Numerically Stable Implicitization of Cubic Curves

John D. Hobby

Abstract

We give efficient, numerically-stable techniques for converting polynomial and rational
cubic curves to implicit form. We achieve numerical stability by working in a rotated
coordinate system and using carefully chosen expressions for the coefficients that appear
in the implicit form. This is more practical than previously known methods which can
be numerically unstable unless all computations are done in exact rational arithmetic.

Categories and Subject Descriptors: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Curve, surface, solid, and object representations

General Terms: Algorithms, Reliability

Additional Key Words and Phrases: Cubic curves, implicitization, numerical stability

Numerically Stable Implicitization of Cubic Curves

John D. Hobby

1. Introduction

The problem of converting parametrically defined curves to implicit form has been studied
extensively by Sederberg [6, 8, 9, 10]. As Sederberg explains, it is sometimes convenient to have an
implicit equation F'(z,y) = 0 where F' is a bivariate polynomial. The implicit form is favored for
applications that require testing whether given points lie on the curve or on one side or the other.
Sederberg [11] gives applications to curve intersection; Hobby [4] gives applications to rasterization.

Curves that can be expressed in implicit form are called algebraic curves. (See Semple and
Roth [13]). Algebraic curves include polynomial curves & = f(t), y = ¢(¢) where f and g are
polynomials, and rational curves z = f(¢)/h(t), y = g(t)/h(t) where f, g and h are polynomials.
Polynomial curves are commonly pieced together and represented as B-splines, Beziér curves, or
beta-splines. Commonly used rational curves are conic sections and curves obtained by taking
projective transformations of polynomial curves. Of course any polynomial curve can be thought of
as a rational curve where h(t) is constant.

The implicit form for a rational curve z = f(t)/h(t), y = g(t)/h(t) is the resultant of the
polynomials f — zh and g — yh. (The resultant of two polynomials is an expression that must be
zero in order for the polynomials to have a common root. [10]) Since the resultant can be expressed
as the determinant of a matrix whose nonzero entries are coefficients of the polynomials, we can find
the implicit form by evaluating the determinant of a matrix whose entries are linear polynomials in
z ory.

Cubic curves are often used in practice, and special properties of cubic curves allow an im-
plicitization process that is substantially more efficient than evaluating the resultant directly. [9] A
rational cubic curve can cross itself at most once, and there is a simple way to find the implicit
form by first shifting the coordinate system so that the crossing point lies at the origin. The same
technique works even when there is no crossing if the concept of a “crossing point” is suitably
generalized.

A significant disadvantage of the above methods is that they do not take numerical stability
into account. Rather, it is generally assumed that all computations are to be carried out in exact
rational arithmetic. While rational arithmetic has some important advantages, it tends to produce
large numbers that are expensive manipulate. For instance, if the coefficients of the cubic polynomials
f, g and h are fixed-point numbers n-bits long, the resultant is a six-by-six determinant and the
coefficients in the implicit form F'(z,y) = 0 each require about 6n bits. In other words it may be
necessary to deal with large integers whose length is up six times the normal word size.

The purpose of this paper is to make implicitization more practical by allowing much or all of
the work to be done in floating-point, while still producing an implicit form that represents a curve
close to the desired one. In other words, the desired curve corresponds to an interval 0 < ¢ < 1
in parameter space and we want good error bounds for the corresponding portion of the curve
represented by the computed implicit form. A major difficulty is that small changes in the desired
curve can result in large changes in the implicit form. Thus we have the difficult task ensuring that
F(x,y) = 0 is close to the desired curve even though the coefficients of F'(z,y) cannot be computed
accurately.

To see the difficulty in computing coefficients, consider the polynomial cubic

(z,y) = (1 —1)°(0,0) + 3¢(1 — t)*(263, 110) + 3¢*(1 — ¢)(427,205) + t3(519, 285)

9.

shown in Figure la. It has a crossing at (231, 105) and an implicit form
—19683y> + 16041645y* — 246037522 — 2717730225y + 11366932502 = 0.

Changing the final control point (519, 285) to (520, 285) has little effect on the portion of the curve
where 0 <t < 1, but as shown in Figure 1b, it moves the crossing to a point near (382, 188). The
resulting implicit form also has major changes:

—21952y> + 21368340y — 1247400zy — 255150022 — 5224205700y + 2185029000z = 0.

Thus it is an ill-conditioned problem to compute the coefficients of powers of z and y in F'(z,y) = 0.

(a) (b)

Figure 1: (a) The curve (1 —1)3(0,0)+ 3¢(1 —¢)%(263,110) + 3¢t*(1 — ¢)(427,205) + t3(519, 285) with
the portion where 0 < ¢ < 1 shown in bold; (b) the curve (1—¢)3(0,0)+ 3t(1—1¢)%(263,110) + 3t*(1 —
1)(427,205) + t3(520, 285) with similar behavior on 0 < ¢ < 1 but a significantly different implicit
form.

Even if we could compute the coefficients of F(z,y) = 0 with good relative accuracy there
is no guarantee that the computed implicit form represents a curve close to the desired one. The
problem arises when the parametric curve is very close to a straight line such as

(z,y) = (1 =)%(0,0) 4+ 3t(1 — £)*(10, 10) + 3t*(1 — ¢)(18, 18) + t3(23, 23). (1)

(The choice of a precisely straight “curve” simplifies the example—the same issues arise in practice
for similar curves that are not quite straight). In this example, we can see by inspection that the
curve eventually doubles back on itself, causing the implicit form to have triple roots on the line
y = z. In other words, the implicit form is (y — z)® = 0.

To observe the sensitivity to small changes in the implicit form, consider the effect of multi-
plying the 23 term by 1 + & for some small §. This changes the implicit form to (y — z)® — §z® = 0,
so that the zeros now lie on the line y = (1 + \3/5).7; Thus the deviation from the (0,0) to (23,23)
segment is essentially (23/\/5)\3/5 rather than on the order of §. The strategy for avoiding this cube
root is to rotate the coordinate system 45° so that the line falls on one of the coordinate axes and
the implicit form is just 3 =0 or y3 = 0.

How do existing implicitization algorithms deal with the difficulty in computing the coefficients
of F'(z,y) = 0 and the need for a rotated coordinate system? The resultant method involves
evaluating the determinant of a matrix whose entries are polynomialsin z and y. The ill-conditioned
nature of the coefficient computations leads to large errors in the implicit form. Such errors do not
necessarily distort the curve F(z,y) = 0 a lot, but in this case they often do. For instance, using
MAPLE [1] to implement the resultant method on the curve in Figure 1 with five-digit floating
point arithmetic leads to an implicit curve F'(z,y) = 0 that never gets within 100 units of the point
(519,285). The maximum error is reduced to 12 units when seven digits are used and 0.48 units
with nine digits.

-3-

Evaluating the implicitization formulas from [9] in floating point yields somewhat better results,
but the maximum error for the above example is still 3.6 units with five digits and 0.96 units with
seven digits. This method also suffers from the problem with nearly straight curves in unrotated
coordinates.

One implicitization method that does use coordinate transformations for nearly straight curves
is due to Sederberg [7]. The idea is to use the parametric form to generate points on the curve in a
barycentric coordinate system and use these to define a system of linear equations for the coefficients
that appear in the implicit form. Sederberg doesn’t discuss the numerical stability of this process,
but it is not hard to get bounds on the magnitude of F(z,y) at the generated points. These do
not readily yield bounds on the error in the implicit curve F(z,y) = 0, especially when there is a
crossing point where the derivatives of F' approach zero. In the example of the curve from Figure 1,
the error in the implicit form is 1.3 units for five-digit floating point and 0.06 units for seven digit
floating point.

The main cause for loss of precision in the above example is the flatness of F'(z, y) near crossing
point. The implicitization method described in the next sections uses special properties of cubic
curves to deal with this problem, resulting in a maximum error in the implicit form of 0.00004 units
for the above example when using floating point of roughly seven digit precision. Other numerical
results are given in Table 1. The curves used in the table are intended to be difficult examples that
cover most of the relevant special cases.

parametric form A error comments
(—0.1326,198.8)¢t; + (0.1326,397.7)t2 + (0.7954, 596.5)t3 1.0 4.6 x 1078 double pt. at co
—(181.5,69.47)t; — (365.7,144.7)t5 — (552.1,225.6)t3 1.0 0.000065 double pt. far away

(—5.936,59.36)t; + (11.87, 118.7)t5 + (17.81,178.1)t3
0.3tp + 13107.2t, + 13107.2t5 + 0.3t3
(80.2, —262.1)t; + (—320.8, 741.7)ts + (899.1, —1573)t3
3721t — 28.67t; + 3.05t, + 54.29t3
(84.56,53.7)t, + (64.43,88.56)t, + (—60.38, 104.6)t3
to + 0.403315¢; + 0.403315t5 + t3
(95.44,71.96)t1 — (42.5,32.02)t5 + (35.53,26.77)t3
to + 1.59433t; + 0.280381t + t3

43690.7 0.000007 large A

13844.2 0.026674 large A

1.8 0.000013 arc of an ellipse

2.0 0.000027 highly flattened loop

(263, 110)t1 + (427,205)t2 + (519, 285)t3 1.0 0.000039 double pt. on curve

Table 1: Numerical results for computing the implicit form of parametric curves as explained in this
paper using 32-bit binary floating point (approximately seven decimal digits). In the parametric
form tg, t1, t5 and t3 stand for (1 —¢)3, 3t(1 —¢)2, 3t2(1 —t) and 3, respectively. The A parameter
introduced near the beginning of Section 3 is a measure of how “well-behaved” the parametric form
is. Note that the second-to-last error figure is computed using the iterative improvement scheme of

Section 3.2. Without this, the error would be 0.005196 instead of 0.000027.

