(ey) alternate o1, 02, 01, 02, etc. A digital
transformation of such path has a very similar representation with oy and o5 replaced
by their images (a1, b1) and (as, b3). The root will satisfy

(4) 9 = %(1 + a1 +az) (modl) and yo = %(1 +b1+b2) (mod 1),

and the directions will alternate between (a1, b1) and (az, b2), where a1bs —ash; = +1.
If ayas 4+ b1bs > 0, the path is a generalized digital path, or more specifically, an
{(a1,a2), (b1,b2)} digital path. If no two adjacent {(e1) and {(e;41) are both greater
than one, the path is polygonizable and the polygonization may be computed as shown
in Figure 4.

function polygonize(xo, yo, €1, €2, .. -, €x);

1 —1;n 0

(Zo,90) — (xo,y0) + 3l(e1) - d(er);

while i < k

do{j—i+1,;
while j < k and {(ej_1) = l(ej41) do j — j + 1;
n—n+1;
d(én) —l(ei) - d(ei) + l(eipr) - d(eiyr);
l(en) — (j —1)/2;
i—j;}

return (Zg, Yo, €1, €2, ..., €n);

Fi1G. 4. A function that computes the polygonization.

Instead of giving up when polygonize is not directly applicable to its own output,
we can try to break the offending path into subpaths that are polygonizable general-
ized digital paths. The break routine in Figure 5 shows how to find the required break-
points, and the polygonize_ext routine polygonizes the resulting subpaths and copes
with non-integral I(e1) and I(ej). These routines use a function 7(e;, €;) = a;b; —a;b;,
where d(e;) = (a;,b;) and d(e;) = (aj,b;) for edges e; and e;; the sign of 7(e;, €;41)
determines whether the path turns left or right between ¢; and e;41. Note that the
argument to break is assumed to be part of a contour so that we may examine the
edges eg and eg4q before and after the path to be broken up.

Applying break to the polygonization in Figure 6a, successive values of 7(e;, €;41)
are2,—1,1,1,—1,1,—1,1,1 —1, and we obtain the six subpaths labeled A through F'
in Figure 6b. Subpaths A, C' and E are not polygonizable because they each contain
only one edge; subpath B is a polygonizable {(2, 1), (3, 1)} digital path; subpath D is
a polygonizable {(2,1), (1,1)} digital path; and subpath F' becomes a polygonizable
{(1,2), (1,1)} digital path when polygonize_ezt extends the last edge e11 so that I(e11)
is 1 as shown in Figure 6¢ instead of % as shown in Figure 6b.

5

function polygonize_ext(xq, yo, €1, €2, . ., €k);

r—l(er);

l(e1) — [(e1)];

lex) — [(en)];

if l(e1) # r then (2o, y0) — (x0,y0) + (r — l(el)) ~d(er);

return polygonize(Zo, Yo, €1, €2, . . ., €n);

procedure break(eg,e1,€a,. .., €5, €541);

fori:—1,2,...k

do if 7(e;_1,¢;) and 7(e;, €;41) are both positive or both negative
then break before and after e;;

fori—1,2,...)k—1

do if |T(6Z',6Z'+1)| >1lorl(e;)>1and l(ej41) > 1
then break between e; and e;41;

F1G. 5. Routines for breaking a polygonal path into pieces that are digital transformations of single-
quadrant polygonal paths.

\m

C
B /
F
A 4
(2) (b) (c)

F1G. 6. (a) A single-quadrant digital path and its polygonization with the vertices of the polygoniza-
tion marked by dots; (b) subpaths produced by break; (c) a subpath produced by polygonize_ext.

In general, the effect of the first loop in the break routine is to ensure that the
subpaths generated will contain only inflection edges. The effect of the second loop
is to ensure that 7(e;, €;41) alternates between 1 and —1. Since the input to break
is either a digital contour or the polygonization of a polygonizable generalized digital
path, it can be shown that the direction vectors come from a restricted set where
T(ei—1,€;) = —7(ei, e;41) implies d(e;—1) = d(ej41). Lemma 3.2 from Section 3.1
then shows that the subpaths produced by break are legal input to polygonize_ext:
We can construct digital transformations that map them into simple extensions of
single-quadrant digital paths.