Because of the difficulty in achieving guaranteed numerical properties for cubic curves, we
make no attempt to extend the analysis to curves of higher order. It may be helpful to look at the

background material on the numerical properties of Bézier-Bernstien curves given by Farouki and
Rajan [2] and Sederberg and Parry [12].

The overall organization of the paper is as follows: Section 2 derives the implicit form for
rational cubic curves and explains how to choose a rotated coordinate system. There is also an
alternative form that reduces the error when the crossing point is nearby. Section 3 gives bounds on

4.

the round-off error and Section 4 gives some concluding remarks. If the implicit form is needed in
unrotated or barycentric coordinates, then appropriate substitutions can be made in F(z,y), using
additional precision if necessary.

2. Implicitization of Rational Cubic Curves

Consider the rational cubic curve
(=(0.0) = (£, 50 @

obtained by taking a space curve (f(t),g(t),h(t)) and projecting onto the plane z = 1 with the
viewpoint at the origin. The purpose of this section is to obtain an implicit form that accurately
represents the curve generated as ¢ goes from zero to one.

Such a curve is conveniently represented by the Bézier control points of the space curve.
Assuming that the coordinate system has been shifted so that the curve starts at the origin, we have

3X1t(1 —1)? + 3Xot*(1 — t) + X3t° = f(1),
3Y1t(1 —)% + 3Yat?(1 —) + Yst® = g(2),
Zo(1 —1)° +3Z214(1 — t)? + 325t (1 —) + Z3t® = h(t). (3)
Note that the same representation works for polynomial cubics if we just set 7o = 71 = 75 = Z5 = 1.

Since it turns out to be desirable not to let h(t) get too small, it is important that a rational
reparameterization allows the X;, ¥;, and Z; to be changed without effecting the implicit form. (See
Patterson [5]). If we select constants @ and § and reparameterize by substituting

at
at+ G(1—1)
for t in (2), factors of (at +4(1 —t))_S cancel and the net effect is to multiply X;, 3, and Z; in (3)
by o3¢ for 0 < i < 3. For example, this allows us to force Z; and Z3 to be equal.

We use the same general approach as Sederberg does in [9], but make some important changes
to promote numerical stability. The basic idea is to get an expression that takes a point (z,y) on the
curve and gives the corresponding ¢. That expression can then be plugged into anything involving

f(t), g(t), or h(t) that is known to be zero when « = f(¢)/h(t) and y = g(t)/h(t).

A curve with a crossing point at (z., y.) has a simple relationship between ¢ and the direction
of the line from the crossing point to (z(t),y(t)). This is because f(t) — z.h(t) and g(t) — y.h(t)
must have two common roots, and this forces the slope

z(t) — x, _ f(t) — zch(?)
y(t) —ye g(t) — ych(t)

to be the ratio of two linear polynomials in ¢. In other words, there exists a matrix
POx Plx
P =
(Poy Py

(o —2 w-u) (17 5=) (L1,) =0 6

Replacing z(¢) by z and y(¢) by y in (5) gives the desired relationship between (z,y) and ¢.

(4)

such that

As Sederberg shows in [9], we can always validate the critical assumption that (z.,y.) is a
crossing point if we suitably generalize the concept of “crossing point.” For a generalized crossing

- 5.

point, or more properly double point, the two common roots that make (4) a ratio of linear poly-
nomials may be identical (in which case there is a cusp), or they may be complex numbers (when
there is no crossing). Additionally, the double point (2., y.) may turn out to be a “point at infinity”
(in which case P is singular).

It is possible to avoid dealing with explicit points at infinity by observing that (5) reduces to
(z. y.)P(0 1)T = 0 when t = 0, hence there is a constant ¢ such that

oo v (e me) (L) =w)

Substituting this into (5) shows that, for a point (z,y) on the curve, the corresponding ¢ satisfies

t t
0=(z y)P<1_t) —qt=((z y)P—(q 0))(1_t)~
In other words,
(¢ y)P—(q 0) (7)
is perpendicular to (¢ 1—t), hence its two entries give the ratio of 1 —¢ to —t.

All that remains is to find an expression for ¢ and the elements of P. First substitute (2) and
(6) into (5), obtaining

(s a0) (g B) (L1,) -amw =0 0

Since this polynomial equation must hold for all ¢, we use (3) and equate coefficients of #*(1 — ¢)*~*
to yield a system of equations:

0 0 3X; 3v7 —Z ;;0””

3X; 377 3X, 3V, —37 POy 0)
3X, 3V, X3 Yy —37 P“” -

Xs Ys 0 0 —Zs qu

The system (9) may be solved with Gaussian elimination with each Z; scaled by a factor L
for the purpose of pivot selection. Section 3.2 gives a way to get better accuracy when solving this
system.

2.1. The Rotation Strategy

As explained in the introduction, the motivation for rotated coordinates is that there could
otherwise be a loss of precision when all control points of the parametric form lie close to a straight
line. The barycentric coordinate system suggested by Sederberg [7] may solve some of these problems,
but it is difficult to integrate with the implicitization scheme described above and it is not clear how
to use it when the curve has points of inflection.

When the control points are close to a straight line, F'(z, y) is roughly proportional to the cube
of the distance from the line, leading to inaccuracy when the line is not approximately horizontal or
vertical. Another way to look at this is that large changes in the ratio of ¢ to 1 — ¢ correspond to
small changes in the ratio of z(¢) to y(¢), hence P must be almost singular in order for (7) to give
the ratio of 1 — ¢ to —t.

In view of the importance of nearly singular P, a geometric interpretation of P helps to
choose a system of rotated coordinates. As can be seen from (5), (Pos, Poy) is perpendicular to
(aj(l) —ze,y(l) — yc) and (P, P1y) is perpendicular to (J:(O) — z.,y(0) — yc). In fact for all ¢,
vectors

(1 =)(=Pry, Prz) + (= Poy, Poz) (10)

(PO:L'; POy)

(Plcc: Ply)

Figure 2: The geometric interpretation of P. When rotated 90°, the vectors (Poz, Poy) and (Pig, Piy)
give the displacements from the crossing point to A and B. A point moving at a uniform speed from
B to A would always lie on the line from the crossing point to (x(t), y(t)).

and (:L'(t) —x.,y(t) — yc) are collinear since multiplying either by P(t 1—t)? yields zero. This
situation is illustrated in Figure 2.

The error bounds in Section 3 give proof of the appropriateness of our choice of rotated
coordinates, but the intuitive basis is that when the choice turns out to be important, the shifted
curve (:L‘(t) — ., y(t)— yc) is approximately a rescaled version of (10). Note that this works whether
or not the double point (z.,y.) is a crossing point. Thus if the double point and the endpoints
of (10) are almost collinear, that direction should be one of the new coordinate axes. It therefore
suffices to take the singular value decomposition of P since that tells in what direction a vector is
most elongated when multiplied by P.

The singular value decomposition of P may be written

POx Plx _ ay —as2 1 0 b1 b2 (11)
POy Ply =7 as aq 0 ¢ _b2 b1 ’
where |¢| < 1 and a? + a2 = b? + b2 = 1. In other words, P = yAE B, where 7 is a positive scale

factor, A and B are rotation matrices, and E is a diagonal matrix. (An efficient way to compute
this singular value decomposition appears in Appendix A.)

With the singular value decomposition P = yAFE B, we use A to define the rotated coordinates
(r,s) of a point (z,y):
(r s)=(z y)A
Thus (z y)P = v(z y)AEB = ~(r s)EB, and

(z vy)P:'y(rby — esby 7Tby + esby) (12)

2.2. The Implicit Form

We now derive an implicit form for the curve (2) based on rotated coordinates (r, s) as defined
by the rotation matrix A in the previous section. The first step is to solve (9) and compute the
singular value decomposition (11). To eliminate the parameter, just substitute (12) into (7) and
multiply through by 1/v to see that the ratio of 1 —¢ to —t is

rby — esby — p : rby + €sby, (13)

where
p=4q/7

-7

The implicit form comes from using (13) with a function of ¢ that is zero when (J:(t) y(t))A =
(r s). One such function is sf(t) — ré(t), where (6’(75), ¢(t)) is the rotated version of (f(t), g(t)). To

facilitate the use of (13), we add another parameter u and define

0(t,u) = 3Ry Tu® 4+ 3Ramu + R37?,
o(7,u) = 3S17u? 4+ 3S97%u + S37°,
where
(Ri S;)=(X; Y;)A for i=1,23.
Thus 0(t) = (7 + u)730(7, u) and ¢(t) = (7 + u)~3¢(7,u) when the ratio ¢t : 1 — ¢ is 7 : u. Dividing

out the common factor of 7 from 0(7, u) and ¢(r, u) and using (13) for —u : 7, we obtain the implicit

form
sO(r,u) — ro(r, u)