After repeatedly calling break and polygonize_ext, we obtain a list of polygonal
paths with gaps where edges from polygonize need to be extended. The complete
smoothing algorithm shown in Figure 7 uses a routine join_paths to eliminate the
gaps by extending the first and last edges of each subpath until they intersect. For
brevity, we use P, @, and R in lieu of edge list representations for polygonal paths
and lists of polygonal paths; we also introduce a routine pop(P) that extracts the
edges before the first breakpoint in P. When P is a complete contour consisting
of sequences of edge nodes with breakpoints in between, pop(P) removes one such
sequence of edge nodes.

function smooth(P);
Make @' empty;
Q — break(P);
while () is not empty
{ R — pop(Q);
if R contains more than one edge
then append break(polygonize_ext(R)) to the beginning of @
else append R to the end of Q’;

}

return join_paths(Q');

FiG. 7. The smoothing algorithm.

Figure 8 illustrates the action of smooth on a simple convex shape. When we first
reach the top of the while loop, the digital contour is broken into subpaths as shown
by the dots at subpath boundaries in Figure 8a. We next reach the top of the loop
after polyginizing the first subpath and breaking it up as shown in Figure 8b. The if
test fails in the next two iterations, but the following iteration does call polygonize,
obtaining a single edge of slope % as shown in Figure 8c. The while loop terminates
after 27 more iterations, obtaining Figure 8d.

The action of join_paths on Figure 8d is fairly simple: The list of polygonal paths
can be thought of as a polygonal contour with gaps, and join_paths eliminates each gap
by extending the surrounding edges until they intersect. For example, join_paths(Q)
may be implemented as shown in Figure 9 if @) is a circular doubly linked list of edge
and gap nodes where each gap node g; contains a vector 6(g;) = (24, ;). (We use ®
for the operation (z1,y1) @ (22, y2) = T1y2 — xay1 so that 7(e;, ;) = d(e;) @ d(ej) =
—d(e;) @ d(e;) for all 7 and j.)

The join_paths function given in Figure 9b contains a loop that eliminates edge
nodes with nonpositive length parameters. Such “backward edges” are not very com-
mon, but they can be created when the loop “for each gap ¢ € @ do remove_gap(g)”
is applied to a @ that contains edges and gaps like those in Figure 10a and Table la.

7

O @ @ //\
P N
(a) (b) () (@

Fig. 8. Snapshots of Q and Q' in smooth(P) after (a) zero iterations, (b) one iteration, (c) four
iterations, (d) 31 iterations.

function join_paths(Q);
for each gap g € Q do remove_gap(g);

procedure remove_gap(g); repeat

Let e; and ez be the edges surroundindogse — true;

q — 7(e1,€2); for each edge e € @ such that {(e) <0

ller) — l(e1) — (62 ® 8(g)) /q, do { z — I(e) - d(e);

l(eg) — l(ea) + ((e1) @ é(9)) / q; Replace e with a gap g and set §(g) — z;
Remove ¢ from the linked list; remove_gap(g);

done — false;}
until done;
return @;

(a) (b)

Fia. 9. Routines for eliminating gaps by extending the surrounding edges.

Parts b, ¢, and d of Figure 10 and Table 1 illustrate subsequent steps in the execution
of join_paths(@): The backward edge is replaced by a gap that is then removed.

(a) (b) () (d)

F1G. 10. Polygonal paths (a) as given to join_paths, (b) after remove_gap(g) for each gap g, (c) after
removing the backward edge, and (d) as computed by join_paths.

node | [d 6
1 1 (3,-1) node | [d
91 (0,~3) 1 I3 G-
€9 1 (1,0) €9 — (1,0)
g2 (0’ %) €3 1% (3¢ 1)
es |1 (3,1)

(a) (b)

node ll d 6 node | 1 d
e |1z (3.-1) e (12 (3-D
9 11 (=2,0) es | 1+ (3,1)
s 2 (3,1) 6

TaBLE 1
FEdge and gap data corresponding to Figures 10a—d.