T

=0, (14)

where 7 = rby + esby and u = —rb; + esbs 4+ p. Expanding as a polynomial in r and s, the implicit
form can be written G(r, s) = 0, where

G(rys)= Y conr™s”

1<m+n<3
and

30 = —b2S3 + 3b1bsSy — 36251,

o1 = biR3 — 3b1ba Ry + 3b3 Ry + €(—2b1b2S5 4 3(b7 — b2)Ss + 6b16251),

19 = €(2b1byR3 + 3(b2 — b?)Ry — 6b1by Ry) — €2 (bS5 + 31625 + 3b3S51),

cos = €2(b3 Rz + 3b1by Ry + 3b3Ry),

e20 = 3p(201.51 — b2S7),

c11 = 3p(—2b1 Ry + ba Ry — €(2b251 + 61.52)),

co2 = 3ep(2bo Ry + b1 Ry),

cro = —3p2Sh,

cor = 3p°Ry. (15)

An efficient way to evaluate this is to let
c30 = —Sa01, 21 = Roo1 +2€S111, c12 = —2€Ri11 +€2So21, co3 = €2 Roon,

20 = 2pS101, 11 = —2p(Ri01 + €So11), co2 = 2peRo11, c10 = —p? Soo1, and co1 = p*Roo1, where

Roo1 = 31y, Soo1 = 351,

_ 3 _3
Roo2 = 5 Ra, Soo2 = 552,

Ry01 = b1 Roo1 — b2 Kooz,
Ryo2 = b1 Rooa — b2 I3,

Ro11 = baRoo1 + b1 Koo,
Ro12 = bz Rooz + b1 23,

Rag1 = b1 Ryo1 — b2 R0,
Ry11 = baRyo1 + b1 R0,
Roa1 = baRo11 + b1 Ro12,

S101 = b15001 — 025002,
S102 = b15002 — 0253,

So11 = 25001 + 015002,
So12 = b25002 + 0153,

S201 = b15101 — 025102,
S111 = b25101 + 015102,
So21 = 25011 + b1S012.

2.3. Alternative Cubic Terms

We now have a complete implicitization scheme, but it fails when p approaches zero. For
example, suppose we are given the parametric form (3) with Zo = 71 = 75, = Z3 = 1, (X1, Y1) =
(—1,1), (X2,Y2) = (0,2), and (X3,Y3) = (3,3). Then (9) has the solution Py, = Py, = Piy = 1,
Pyy = —1, and ¢ = 0. It is easy to check that the singular value decomposition can be written
P = yAEB, where ¥ = /2, A and E are the identity matrix, and

o by by
= i)
with b; = bs = 1/4/2. Since the rotation matrix A is the identity, we have (R, S;) = (X3, Y)) for

i=1,2,3. Using e = 1 and p = ¢/7 in (15), we find that all ¢,y evaluate to zero.

We can avoid the problem by finding alternative expressions for csg, 21, ¢12, and c¢g3 with
explicit factors of p so that p can be factored out of the implicit form G(r,s) = 0.

The derivation of an alternative implicit form requires some relationship among the variables
of (15). This can be provided by introducing (7, u) parameters and rotated coordinates into the
equation (8) used to derive (9). The rotated version

y(0(t) o(t))EB(t 1—t)" —qth(t) =0

is obtained by substituting YAE B for P and (H(t) qb(t)) for (f(t) g(t))A. After multiplying both
sides by 1/v to give
(0() 6(0) JEB(t 1—t)7 = ptht),
substituting 7/(r + u) for ¢ and multiplying through by (7 + u)* yields
(6(r,u) ¢(r,u))JEB(T wu V' = prh(r,u), (16)

where
h(t,u) = (1 + u)?’h(t) = Zou® + 3Z17u? + 3227 u + Zs73.

Note that we can assume we do not have € = p = 0 because then (16) forces (7, u) to be identically
zero so that the desired implicit form is 3 = 0.

In order to use (16) to obtain an alternative version of (14), note that
T\ 0 1 by —bo 1 0 oy 0 1 p
u /) \ =10 by by 0 € s -1 0 0
_ T r . P
-erre(1)-a(f)

where @ is a rotation matrix, and 7 and u are as chosen in (14). Substituting this into (16) yields
(O(r,u) &(r,u))EBQBTE< Z > = pTh(T,u) —1—(O(r,u) &(r,u))EBQ< g) .

Since EBQBTE = EQBBTE = EQE = ¢Q, we have

6(O(r,u) ¢(7,u))Q(r s)7 = prh(r, u)+(O(r,u) (7, u))EBQ(p 0)T
= prh(T,u) — p(b26’(7', u) + ebyo(r, u))
Multiplying out the left-hand side and dividing both sides by e7 yields

e R L (17)

T € T

9.

where 7 = rby + esby and u = —rb; + €sba + p as in (14).
The alternative implicit form obtained by substituting (17) into (14) has the desired explicit

factor of p. By expanding the right-hand side of (17) as a polynomialin r and s, we obtain expressions
for the coefficients like (15), but with p factored out. The coefficients of linear and quadratic terms
turn out to be rather complicated and of little interest to us, but the cubic terms are simpler because
they all come from 2h(7, u); i.e.,

Bh(rbz + esby, —rby +esby) = 307> + 01725 + 19752 + ¢3s°,
€

where

C3p = p€_1(—b?ZQ + 3b%b2Z1 - 3b1b§Z2 + ng:«;)

Co1 = 3p(bfb2Z0 + bl(bf — ng)Zl + b2(b§ - 2b%)Z2 + b1b§Z3)

Cig = 3p€(—b1b§Z0 + bQ(bg - Qb%)Zl - bl(b% - Qb%)ZQ + b%ngg)

Cp3 = p€2(b§ZO + 3b1b§Zl + 3b%b222 + b?Z.g) (18)
An efficient way to evaluate this is to let c3g = pe 'Bzgg, c21 = 3pBai0, €12 = 3peBisg, and

co3 = pe? Bozo, where

Bioo = —b1Z0 + b271, Bo1o = b2Zo + b171,
Bio1 = =b1Z1 + b2 7, Bo11 = b2y + b1 75,
Bioa = —b1Z2 + b2 73, Bo1z = baZs + b1 73,
Bago = —b1 B1oo + b2 Bio1, Boao = b2 Bo1o + b1 Bo11,
Bao1 = —b1 Bio1 + b2 Bioa2, Boa1 = b2 Bo11 + b1 Boia,
Bsgo = —b1 Bago + b2 Baox, Ba1g = b2 Bago + b1 Bao1,
Bi2g = —b1 Bo2o + b2 Boaz, Bozo = by Bo2o + b1 Boa1.

In the implicit form G(r, s) = 0, the polynomial G(r, s) is a sum of terms of the form ¢y, 7™ s”
for 1 < m+n < 3, where any desired combination of the expressions (15) and (18) may be used to
evaluate the coefficients.

When p is small and we need to evaluate the coefficients ¢y /p in the implicit form G(r, s)/p,
we avoid factors of p in the denominator by using (18) instead of (15) for es0/p, ca1/p, c12/p, and
cos/p. As explained in Section 3, the phrase “p is small” can be expressed as a specific comparison
involving the magnitudes of p and e. When the comparison succeeds, we use the alternative cubic
terms along with the material in the next section.

2.4. The Double Point Centered Form

It is well known that if (7., s.) is the double point of a cubic curve with implicit form G(r,s) = 0,
then G(rc, s.) = 0 and (r¢, s.) is a saddle point if there is a crossing there, or a relative maximum
or minimum if there is no crossing. Either way G(r,s) is very flat in the neighborhood of the
double point, and as Figure 3 shows, this magnifies roundoff errors that arise when the coefficients
of G(r,s) are represented imprecisely. This section shows how to avoid such inaccuracies when the
double point is on or near the curve segment specified by the given Bézier control points.

We can avoid inaccuracy near the double point (7., s.) by finding . and s, and giving G(r, s)
as a polynomial in r — r, and s — s.. Hence everything depends on evaluating r., and s. and
the coefficients of this polynomial so that the curve defined by the implicit form is as accurate as
possible. How can this be done when the computation of (r.,s.) is so ill-conditioned? The key is
that (6) shows that the distance from the origin to the double point is directly related to ¢, hence
the computed value of ¢ largely determines the position of the double point in difficult cases such as

- 10 -

(a)

Figure 3: (a) The polynomial cubic where the corresponding space curve has Bézier control points
(0,0,1), (263,110, 1), (427,205, 1), and (519, 285, 1) (heavy line) and zeros of an approximate implicit
form with coefficients rounded to four decimal digits (thin line); (b) A closeup of the portion of

part (a) within the dashed square where the error is particularly large.

shown in Figure 1. In other words, ¢ is difficult to compute accurately, but the implicit curve can

still be accurate as long as subsequent calculations all use the same value for gq.
Letting P = yAEDB and (r., s.) = (2., y.)A in (6) yields
Y(re s)EB(t 1—t)T:qt.
Since this must hold for all ¢, we have

v(re sc)JEB=(q 0)

or

(re sc)=(p 0)BTE" =(pbi,—pba/c).

Since it is known that G and its first derivatives are zero at (rc, s.), we have
G(r,s) = Z Cmnr 8" = Z Chan(r—8:)" (s — sc)",
1<m+n<3 2<m+n<3
and therefore
Céo = €30, 0/21 = Ca21, 0/12 = (12, 063 = Co3
and
Chy = €20 + 3reso + Scc21,
iy = 11+ 2rccar + 2s.c10,
Cha = Co2 + TeC12 + 3s.C03.

Substituting the for r, and s, as directed by (19) yields

Cho = €20 + 3pbicag — pbacar /e,
11 = c11 + 2pbiear — 2pbacia/e,

662 = cg2 + pb1612 - 3pb2003/€.
Using (18) and the fact that b7 + b2 = 1, this becomes
cl20 = Ca0 — 3p2€_1(b%20 — 2b1b2Z1 + b%ZQ),
iy = c11 — 6p%(=b1baZ0 + (b3 — b1) 71 + b1b2 7)),
662 = Cp2 — 3p2€(b§Z0 + lebQZl + b%ZQ)

11 -

The complete double point centered form has coefficients (20) and (21), where ¢ag, €11, and cq2
are as given by (15) and the other ¢, are as given by (18). It is particularly convenient that the
efficient evaluation scheme for (18) given in Section 2.3 allows (21) to be evaluated as

o -1

Coo = €20 — 3pe~ DBago,
!

coo = c11 — 3pBi1o,

!
Coy = co2 — 3peBoag,

where Bsgg and Bgsg are as in Section 2.3, and By1g = b3 B1go + b1 B1o1-

3. Numerical Stability

In this section, we use backward error analysis to compare the given parametric curve with
the implicitly-defined curve obtained by evaluating expressions from Section 2 with floating point
arithmetic. Basic arithmetic operations are assumed to produce results with relative error at most 6,
where ¢ is the machine precision.

A two stage approach helps to deal with inaccuracy in locating the double point and determin-
ing the four parameters that appear in (19). We analyze the initial stage of computation by finding a
perturbed version of the parametric form that corresponds to the computed values of €, p, b1, and b,.
Thus in the computation of these four parameters and the R;, S; and Z; that determine 6(2), ¢(¢),
and h(t), we obtain an approximate solution to a perturbed problem. The total error in the curve
represented by the computed implicit form is the size of the perturbation plus whatever errors arise
from doing the rest of the computation with the computed control points Ri, S; and the actual Z;
instead of with the perturbed versions of the control points. In other words the perturbation given
in Section 3.1 applies to the input to final stage of computation.

We want the magnitude of the perturbation in Z; to be small compared to

hmin = oo, |h(t)]

and the magnitude of perturbations in X; and Y; to be small compared to

_ 2 2
Boy = (1+108) max /X7 +Y?.

s

(The factor of 1 + 106 ensures that \/Rz2 + S? < Bgy). The effect of these perturbations on the

curve itself should be small compared to
L= Bxy/hmin

since this is a bound on the overall size of the curve as measured by the maximum distance from
the starting point.

Since we also need a bound on the maximum magnitude of the control points Z;, we introduce

the constant
) — Ma%Xi=0.1,23 | Zi]
hmin

The constant A is a measure of how “well-behaved” h(t) is. The best case is that of a polynomial
cubic curve where h(t) is constant and A = 1. In an extreme case of bad behavior such as that
shown in Figure 4, hpi, is relatively small and errors are greatly magnified when h(?) & hpin. The
use of A in the error bounds accounts for the fact that the curve can be highly sensitive to small
relative changes in the input when X is large. By using A we make the hidden assumption that h(t)
does not cross zero, hence we might as well assume that h(?) is always positive when 0 < ¢ < 1.

The purpose of Sections 3.1-3.4 is to prove the following numerical stability theorem. It is
expressed as an asymptotic result as 6 — 0, but the constant in the O is really just a number that
could be computed by doing the analysis more carefully.

12 -

(a) (b)

Figure 4: (a) The curve generated when (X;, X, X3) = (14.04,-56.16,157.4), (Y1,Y2,Y3) =
(—45.88,129.84, —274.76) and (Zy, Z1, Z2, Z3) = (37.21,—28.67,3.05,54.29); (b) the effect of chang-
ing Ys from —274.76 to —275.37. The effect is magnified because h(t) achieves a minimum value of
about 0.004.

Theorem 3.1 Let the implicit form of a rational cubic curve be computed with machine precision 6
as described in Section 2 using the ratio of the computed parameters p : € to decide whether to use
the alternative forms of Sections 2.3 and 2.4. In the coordinate system of the computed rotation
matriz (Z; _a‘?), any point (r,s) on the original curve has a neighbor (r + Ar,; s+ As) that satisfies
the computed implicit form, where

oY) 1
Ar=0 ()\3 <A2 + 7) Lé) and As=0 <A3 <A2 + 5T) Lé)
Alel+1pl/L [Aél +1pl /L

for sufficiently small 6. With the iterative improvement scheme of Section 3.2, the displacement can
be reduced so that 5
Ar)2 + (As :O()\?’()\Z—Ff)Lé).
ViAry+(4s) NEEAGIE

The theorem bounds the errors in the implicit curve in terms of the scale parameter L and the
machine precision . The high powers of A appear to be pessimistic in practice, but some dependence
on A is definitely necessary to deal with cases such as Figure 4. The only troubling terms are the
denominators that depend on ¢ and p/L. These are best understood with the aid of Theorem B.2
from Appendix B. Combining this with Lemma 3.6 from Section 3.1

max | ;| = O((|e| + A |7 /L + A6) By). (22)

i=1,2,3

The meaning of (22) is that when the denominators in Theorem 3.1 are much less than one,
the range of r coordinates is correspondingly smaller than the range of s coordinates. Thus the
denominators cannot be as small as A§ except when 73 = 0 is a sufficiently accurate implicit form.

The 5
A2 L6
()
|Aé|l+ |pl /L
term in the equation for As still presents a problem, but this is the reason for the iterative improve-

ment scheme of Section 3.2. Note that this is not necessary when the curve slope Z—’; reflects the
overall dimensions implied by (22), since the component of (Ar, As) perpendicular to the curve is

then on the order of

|Ar] + (e[+ Alpl /L + Aé) |As].

Theorem 3.1 is a simple consequence of the four lemmas stated below. Lemmas 3.2 and 3.3
give bounds on the perturbations necessary to account for the errors in €, p, 131, and by. The proofs
are given in Sections 3.1 and 3.2 but the casual reader will probably want to skip them and go on
to Section 4.

- 13 -

Lemma 3.2 The perturbation of the computed control poinis Ri, Si, Z; necessary to make them
agree with the computed parameters €, p, by, and ba effects r = 0(t)/h(t) and s = ¢(t)/h(t) by

Ar=0(\6L) and As<O (L) :
lel +1p] /L

Lemma 3.3 With the iterative improvement scheme of Section 3.2, the perturbation of Ri, 5}, and
Z; necessary to make them agree with €, p, by, and by effects r = 0(t)/h(t) and s = ¢(¢)/h(t) by

Ar=O((A|e|+ A2 |p| /L + A?6)6L) and As = O(NL).

The final stage of the implicitization process involves comparing |p| to |é] to decide whether to
use the alternative cubic terms and the double point centered form. To this end, it is useful to have
a bound on |p| analogous to the bound |e| < 1 given in Section 2.1.

According to (9), ¢ = (XsPor + Y3Poy)/Z3 hence

lgl < Ly/ PG5 + P§, and |p| < Ly™'\/Pg, + Py
It follows from (11) that |/Pg, + Pj, < and thus

lpl < L.

When || is sufficiently greater than L |¢|, Lemma 3.4 below gives a good error bound for
implicitization without the alternative cubic terms or the double point centered form. The proof in
Section 3.3 requires 6 to be “sufficiently small” because of the way it uses an upper bound on the
error in G(r, s) to estimate the effect on the curve G(r, s) = 0. Section 3.3 explains that it probably
suffices to have

§< /N
for some constant ¢ and some small integer k.

Lemma 3.4 When |p| > 33(A — %)L |é| and & is sufficiently small, all poinis on the perturbed curve
of Lemma 3.2 are within

O(NL§)
of a zero of the implicit form computed as described in Section 2.2.

When p is larger than the bound in Lemma 3.4, the final stage of computation is to determine
the double-point centered form as described in Section 2.4. Lemma 3.5 gives error bounds in this case.
The proof in Section 3.4 involves finding a rational parameterization of the computed implicit form
and comparing this to the perturbed curves of Lemmas 3.2 and 3.3. Once this is done, Theorem 3.1
follows by combining the error bounds in Lemmas 3.2-3.5.

Lemma 3.5 When |p| < 33(XA —)L |¢|, there is a one to one correspondence between points on
the implicit form computed according to Sections 2.3 and 2.4 and points on the perturbed curve of
Lemma 3.2 where corresponding points differ by

2
|Ar|:O</\2 (1—|—¥) Lé) and |AS|IO<)\ AL(S)
¢ é

With the iterative improvement scheme of Section 3.2, the difference is reduced to

2
|Ar| =0 (AS (e + A6+ ‘5—) Lé) and |As| =0 <A2 <A + é) Lé) :
€ €

- 14 -

3.1. Analysis of the Initial Stage

The purpose of this section is to prove Lemma 3.2 as explained at the beginning of Section 3.
To do this, we must decide how closely the curve represented by the rotated Bézier control points
(Ri, Si, Z;) corresponds to the parameters obtained by solving the system (9) and finding the singular
value decomposition (11). This is mostly a matter of getting bounds on the residual in (9) and (23)
and then finding perturbations of the Z;, R;, and S; that eliminate the residual in (23).