The motivation for the use of backward edges in join_paths depends on the con-
cept of a polygonal tracing as described by Guibas, Ramshaw, and Stolfi [2]. Using
the extension of digitization to polygonal tracings as described in [3], join_paths is
intended to keep the digitization of) invariant. A proof would be too tedious to
be of much value, but extensive practical experience indicates that the smoothing
algorithm given in this section does transform any digital contour P into a polygo-
nal path whose digitization is P. Theorems 2.1 and 2.2 clearly show the validity of
repeated polygonization, but it is harder to show that join_paths always yields the
desired results.

3.1. The Localized Best-Fit Property. If the smoothing algorithm computes
a polygonal contour @ from a digital contour P, the localized best fit property is that
local changes to () can only increase the maximum deviation

dist dist(z, P
max(rzrgg(ist(z, Q), 1;11628(ist(z,))

between P and @, where dist() refers to Euclidean distance. The local changes that
we shall consider are shifts of a single edge parallel to itself as shown in Figure 11.
In Figure 1la, the maximum deviation of the digital path shown in bold from the
slope 1 edge of the polygonization is 1/4/8 pixels. Shifting the slope 1 edge as shown
in Figure 11b or 11lc doubles the maximum deviation.

A more precise statement of the best-fit property is “If @ = smooth(P) has an
edge node e with {(e) > 1, then a parallel shift of the edge represented by e cannot

9

(a) (b) ()

Fia. 11. A digital path with 1ts polygonization (a), and perturbations (b) and (c).

decrease the maximum deviation between P and) in the neighborhood of e.” In
other words, all sufficiently long edges of @) are optimally placed, where the definition
of “sufficiently long” is liberal enough to apply to a large majority of the edges in @.
Theorem 3.3 below captures the key idea behind the best-fit property while avoiding
the messy details of how the edges of @ fit together. Using the idea that for purposes
of measuring maximum deviation, any sufficiently long rational-slope line segment
behaves like an infinite line, we define a line £ of rational slope to be optimally placed
if it is non-ambiguous and the maximum deviation between ¢ and its digitization D(¥)
is less than the maximum deviation between D(¢) and any other line £ parallel to £.

LEMMA 3.1. A line of the form qx — py = ¢ for relatively prime integers p and q
is optimally placed if and only if ¢ = %(1 +p+q) (modulo 1).

Proof. Let ¢ be the line gz — py = ¢ and let D(£) be its digitization. The line £
is ambiguous if gz — py = ¢ has solutions where z = y = % (modulo 1). In this case
c= %p + %q and £ is not optimally placed.

The remaining case is where ¢ is non-ambiguous and ¢ # %p—}— %q. The maximum
deviation between ¢ and D({) is max(; y)ev @ gz — py — c|, where o = 1/4/p? + ¢2
and V = { p(z,y) | gqr—py = c } is the set of vertices of D(¥). Since £ is non-ambiguous,

/

€ Z* | gz’ — py = c for some (z',y') where p(z',y) = (2,y) }

€ Z* | g2’ — py’ = c for some (z',y') where 2’ # % £y and p(2',y) = (z,y) }
€ Z? | g2’ — py’ = c for some (z',y') where |z' —z| < % and |y —y| < %}
€2’ |lgz —py—cl < 5 lpl + 5 lal },

where Z is the set of integers. Since {qx — py | (z,y) € Z?} = Z, the deviation
between £ and D(¥¢) is

max o xr — — Cl=maxo|n —c¢
Jnax, lgz — py — c| max | |

where

N={qx—py|(x,y) €V}
={neZl|ln—c<35lpl+35lq}

If ¢ is a line gz — py = ¢/, the above analysis shows that the maximum devia-
tion E(c') between £ and D(¢) is max,en a|n — ¢|. Clearly, £ is optimally placed if
and only if the minimum of E(¢') occurs at ¢/ = ¢. Since ¢ # %p—}— %q (modulo 1), we
have ¢+ r ¢ Z where r = % |p| + £ |g|. Thus the largest and smallest elements of N
are [c+r| and 1 4+ |¢ — r|, and the minimum of E(¢’) occurs at