Lemma 3.6 It is possible to solve (9), find the singular value decomposition (11), and evaluate
p = q/v in floating point of precision é so that the infinity norm of the residual

0 0 3R, 35S, —LZ l;)le
; —U2
- | 3 351 3Ry 35, —3LZl by (23)
3R2 352 R?, 53 _3LZZ bre
R3 53 0 0 _LZS y
p/L

is O(ABqy6).

Proof. Begin by solving (9) with the Z; column scaled by L; i.e., use Gaussian elimination with
complete pivoting to find an approximate solution vector V to the system

0 0 33X, 31 -LZ o
3X: 3V 3X. 3%, -3LZ P
3%, 3, Xs Y3 —3LZ |
X3 Y3 0 0 LZS q/L

where the residual has infinity norm O()\Bxy HIN/Hooé)
The next step is to take the singular value decomposition of the matrix]? whose entries are
the first four entries of V. The computed decomposition yAE B has ||P — ’yAEB”OO = O(éHPHOO),

and substituting ’yflEB for P in V adds O(Bxy ||]5H006) to the infinity norm of the residual. This
estimated residual can be written

00 shss -z
| 3R 35 3Ry 38, -3L% 326 (24)
Y| 3Ry 35, Rs S35 —3L7 o

Ry S 0 0 —LZ e

2 ° q/(yL)

where RZ =1 X;+asYs, SZ =a1Y; — dQXiL ay and as are the entries of fl, 131 and 132 are the entries
of B, and ¢ and ¢/L are entries of F' and V respectively.

The estimated residual is identical to the computed version of the left-hand side of (23) except
for the factor of 4, the use of ¢/ instead of the computed quotient p, and the use of R; and S;
in place of the computed values R; and S;. Since switching to p adds a term with infinity norm
O(ABgy6) and switching to R; and S; adds a term with norm O(Bgy6), the residual

0 0 3R, 3% —LZ l})ﬂ

3R, 3%, 3R, 3%, -3L7 e
R ~ o ~ o b (25)

3R2 352 R3 53 —3LZ2 BA

~ ~ €

Ry S; 0 0 —LZs p/lL

has infinity norm
Bey||P| 6 4+ AB, ||V 6
||fR||OO:O< o1l _ o[Vl +ABW5)20(ABW5). (26)
¥

- 15 -

We now need to decide what perturbations of the R;, S;, and Z; parameters are necessary to
cancel this residual. If p/L has absolute value greater than ||, it suffices to let

p(AZy 3AZy 3AZ, AZz)l =-R.
This produces a perturbation of the Z; with an infinity norm at most |[5|_1 IRl -

~ When [¢] > [p| /L, it is better to perturb the R; and S;. The terms of R that depend on the
R; and S; can be written

Q(R1 Rz R3 651 652 653)T,
where . .
3b 0 0 3by 0 0
3by 3by 0 =3b;y 3by 0
0 3b1 b2 0 —3b1 b2
0 0 b 0 0 —by
Thus the perturbation vector should have the property that multiplying it on the left by @ yields
—R. We therefore let

(ARy ARy ARz ¢éAS; éAS, ¢éAS;)=QT(QQR")'R.

Q=

Since l;% + ?)% = 14 0(8) for machine precision 8, the product QQ? is a diagonal matrix with nonzero
entries approximately 9, 18, 10, and 1. Thus when § is reasonable, HQT(QQT)_lnOO < % and the

perturbations of R; have infinity norm at most % [|R|, while those for S; have norm < % |€|_1 [|R]]-
Thus we have proved the following lemma:

Lemma 3.7 If the residual in (23) is R, then (23) is satisfied by a perturbation where

R
|AZ] < I |;||°° and AR; = AS; =0, (27)

if lef < pl /L, and

11 11|1R]| o

AR < = IR, |AS;| < oo and AZ; = 0. 28
AR < {5 Rll 148 < = an (28)

otherwise.

The effect of the perturbation (27) on r and s at some time g is to change h(tg) by an amount
no more than ||R||,, /|p|. Dividing by hAmin and noting that L = Bgy/hmin, the relative change in
h(to) is at most L || R[], /(16| Bey). Using |s| < Bgy/hAmin and |r| < B,«/hmm with the bound on B,
from Theorem B.2,

o0

|ﬁ| hmin

é| L L||R R L|IR

|AF| < <7.95A+ 1125 g 65 Ll ||°°> Rlleo yng jas] < LI
1Al 6] By

When [¢] > |p| /L, the effects of (28) on r = 0(tg)/h(to) and s = ¢(to)/h(to) are

11 {|R]] o 11 [|R]] o
IOhmin 10 |€| hmin '

hmin

|Ar| < and |As| <

Taking the maximum possible value of the bounds for all values of the |é] to |p| ratio yields overall
bounds of

2.65 || R]] [IR]]
|Ar| < <7.95)\+11.25+ e o0
Bl'y max(|e| 3 |p|/L) hmin

1R[] 0
max(1y [¢], 1] /L)hmin
on the size of the perturbations necessary to make parametric curve agree with the computed values
b1, bo, €, and p. Combining this with Lemma 3.6 completes the proof of Lemma 3.2.

|As| <

(29)

- 16 -

3.2. The Initial Stage with Iterative Improvement

It would be nice to have a stronger version of Lemma 3.2 that guarantees a small perturbation
even when the slope Z—i is much less than By, /B, where B, = max(Ry, R, R3) as in Appendix B.
This requires an iterative improvement scheme is needed to control the error in the neighborhood
of “flat spots” in curves such as those in Figure 5 where B, < Bgy and the derivative s'(t) passes

through zero.

r r

> >

(a) (b)

Figure 5: Curves where B, < By, yet there are points (marked by dots) where the 7. slope is zero.

One way to improve the situation for curves such as those in Figure 5 where (29) sometimes
allows relatively large errors is to compute better values for b1, b3, €, and p. The basic idea is that
the components of the residual (25) can be evaluated to within

O((B; + €Byy + Aminp)8) = O(B,6 + (¢ + A\p/L)Byy6)
O [IRllco + (€ 4+ Ap/ L) Buy6)
= O((¢ + Ap/L 4 X6)Byy 6) (30)

so there is some hope of adjusting the parameters to reduce the residual to this magnitude.

When B, = 0 it suffices to let p = ¢ = 0; otherwise we do the adjustment by essentially
repeating the original calculation with R; and 5; in place of X; and Y; for ¢+ = 1,2,3. The only
modification is that we scale the new X; by the old B,,/B, when solving the linear system (9).

In other words, an iterative improvement step begins by using Gaussian elimination with
complete pivoting to find an approximate solution vector V' to the system

0 0 3aX: 3Y1 —LZ/A Pg;/o‘

3aX: 31 3aXs 3Ys —3LZi/A o

30X, 3Ys aXs Yy —3LZy/A P};/a =0, (31)
—L; 1y

aXz Y3 0 0 LZ3/A Wi’

where o = Bgy /B, and B, = maxj—1 3 |X;| is the old B,. After multiplying the appropriate
elements of V by a and L/ to find Py, Pis, and ¢, the new implicit form can be computed exactly
as in Sections 2.1-2.4. The following lemma gives error bounds for this process:

Lemma 3.8 Let ¢y and pg be the computed versions of € and p before an iterative improvement
step, and € and p be the corresponding parameters afterward. After the iterative improvement step,

the residual R from (23) satisfies

Ap Ap
[:o<(e+fp+eo+%+m) Bwa).

- 17 -

Proof The residual in (31) after Gaussian elimination with complete pivoting has infinity norm that
OV oo By)-
Let D be the diagonal matrix diag(1, l/a) so that for P as in (11), the entries of DP are
the first four entries of V. Using the method in Appendix A to find a computed singular value

decomposition yAE B, we have HDP D'yAEB” = O(éHDPHOO). Since HDP”OO < HIN/HOO, we
have an O HVH Bwé) bound on the infinity norm of (24).