1+ |e—=r]+ [c+7]
2

10

|+ 2r) =

Setting E(c’) = ¢ yields ¢ = $(1 4 |e—r] + [c+7]) = 1%(le—=r] + [e—r
) c=3 =3(1+p+aq)

c
$(1+2r)+ [e—r| = $(1 + 2r) (modulo 1). Thus (L+ |p|+ lal)
as desired. 0O

LEMMA 3.2. Digital transformations map optimally placed lines into optimally
placed lines.

Proof. A digital transformation T'(z,y) = (J:——, y——)A + (m+ n—i—%) maps the
line gz — py = c into a line ¢’z — p'y = ¢’ where

d =T(x,)¢, —p)" = (@A, —p)" - & DA, -p) +(m+Li n+), —p)"

when qz—py = ¢. Thus we may set A(q ,—p')T = (¢,—p)T and ¢’ = C—(%, %)A(q/a)"+
(m—l—%, n—|—%)(q’, p')T. When ¢ = —(1 + p+ ¢) (modulo 1), we have

¢ =c—(3,5)(4,=p)" + (m+3,n4+3)(¢, —p)"
c—3q+5p+ 54 — 30 + (mn) (¢, —p)"
s(l+p+)+§P+§ — 30 =3¢
31+

a

THEOREM 3.3. If £ is the line determined by some edge in a polygonal contour
computed by the smoothing algorithm, then ¢ is optimally placed.

Proof. Let us say that an edge is well placed when the line determined by that
edge is. We show by induction that all edges computed by the algorithm are well
placed. Clearly, all edges the initial digital contour are well placed because we may
apply Lemma 3.1 with ¢ € Z and (p, q) € {(0,+1), (£1,0)}.

All other edges are created by polygonizing to a digital transformation of a po-
lygonizable single-quadrant digital path. It suffices to show that the line joining the
midpoints of two adjacent edges of such a path is optimally placed. Then Lemma 3.2
allows us to apply the digital transformation that makes the edges in question go
from (—{1,0) to (0,0) and from (0,0) to (0,l3), where {; and l3 are positive integers
not both greater than one. By Lemma 3.1, the line lsz — L1y = —%1112 joining the
midpoints is optimally placed because

Thus Lemma 3.2 shows that all new edges are well placed, and the theorem follows.
0

3.2. Minimization of Inflections. An important property of smoothing algo-
rithms is that they should eliminate extraneous points of inflection. Figure 1 exem-
plifies this: The digital contours in Figure la have 118 inflections while the smoothed
versions in Figure 1b have only eight. In fact, no polygonal contours whose digiti-
zations match Figure la can have fewer than eight inflections. The purpose of this
section is to show why the results of smooth are always optimal in this way.

Since inflections in polygonal contours occur at edges, it is convenient to refer
to edges as either inflection edges or plain edges. The main idea is that the break
procedure only inserts gap nodes next to plain edges or at “sharp bends” where any
contour with the correct digitization must have similar bends. The algorithm proceeds
until edge and gap nodes alternate and each inflection edge is surrounded by either
“sharp bends” or sequences of plain edges.

11

When counting the inflection edges in a polygonal path P with edges e, es,

.., €, we need to know the signs of 7, = 7(eg, €1) and Tout = T(ek, €x41), Where eg

and egy; are the edges adjacent to P in the contour. Let Z(7in, P, Tour) be the number
of i where 1 < i< k and 7(e;_1,¢€;) and 7(e;, €;41) have opposite signs.