The difference between (24) and the residual R in (25) is due to the factor of ¥, the errors
of O(6p/L) in p/L, and the errors between R; and S; and the computed values of a;X; + a3Y;
and a,Y; — a»X;. The additions to the residual norm due to these errors are O(/\pryé/L) for p/L

O(Byé+a3Bgy6) for R;, and O(€Bgy6) for S;. Thus repeating the original calculation using R; and S;
for the new X; and Y; yields a residual with infinity norm

3 L

+ By6 + a2 Byyb + |€| Bxyé) . (32)

Next we need a good upper bound on the rotation parameter as that appears in (32). According
to (22), the bounding box of (0,0), (R1, S1), (R2,S2), and (Rs, S3) has aspect ratio O(ég+Apo/L+A6)
before the iterative improvement step, and O(é + Ap/L + A§) after rotating by sin as, hence

A Ap
a2:0< +F+e O+T+A6) (33)

To complete the proof, we need a bound on the ratio HIN/HOO/’y in (32). Since substituting
YAEB for P in V affects ||I~/HOo by a factor of 1+ O(6), we can use

(&18{ + €&213%)/a

&2[)1 — gdle

v b e
? ~ (alb%— GLLleA)/(X
asby + €a1by
5L
to estimate HIN/”OO/'? Since
B, Apo
- = = — 4+ X
L= =0 (@ M),
we can let H B H
Vv A)\po
1"l _ 2F 2P0 4 NS
; < + o+)

n (32). Substituting this, (22), and (33) into (32) yields the bound on [|R]|,, given in the lemma.
O

This suggests the following iterative improvement scheme: First, perform the initial stage as
analyzed in Section 3.1. Then if |¢| 4+ A |p| /L < 1, perform an iterative improvement step. In the
unlikely event that the new value of |é| + A|p| /L turns out to be much smaller than than the old,
perform another step, and proceed until |€] + A |p| /L does not decrease too much or becomes on the
order of §. (This is easily implemented by just a single statement that examines p and € and decides
whether to start over with the rotated versions of (X;,Y;) for i =1,2,3.)

After performing iterative improvement steps until || + A |p| /L stabilizes, Lemma 3.8 gives

IR, = O (<e+ % +A6) Bxyé) . (34)

- 18 -

Substituting this into (29) gives the bounds on Ar and As required by Lemma 3.3.

In practice, a single iterative improvement step usually suffices to reduce the residual to on the
order of |e| + |p| /L times its former value, and this makes it essentially zero to within the precision
(30). For example, consider a flattened and rotated version of Figure 5a with Bézier control points
approximately (0,0,1), (—188,251,1), (1.6,1.2,1), and (—187,253,1). Working in 32-bit floating
point with machine precision § = 2724 this produced ¢ ~ 3.8 x 1078 and p/L ~ 0.0069. One
iterative improvement step reduced the residual from roughly 4.86 B;, to 0.0136 B;,. This improved
the agreement between the given curve and the curve represented by the computed implicit form by
a factor of 82.

3.3. Final Stage, Double Point Far Away

This section proves Lemma 3.4 by limiting the error in G(r,s) and using a lower bound on
the gradient of G to limit the error in the computed implicit curve G(r,s) = 0. Since such a lower
bound is not possible when the curve passes through a double point, the lemma requires the ratio of
the computed |p| /L to |€| to be large. The intuitive basis for this is that y/r2 + s2 should be large
compared to L and it is clear from (19) that this can only happen when p/e is large compared to L.

When e is small compared to p/L, all coefficients of G(r, s) may be found via equations (15)
from Section 2.2. This has the advantage that it does not use any of the Z; parameters that had to
be perturbed in Lemma 3.7 when |€| < || /L. Thus we need only consider errors in G(r, s) due to
rounding error in evaluating (15).

Lemma 3.9 Evaluating (15) with floating point of precision § induces O(Ap®Byy8) error in G(r, s)
when |8 < 151/, 15| < L and |r| < By /b

Proof. The round-off error in evaluating any coefficient ¢;; is going to be at most some constant 6; =
O(4é) times the result of evaluating the appropriate right-hand side in (15) with each variable replaced
by its absolute value. To get a rough upper bound, replace |b1| and |b2| by one, replace each |SZ|

by Bxy, and replace each |RZ| by B,. Using

LB, _O<|€|L+A|ﬁ|+A6

= By) =om

we get the following upper bounds:

|Acso| < TByyb1, |Acao| < 9[p| Beybr,

|Acor| < (Tar|p| /L + 14 [€]) Boy b1, |Aci1]| <9l (a|p| /L + [€]) Baybr,
|Acia| < |él (14a|p| /L + T1él)Buyby, |Acoz| < 9ap® || Beybi/L,

|Acos| < Ter | ngxy‘Sl/La |Acio| < 3/523301;51;

|Acor| < 3a|p|® Beybi/L.

The total effect on G(r, s) of errors in its coefficients is the sum of all risjAci]' for 1 <i+4+j <3.

Since || < By/hmin = @|p|, the total error is at most
o3 222 o122
((14a3 + 1802+ 60) L 4 (2802 1 180)2 1 4 14aﬁ) L3By, 6.

L3 L? L

This is O(Ap® By 6) as required. O

To get a first order estimate of the amount by which this error causes the curve G(r,s) =0 to
shift, we just divide by the magnitude of the gradient of G at the point (r, s) as given by Theorem C.6
in Appendix C. That theorem shows that if G(r,s) is the function obtained by evaluating (15)

- 19 -

exactly using the perturbed curve and ?)1, 132, € and p, then under the assumptions of Lemma 3.4,
the magnitude of the gradient of G at any point on the perturbed curve is at least

0.0312 |4|> hmin(1 + O(8))

35
(A —0.43)2 (35)
Dividing this into the O(A3 l? Bgy6) bound on the error in G(r, s) gives an estimate of
A5 By 6
0 (Ty) = O(N\°L$). (36)

for the shift in the curve G(r,s) = 0.

We have used a tangent line approximation to determine how far we must go along a line per-
pendicular to the perturbed curve G(r, s) = 0 before G(r, s) reaches the error bound from Lemma 3.9.
Since this error bound approaches zero as é approaches zero, the estimate must be valid to within
a constant factor for sufficiently small §. Hence (36) completes the proof of Lemma 3.4.

One way to quantify the idea of a “sufficiently small” § would be to get an upper bound G5
on the second derivative of G(r, s) along the line perpendicular to the curve G(r,s) = 0. If the first
derivative is G1 at G(r,s) = 0, it cannot fall to zero within a distance less than G1/G» and |G(r, s)|
must be at least %G%/Gg at this point. Hence we need only require the bound from Lemma 3.9 to
be at most this much.

It would be possible to use an argument very similar to the proof of Lemma 3.9 to get bounds
3;7%, gj—aGs’ d %QTE, thereby getting bounds on G5 as a function of the curve direction. We could
then analyze the proofs of Lemma C.5 and Theorem C.6 in Appendix C to get a stronger bound
on (G that depends on the curve direction. A preliminary analysis of this type indicates that ¢ is
“sufficiently small” when it is less than some constant times A~%. For brevity, we leave this as a

conjecture.

on

3.4. Final Stage, Double Point Nearby

The purpose of this section is to prove Lemma 3.5 by doing backward error analysis from the
double point centered form. It deals with the case where p/é is no more than a constant times AL
so that (19) makes the distance to the double point obey a similar bound.

Thus we are dealing with the case where the implicit form is the double-point-centered form
given by (20) and (21), where (18) is used to evaluate csp, a1, 12, and cog, and (15) is used to
evaluate c¢gq, ¢11, and c¢ga. Section 2.3 suggested eliminating a factor p from each of the these
equations but it simplifies this discussion to assume that we evaluate the expressions as given to
yield computed results ¢, for 2 < m +n < 3.

Lemma 3.10 If the coefficients c..,. of the double point centered form are computed as in Section 2.4

mn
from p, €, 131, by and the corresponding Beziér control points R;, S;, Z; with errors Acl,,, then there
is a paramelric form for the computed coefficients ¢, with the following error bounds: Zy, Zs,
and Z3 need to be changed by at most ||ACY||,,, each R; needs to be changed by at most ||ACy|| .,
and each S; needs to be changed by at most ||[ACy||_,, where

ACy, = pte(Achy ¢ 1Acy, €é72Ac), e 3Ach;),
ACy =p7re(0 Achy, ¢ 'Ac), ¢ 2Ac),),
ACy = p~(Achy e rAch; e 2Ach, 0).

Proof. Let us do backward error analysis on the double-point-centered form

Z ean(r—r)" (s —s:)" =0,

2<m+n<3

- 90 -

where 7, = ﬁi)l and s, = —ﬁ32/€ are the true coordinates of the double point. To find a corresponding
parametric form parameterized in such a way as to try to match the original h(t), 6(¢), and ¢(¢), let

5 — 8, = ¢ H(by7 + baur), (37)
where) .
 rby + séby . —rb; + séby
T= —F/—"F— and u = T —
b3 + b3 b3 + b3

Substituting (37) into the double-point-centered form, it is not hard to see that

D G € (ba — bya)™ (by7 + byir)"

m+n=3

B Z e by — b)) (by 7 + bott)”
- r—r.

mi+n=2
_ ¥ e e (bot — byu)™ (by 7 + Bza)"ﬂ.

€(s — 8¢)

= (38)

m4+n=2

This yields expressions for r — r, and s — s, that can be written parametrically by letting the ratio
t:1—1 be the same as 7 : 4. This yields r — r, = 0(¢)/h(t) and s — s, = ¢(t)/h(t), where

h(ty=v Y & € (bat — by(1— 1)) (bt + ba(1 — 1))",

m+n=3
0(t) = —v Z e (bt — by(1 —)" (byt + bo(1 — 1))",
m4+n=2
$(t) = —ve™ > @€ (bat — by (1 — 1)) (bat + bo(1 — 1)), (39)
m4+n=2

and v is a constant factor that needs to be chosen in order to try to match the original h(t), (),
and ¢(t).