Let P be a path such that some simple extension P’ of P is a single-quadrant
digital path. Given the signs of 73, and 74,¢, we may apply smooth to yield a polygonal
path 8(7in, P, Tout). The computation is equivalent to evaluating break(polygonize_ext(P))
and then recursively applying smooth to each resulting subpath. We show by induc-
tion on the number of levels of recursion that

I(ﬂn: S(Tin; P: Tout)a 7-out) S I(Tin: Ra Tout)

for any path R that is digitally extensible to P’.

Given a polygonizable {(1,0), (0,1)} digital path P with polygonization @ =
P(P), break(Q) produces subpaths @1, @2, ..., @ of @, where each @; ends at the
starting point of @Q;4+1. For each @; there is a subpath P; of P such that Q; = P(F;).
The induction step depends on using the following lemma to apply Theorem 2.2 to
each P; and @;.

LEMMA 3.4. If P, Py, ..., P, are as defined above, then any polygonal path R
that is digitally extensible to P is the union of disjoint subpaths Ry, Ra, ..., R, such
that each R; is digitally extensible to F;.

Proof. Each interior vertex of P(P) lies at the midpoint of some edge €; of P
where I(ej_1) # l(ej41). We cannot have I(e;) > 1, because the polygonizability
of P would force l(ej_1) = l(ej41) = 1. The perpendicular bisector of e; will be
the boundary between the the squares S(m;_1,n;_1) and S(m;,n;) from (2), where
(mj_1,n;j_1) and (m;,n;) are the endpoints of ;. Any path whose digitization is P
must cross this boundary exactly once.

Since R is digitally extensible to P, there is a subpath R’ of a simple extension of R
such that P is the digitization of R’. Breaking R’ where it crosses the perpendicular

bisectors of the e; that contain endpoints of @1, @2, ..., @, we obtain disjoint
subpaths R, R, ..., Rl such that each R} is digitally extensible to P;. To find
Ry, Rs, ..., R, as required by the lemma, we modify R}, R}, ..., R}, so that their

union is R instead of R’: Any initial subpath of R not in R’ is appended to R{; any
left-over final subpath of R is appended to R!; any R; not fully contained in R has
its first and/or last edges shortened as necessary. 0O

Each path @; produced by break(Q) is either a line segment or is extensible to a
polygonizable generalized digital path. If I is the set of all ¢ such that @; is nontrivial,
then for each i € I, there is a digital transformation 7; such that a simple extension
of T;(Q;) is a polygonizable {(1,0), (0,1)} digital path. Lemma 3.4 produces an R;
that is digitally extensible to P;, and Lemma 3.5 below allows us to assume without
loss of generality that T;(R;) is a {(1,0), (0, 1)} polygonal path for each ¢ € I. Thus
Theorem 2.2 shows that for ¢ € I, T;(R;) is digitally extensible to a simple extension
of T;(Qs).

LEMMA 3.5. For any polygonal path R with subpaths Ry, Ro, ..., R, salisfy-
ing Lemma 3.4, there exists a path R’ that satisfies the lemma and has the following
properties: (1) There must be subpaths R}, RS, ..., Rl of R such that the transforma-
tion T; that maps Q; into a {(1,0), (0,1)} digital path maps R} into a {(1,0), (0,1)}
polygonal path. (2) All nonzero 1y and Tour satisfy Z(min, R, Tour) < Z(Tin, R, Tout)-

Proof. A complete proof would be rather long and involved but the basic idea
is fairly simple: For each i, R} is formed by applying a series of local modifications

12

to R;, where each modification preserves the digitization of R; and does not increase
the number of inflection edges. For example, if R; passes through the squares in
Figure 3d then R} will pass through the parallelograms in that figure. The process
of constructing R} from ¢ is similar to removing from R; all portions not contained
in the parallelograms and then replacing the missing subpaths with portions of the
parallelogram boundaries. 0O

Since T;(Q;) requires one less level of polygonization than P, the induction hy-

pothesis shows that if T;(R;) is a {(1,0), (0,1)} digital path then
(5) I(r, Ti(Qi),) < Z(m, Ti(Rs), 7;)

for any nonzero 7; and 7/. Since affine transformations preserve inflections, (5) still
holds when T;(Q;) and T;(R;) are replaced by @; and R;.