We want to choose v so that h(t) would match h(t) if all ¢/, = were exact. Since we observed
in Section 2.3 that the cubic terms of G(r,s) are identical to those of pe~1h(r, u), the cubic terms
in (38) should be like those of pe~th(7,u). Thus substituting ¢ for 7 and 1 — ¢ for & would yield

pe~h(t) for the part of (38) that becomes h(t). Thus letting
v=ple,
makes iL(t), é(t), and q;(t) correct except for the error in the ¢, .
A EXpAandingA (39) to make the Bézier control points apparent yields lAz(t) = CLQT3, r’;(t) =
CoQTy, ¢(t) = C4QTy, where

—b3 b3b —by b3 b3 (1-1)3

oo | i geromy gewg bt | [
—bib3 L(b3by — 2b3) 1(2b103 —b3) b3by 3t2(1 —t)
b3 by b2 b2b, b3 t?
and
Ch=pTle(ey ey €28, %),
Co=pYe(0 &y eléh, e2é,),

Co=p"(ehy €'y %, 0).

Thus the Bézier control points are given by the elements of 0, C’¢Q, and C3Q, and the lemma
follows from the fact that ||Q||., <1+ 0O(6). O

- 921 -

To apply Lemma 3.10, we need bounds on the errors in Cy, Cs, and C’¢ due to round-off error
and the use of Z; and the computed values Ri, 5}, instead of the perturbed versions. These bounds
depend on whether iterative improvement is used to reduce the bound on ||R||,, from (23), but we
can always use Lemma 3.7 to limit the perturbation as follows:

11 L1 |R]] lIR]]
AR;| < —IR]| ., AS;| < —F—eo d |Z| < ——". 40
|AR;| < 10|| lloo |AS;| < 10]e] and | l—max(lpl,lflL) (40)

Hence the following lemma gives bounds on the ||ACY|., ||ACs|.,, and ||AC4||,, needed in

Lemma 3.10:

oo’

Lemma 3.11 Consider the errors Acl,, due to rounding error in (15), (18), and (21) and pertur-
bations with upper bounds
Qv «

[AR;| < a1, |AS)| <, and [AZ]< — :
l€] max(|p|, [¢| L/A)

Using these errors in ACYy, ACy, and ACy makes

42)\0[2
el

240{2
A, < 2 , ACy||,, <42xas, and [JACy|, <
1ACHl, < ety A 1AC,|

where ay is a constant times oy + (|| + A|p| /L + A6)Bqgy6.

5 = max <|ﬁ| , 'glf) |

Since (15), (18), and (21) are linear in R;, S;, and Z;, the error due to the perturbation is at most
the result of evaluating (20) and (21) with R; replaced by a3, S; replaced by a1/ €|, Z; replaced by
a1/, and each other variable replaced by a bound on its absolute value. Of course it is necessary
to use (18) for ez, ca1, c12, and cgz in (20) and (15) for eq0, €11, and cg2 in (21). Using |IA)1| <1 and
ba

Proof. For convenience, let

< 1 gives error bounds

|Acko| < 8|7 [play/B

|Ach| < 24p| /B Akl < (918117 +126° ¢~/ B)e,
|Achy| < 24 (€[[plor/ B [Achy| < (181p] + 24p°/B)an,
|Achs| < 8% |pl a1/p [Ach,| < (91p] |e] + 125° [¢] /B)au - (41)

Since the round-off error in evaluating a sum of a constant number of terms is §; = O(§) times
the sum of the absolute values, the effect of round-off error can be included by making the following

changes in the derivation of the bounds on |Acl,,|: the replacement for R; becomes

o + Br 61; (42)
the replacement for S; becomes
é
and the replacement for Z; becomes
% + M6y (44)

By choosing ay so that (42) is at most as, (43) is at most ay/ |€], and (44) is at most as/S3, we can
account for round-off error by replacing o with as in (41). In fact the lemma does allow az to be
this large since

ABg, 6 e Ap
a1+ ABhnind = a1 + Tylmax <|p|, |€/|\) =a1+0 <<e+ fp) Bxyé) ,

- 9292 -

and because of (22), X
a1+ Brbr = a1+ O((€+ Ap/L + A6)Bgyb).
Replacing a; with as in (41) yields
80[2 24(12 240{2 80[2)

||A0h||oo§maX<7, z B o

[AGe],, < max <0, <9+12|;%|) as, (18+24%) as, <9+12|g|))
| 7l

|ACY|., < max <<9+ 12|L’|’|ﬁ> s, (18+ 24|€f >a2, <9+ 12|€|)042, 0) ,

and since |p| /8 < 1 the lemma follows. O

We are now ready to use the above lemmas to prove Lemma 3.5 as stated in the intro-
ductory part of Section 3. The perturbations (40) satisfy the assumptions of Lemma 3.11 if we
let a1 = L||R]|,,. Without iterative improvement, Lemma 3.6 gives ||R||,, = O(AByy6), hence
@y = O(ABgyé) in Lemma 3.11. Since the errors Af, A¢, and Ah in 0(t), ¢(t), and h(t) are
bounded by the errors in their control points, Lemma 3.10 guarantees

A0 <[[Colle, A <[ICsll,, and [AA] < |Cllo,
Thus Lemma 3.11 gives

2 2
VR Y L Y S VR S
hmin max([p], €[L/A)hmin max(|e[, A[p| /L) é
2
Ao (A Bwy‘s) — O(A?L5)

hmin hmin

A¢ A?By, 8 A’L6
hmin =0 < Ghmln) =0 < €

Substituting these equations into

‘)+ A0 0t) ‘ _ ‘h(t)AH - H(t)Ah‘ < |AG] N AhB,

h(t) + Ah h(t) h(t)?2 4+ h()Ah | = hmin h2..

(t)+A¢ &(1) (t)Ad — o(t)Ah < |Ag Ath

‘ h(t)+ Ah W‘ ‘ h(t)* + h(t)Ah ‘ = in | hiin

yields

2
A7 =0 <A2 (1 + %) Lé) and |As| =0 <%) . (45)
€ €

as required by Lemma 3.5.

Lemma 3.5 gives stronger bounds on |Ar| and |As| when iterative improvement is used.
These could be obtained by repeating the derivation of (45) using (34) from Section 3.2 instead
of Lemma 3.6, but it is easier just to observe that the error bounds are proportional to the aj
parameter in Lemma 3.11. With iterative improvement (34) makes a;

o (e 23),

hence as is also of this order. Thus the bound on a5 is reduced to

¢ b
—4+ =456
o(5+2+s)
of its former value, and Lemma 3.5’s assumption that |p] < 33(A — $)L|€] makes this O(Xé + 6).

Multiplying the right side of (45) by this factor yields the bounds required by Lemma 3.5 under the
iterative improvement scheme of Section 3.2.

- 93 -

4. Conclusion

The computation outlined in Section 2 is unique in that no other work has been done on
numerically stable techniques for finding implicit forms for the parametric curves commonly used
in graphics and computer typesetting applications. In spite of the difficulty in proving numerical
stability and the need to derive alternative implicitization formulas in Sections 2.3 and 2.4, the
algorithm itself is not much more complicated than the algorithm by Sederberg that requires exact
rational arithmetic [9]. The main difference is the singular value decomposition and the use of
rotated coordinates.

We have not discussed running time because everything is in-line code except for the loop
added when iterative improvement is used. That loop could probably be removed by using some
other method to compute an initial rotation, but this seems totally unnecessary in practice since
iterative improvement has never been observed to require more than one extra iteration. In any
case, the error bounds without iterative improvement are not too bad if we disallow “flat spots” of
the type shown in Figure 5.

The main numerical result is that when the constant A is not too large, the error between the
given parametric curve defined on 0 < ¢t < 1 and the curve represented by the computed implicit
form is on the order of the machine precision times the overall dimensions of the parametric curve.
The exponent of A in the error bounds may be overly pessimistic, but the example of Figure 4 near
the beginning of Section 3 shows that some dependence on A is clearly required. Note that we get
good error bounds in the important case of a polynomial cubic where A = 1 by definition. Even
for rational cubics, large values of A can often be avoided by using the rational reparameterization
mentioned at the beginning of Section 2 to force Zg to be equal to Zs.

A. Two by Two Singular Value Decomposition

The singular value decomposition of a matrix P is P = ADB where A and B are orthogonal
matrices and D is diagonal. General techniques for finding the singular value decomposition can
be found in [3], so we concentrate on finding a simple solution for the two by two case where the
residual in the computed solution ADB is small in the sense that HD’(P - ADB)H < ||D'P]| for
any diagonal matrix D’.