For each two integers m < n belonging to I such that i ¢ I for m < i < n,
let 7}, = 7y = 7(€l,,€n), where €., is the last edge in @, and €, is the first edge
in @,. A simple argument based on Lemma 3.5 allows us to assume that 7(é/,, é,)
and 7(el,, €,) have the same sign, where €/ is the last edge in Ry, and €, is the first
edge in R,. Thus even if R has no inflection edges except those in some nontrivial
R;, each R; will contain as many inflection edges as the corresponding ;. Hence the
total number of inflection edges in R will be at least as great as the total for Q.

4. Refinements. Figures 4, 5, 7, and 9 give a complete implementation of the
smoothing algorithm based on lists of edge and gap nodes, and we have already seen
that the smoothing algorithm produces a polygonal path whose digitization matches
its input while obeying a localized best-fit property and minimizing the number of
inflections. These properties do not leave much flexibility, but we can still make some
refinements that tend to simplify the smoothed contours.

4.1. Adjustments Prior to Polygonization. The first refinement affects the
way polygonize_ext prepares a path for polygonization. After extending the first and
last edges so that I(e1) and I(e) are integers, it is sometimes desirable to make further
adjustments as shown in Figure 12. In each part of the figure, bold dots denote points
where gap nodes are inserted into the data structure to delimit subpaths suitable for
polygonization. Figure 12a shows a {(1,0), (0,1)} digital path where [(e;) is less
than {(e3), l(es), and l(e7). As shown in Figure 12b, e; may be replaced by a gap
node because the smoothed version of es, e3, ..., er will begin with an edge that
can be extended so that its digitization matches e;. Figures 12¢ and 12d show a
{(1,0), (0,1)} digital path where an extra gap may be inserted to force the e; edge
to be treated as a separate subpath.

Fi1G. 12. Digital paths before and after adjustments that help prepare for polygonization.

Figures 13a and 13b show that the effect of the adjustment shown in Figures 12a
and 12b is to eliminate an unnecessary edge of slope % between the vertical edge and
the edge of slope % As Figures 13c and 13d demonstrate, the effect of the adjustment
of Figures 12¢ and 12d is to replace an edge of slope % with an edge of slope 0. The

13

—

(a) (b) () (d)

Fia. 13. The results of applying smooth to Figures 12a—12d.

slope 0 edge is an inflection edge, but this is safe here because an inflection is required
in any case.

The routines in Figure 14 illustrate one way to decide when to apply the above
adjustments. A call to choice with arguments l(e1), {(e2), ..., l(ex) returns omit if
e1 should be removed as in Figure 12b; it returns separate if e; should be a separate
subpath as in Figure 12d; and it returns use if no adjustment is desirable. A call to
choice with arguments {(ey), {(ex—1), ..., l(e1) makes a similar decision for the last
edge e of a polygonizable generalized digital path with edge list ey, €3, ..., €.

function tread_change(ly,la, .. fdpction choice(ly,la, ..., lk);
fori—2,4,6,... if Iy > 1 or k = 2 then return use;
do {if [; > 1 then return —1;if I3 <l or k=3
if : = k then return 0; then return (if /3 < /; — 1 then separate else use)
if l;41 > l;_1 then returmwelse if I5 > {1 or tread_change(lz, 1y, ..., 1) > 0
if i + 1 = k then return 0; then return omit
if l;4+1 < l;—; then return —1;¢lse return use;

(a) (b)

Fi1G. 14. Functions for deciding on adjustments prior to polygonization.

4.2. Retaining Long Inflection Edges. Figure 15a shows one of the polyg-
onizable single-quadrant digital subpaths produced by applying break to Figure la.
Figure 15b shows that its polygonization has one inflection edge and the slope of that
edge is —12. Treating the long edge separately by inserting gap nodes at the dots in
Figure 15¢ yields Figure 15d after polygonizing and Figure 15e after using join_paths.
Figures 15b and 15e both have the same number of inflections and they both satisfy
the localized best-fit property, but Figure 15e may be preferred for aesthetic reasons.

L‘ k L‘ |
(a) (b) (c) (d) (e)

Fi1G. 15. A single-quadrant digital path and smoothed versions computed with and without retaining
the longest inflection edge.

Given a polygonizable generalized digital path P with edge list €1, €3, ..., €z, an
edge ¢€; is a long inflection edge if any path digitally extensible to P must have an

14

inflection edge in the neighborhood of e;. More precisely, {(e;)—1 must be greater than
both {(e;—2) and {(e;42), and we must have i—2 > 1 and i+2 < k. Aesthetic qualities
govern the choice of which long inflection edges to retain, but a good compromise to to
retain those where {(e;) > l(€;—2)+1(e;42). This may be done by adding the following
loop to the end of the break procedure in Figure 5:

fori—4,5 ... k-3
do if {(e;) > l(ej—2) + {(e;42) then break before and after ;.

4.3. Redirecting Free Edges. When smooth is applied to the contour P shown
in Figure 16a, the first thing it does is call break(P), and this immediately breaks the
contour into eight trivial subpaths. This means that smooth(P) just returns the
original contour P. For the bitmap font application, the contour shown in Figure 16b
can be a much preferable result, and this is obtained by a simple refinement to the

smoothing algorithm.
(a) (b)

Fig. 16. (a) A digital contour; (b) a smoothed version produced by the refinement discussed in
Section 4.3.

When break(P) makes the short vertical edges in Figure 16a into independent
subpaths, they introduce some flexibility into the smoothing algorithm. Ordinarily,
if @ is a digital path containing only one edge and @’ is a single-edge polygonal path
that is digitally extensible to @, the possibilities for the direction of @’ form a narrow
range centered on the direction of @, but the range becomes 180° when the @ edge is
only one unit long. When the @ edge is also an inflection edge, we call it a free edge.
We can recognize free edges by using the following block in place of the statement
“append R to the end of) in the smooth function:

{ Let e be the edge in R;
if {(e) =1 and e is an inflection edge then mark e as a free edge;

Append R to the end of Q' }.

Free edges need to be processed by a separate loop after all other edge directions
have been determined. We therefore insert

for each edge e € Q' do if adjusiable(e) then adjust(e)

just before the return statement in smooth, where adjustable and adjust are the
routines shown in Figure 17.

5. Conclusion. The basic smoothing algorithm is detailed in Figures 4, 5, 7,
and 9 in Section 3. In spite of the complexity of the ideas behind the algorithm,
the actual code is fairly simple. It is a fast linear-time algorithm that generates
contours that have the localized best-fit property and minimize inflections subject
to the constraint that the original contour must be the digitization of the smoothed
contour. These properties do not uniquely determine the result of the smoothing
algorithm, but the algorithm is intended to produce what might be regarded as the
“best and simplest” polygonal approximation.

15

function adjustable(e);

if e is not a free edge then return false;

Let e_ and e; be the edge nodes before and after e;
Let g_ and g4 be the gap nodes before and after e;
return d(e_) = d(e4) and |7(e_,e)| =1 and 6(g9_) = é6(g+) = (0,0);
procedure adjust(e);

Let g— and g4 be the gaps before and after e;

Let e- and e4 be the edges before and after e;

Let g_2 and g42 be the gaps before e_ and after e4;
Let e_» and e42 be the edges before e_ and after e ;
if adjustable(e_3) then [_ — %l(e_)

else { remove_gap(g_2); - — l(e_); }

if adjustable(eqs) then I — Li(ey)

else { remove_gap(g42); Iy — l(e+); }

8(g-) < 6(g-) —min(l_, 13 - d(e-);

6(g4) < 6(g4) —min(l_, I3) - d(e_);

d(e) —d(e) +2min(l_,1}) - d(e-);

F1G. 17. Routines for adjusting free edges.

It is difficult to define exactly what is meant by “best and simplest,” but the
refinements discussed in Section 4 give a rough idea of the range of possibilities. The
implementations make reasonable choices as to how and when each refinement should
take effect, but the choices could be changed depending on the definition of “best and
simplest.”

Another possible change is related to the claim made in the abstract that “most of
the vertices lie on a grid whose resolution is twice that of the pixel grid.” For instance,
Figure 1b contains 55 vertices, all but one of which lie in (%Z)Z, where %Z is the set
of integer multiples of % All the vertices do lie on such a grid if join_paths exits with
lle) € %Z for all edges €, but Table 1 shows that thisis not always true. The exceptions
tend to occur where relatively long edges with nonsimple slopes intersect, and the
exceptional vertices can usually be repositioned slightly without doing much damage
to the smoothed contour. (It sometimes helps to apply a digital transformation before
rounding the vertices to grid points.)

Another claim that we have not addressed so far is the linear running time of
the smoothing algorithm. The intuition behind this is that the number of edges in
the polygonization of a path P is at most a fixed fraction of the number of edges
in P so that the total number of edges created during polygonization can be found
by summing a geometric series. A simple inductive argument shows that the sum of
l(e;) over all edges e; created during polygonization is no more than the total number
of inflections removed by the algorithm. For example, Figure la has 136 edges and
118 inflections, while Figure 1b has only eight inflections. Thus 110 inflections were
removed and the 33 edges created by polygonize had ", I(e;) = 48. The linear bound
on . l(e;) implies a linear bound on the number of edge nodes created, and this also
bounds the number of gap nodes created.

The edge and gap implementation given here can be made reasonably efficient,
but it should be noted that this model was chosen for ease of understanding rather
than for maximum efficiency. In practice, most of the execution time is spent in the
initial phases of the algorithm when there are a few single-quadrant digital subpaths,

16

each containing a large number of edges. Rather than storing such subpaths as lists
of edge nodes, we can save time and space by taking advantage of the fact that within
a generalized digital path ej, e, ..., ey, the direction d(e;) depends only on whether
the index 7 is odd or even. Thus all {(¢;) values can be stored in a single array L, and
a {do, d1} digital path with edges ey, ea, ..., € becomes a 4-tuple (ig, k, dg, d1) that
refers to Llig + 1], Llio+ 2], ..., L[io + k], where d(e;) = dimoaz and {(e;) = L[ig +1].
This way, only the 4-tuples need to be stored in a doubly linked list and the gap
displacements 6(g;) can be merged with the 4-tuples. The only drawback is that it is
not possible to represent an arbitrary sequence of edges without inserting undesired
subpath boundaries. This means that the polygonize and break routines have to be
merged together because the output of polygonize might not be a generalized digital
path.

REFERENCES

[1] J. E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems Journal,
4:25-30, 1965.

[2] L. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational geometry. In
Proceedings of the 24th Annual Symposium on Foundations of Computer Science, pages
100-111, 1983.

[3] John Douglas Hobby. Digitized Brush Trajectories. PhD thesis, Dept. of Computer Science,
Stanford University, 1985.

[4] D. E. Knuth. Computer Modern Typefaces. Addison Wesley, Reading, Massachusetts, 1986.
Volume E of Computers and Typesetting.

[5] U. Montanari. A note on minimal length polygonal approximation to a digitized contour. Com-
munications of the ACM, 13(1):41-47, January 1970.

[6] J. Rothstein and C. Weiman. Pattern recognition by retina-like devices. Technical Report
OSU-CISRS-TR-72-8, Ohio State University, Dept. of Computer and Information Sciences,
1972.

[7] J. Rothstein and C. Weiman. Parallel and sequential specification of a context sensitive language
for straight lines on grids. Computer Graphics and Image Processing, 5:106-124, 1976.

[8] Jack Sklansky. Recognition of convex blobs. Pattern Recognition, 2(1):3-10, January 1970.

17