_ aj —a9 _ ’70 _ b1 bg
=(mw) o=(ia) e=(aw)

where |¢| < 1, the problem can be viewed as writing P as the sum of two rank-one matrices:
< Pyy Pig) . (arby ajby)+ 6(asbs —ashy)
POy Ply =7 a2b1 a2b2 v —a1b2 a1b1 ’
Thus we have
1 € a1b1 _ POx 1 —€ a2b1 POy
7<€ 1)<a2b2>_<P1y)’ 7<—€ 1)<a1b2> (Pu ’ (46)

1—|—€ 1—|—€ a1b1 _ P1y+P0:c
v 6—1 1—6 agbg B Ply_PO:c ’

—1—c¢ 1—|—€ a2b1 _ Pl:c_POy
7(1—c¢ 1—€)<a1b2>_<p1x+}30y . (47)

Letting

- 924 -

Once € and 7y are known, either (46) or (47) can be used to find ay, as, by, and ba. We therefore
make use of the fact that the quantities

Yo = \/(P1y + Poz)? + (Piz — Poy)? = v(1 +)/ (arby + azbs)? 4+ (—azby + arbs)?,

71 = \/(Ply — Pyz)? + (Pig + Poy)? = v(1 —)V (—a1by + azbs)? + (asbh; + arbs)?

are easily evaluated to good relative accuracy. Since af + a2 = b3 + b2 = 1 we have y9 = v(1 + ¢),
71 = (1 =€), and therefore

Yo+t m

=—0

A good way to evaluate € is to use the fact that det |P| = Pyz Py — PioPoy = 7%¢ and thus
_ PO:L'Ply_Pch'POy
= > .

€

This makes the error in € small compared to

min(|Poz| + | Pis|, |Poy| + |Piyl)
1P| o

. (48)

The next task is to solve (46) or (47) for the desired values of a1y, aiba, azby, and agzby. Using

(46) when || < % and (47) when |¢| > 1 ensures that the matrices are well-conditioned so that

solution vectors (ayb; azbs)? and (azb; a1by)T are obtained with good accuracy.

To complete the singular value decomposition, set
(ai,a1-;) — (Vi;, Vl—m')/ Vi +Vilig

(b, b1g) — (Vi Vinog) [V + VP,

where Vj/ ;i is the desired value of a;:b;: and ¢ and j are chosen so that the unused value Vi_; 1_; is
the smallest of the four. This can cause a;_;b,_; to deviate from V;_; 1_;, but only by an amount on
the order of machine precision times Vj; times the ratio (48). The final result is that each component
of P — ADB is small compared to magnitude of the corresponding component of P plus the ratio
(48) times the magnitude of the diagonally opposite component.

B. Proof of the Rotation Theorem

A key idea underlying all the numerical stability arguments is that the (r, s) coordinate system
is chosen wisely when p/L and ¢ are both small. In that case, the following lemma shows that the
curve lies close to the line r = 0 in the sense that

B, = max_|R;|
i=1,2,3

B,y = max /R?+ S2.
i=1,2,3

IE)

is small compared to

Lemma B.1 If p, € and all (R;,S;) are as obtained in Section 2, then

95X
B, < <11.25 le| + w) By .

- 95 -

Proof. The system

0 0 3R 35 —LZ _bb1€
3Ry 3S; 3R, 3S, —-3LZ 52 0
3Ry 3Sy Rs S3 —3LZ b2 -
Ry Ss 0 0 —LZs 1€

p/L

analogous to (9) obtained by equating *u?~? terms in (16) can be also be written

3b2 0 0 R —36[)151 —+ pZo

3by 3by 0 R1 | 3¢b2S1 — 3¢b1Sy 4+ 3p2y (49)
0 3by by R2 T | 3¢bySy — b1 Sz +3pZy |
0 0 b 3 €byS3 + pZs

Thus an expression for (R Ry R3)? is obtained by multiplying the right-hand side of (49) by either
of the following left inverse matrices:

X L 0 0 0 L [0 5 —sbe/bi 303/b1
Ml = b_ —%bl/bz % 0 O s M2 = b_ 0 0 % _%b2/b1
? b2/ —bi/by 1 0 "\o o 0 1

Of course B, is the infinity norm of (R; Ry R3)T, and we can get an upper bound on this by
multiplying || M1||_, or |[M2]|_, by the upper bound

3A
(3\/§|e| + %) By

on the infinity norm of the right-hand side of (49). Thus we complete the proof by noting that
|My||,, < V143-2/3(372/3 13713 1 1) < 265
when [b;/bs| < 371/3 and || Ms||_, < 2.65 when |by/by| < 3Y/3. O

Theorem B.2 If replacing R;, S;, etc. by approzimate values R;, Si, Z;, bi, €, and p in the left-hand
side of (23) yields a vector R, then

7.95) ||

B, 11.25 ¢
<< 5€l + 7

) Bey +2.65 ||R||,

where Br 15 analogous to B,.

Proof. Everything goes as in the proof of Lemma B.1, except the residual vector R is subtracted

from the right-hand side of (49). O

C. Proof of the Gradient Theorem

In this appendix, we derive a lower bound on the magnitude of the gradient of the function
G(r,s) on the curve (r(t), s(t)) assuming that |¢| is small compared to |p| /L. Everything is based
on the assumption that the equations in Section 2 hold exactly as given. The way to use the results
derived here in the presence of numerical error is to apply them to the perturbed curve that agrees
with the computed values of p, €, b1, and b5.

Lemma C.1 When evaluated on the curve

_96 -
the gradient of the function G(r,s) defined in Section 2.2 is

plr+ ne) (5 5)

where T = rby + esby and u = —rby + esbs + p.

Proof. The derivation in Section 2.2 shows that ¢/(1 —t) = 7/u when r = r(t) and s = s(t). Thus

we let
-

T+ u

and observe that

T =by(r—r.) + ebi(s — s¢)

u=—=bi(r—rc)+eba(s—sc) (51)
when r, = pb; and s, = —pba /e as given by (19). Hence a rational substitution for ¢ allows
{_ (b1 — bg)t + bg _ (b1 — bg)T + bg(T + u) _ 6(8 — Sc) (52)
(bl—i—bg)t—bl(b1+b2)T—b1(T+u)_ r—T. '
Substituting this into the result of factoring r — r, out of (51) yields
7= (ba+bit)(r—7;) and u=(=by +bat)(r—rc).
This allows G(r, s) to be written in terms of polynomial functions h, 8, and ¢, where
- h(t _— o(t - o(t
h(D) = (t))= (t) a0 = (t) ~
((b1 4 b2)t — b1) ((by 4 b2)t — b1) ((b1 4 b2)t — b1)
Since
; (b1 + b2)((br — b2)t + ba) + (b2 — b1)((b1 + b2)t — b1)
by +bo)t 4+ by — by =
(b +b2) 2 (b1 + b2)t — by
_ 1
(b bt — by
we can write
h(r,u) = (14 u)?h(t) = ((by + b2)t + by — b1)3(r — r.)°h(t) = (r — 7.)°h(2), (53)
and similarly for (7, u) and ¢(7, u). Hence the right-hand side of (17) becomes
p s (7 b20(t) + eb1g(?)
==(r—r)° [h(t) - —F——7—2.
G(r,s) € (r=r) (® rby + €sby
The slightly simpler form of G(r, s) results from noting that (52) can be written
8D = seh(D
= €E=—— Ep—
0(t) — rch(t),
and therefore 0(%) — r.h(%) is a quadratic polynomial in . Thus the polynomial
E(r = re)?((r = r)h(D) + reh(t) - (D). (54)

€

has cubic terms identical to G(r,s) and is clearly zero on the curve (50). Since (50) cannot be
expressed implicitly in terms of a quadratic polynomial, (54) must be equal to G(r,s). (The same
result can be obtained by using (19) and (17) to expand (54) and G(r, s)).

- 97 -

Using

LY RS ST

dr — dr r—7, (r—r)? r—r.

and g—g = ¢/(r — rc), the derivatives of (54) become

9G _,Grs) | f(r —r.)? (h(t) _ (D) - rdh'(t) | W’(t)) |

or r—="Te r—T r—rT,
oG <€rh Q) 60’(f)>
— ==(r—r .
Os r—r., r—r,
Since differentiating (52) yields
d_f: b? + b2 _ (1 + u)? :_(T+u)2
dt (b1 + ba)t — by)? ((by 4 bo)r — by(r +) (r=re)*
we have
ds d
Fr TS
_di(0D)
“dte \h(t) °
(r+uw)? (0(D) n W) 0O
= — = — T = - =
-2 @ "t R0 T R®)
dr_d (00
dt — dt \ h(t)
(r+u)? (0'() O (D)
(r—re) \A(t) h%t))’
On the curve, we are allowed to substitute zero for G(r, s) in the expression for % and r for
0(t)/h(t) in the expressions for % and dt, giving
0G 3G _plr—rPhi@) (ds dr
or’ s) (T+u)? dt’ dt)’

From (53) we have (r — r.)3h(t) = (7 + u)3h(t), hence the lemma follows. O

The lemma gives the gradient as a product of four factors, and we need lower bounds on each
of them that hold when p/L is large compared to . The 74 u factor is of particular interest because
(51) shows that a nonzero lower bound ensures that the curve does not pass through the double
point. The lower bound comes from two lemmas: the first shows that |7+ u| > |bap| — |¢| L, and the
second gives a lower bound on |bs| that depends on A.

Lemma C.2 When b? +b2 =1, 7=rby+esby, u=—rby +esby+p, and 0 < 7/(1+u) <1, the

bound
lbap + e

THul>— "1
| |2 max(|b1|, |b2])

15 satisfied.

Proof. The condition on 7/(7+u) allows us to restrict our attention to the portion of the (r, s) plane
where 7 and u do not have opposite signs. For fixed s, the set of (r,s) values under consideration
form a line segment or one or two semi-infinite rays. In any case, the minimum value of |7 + u]
occurs at the intersection with one of the boundary lines 7 = 0 or u = 0. Thus the minimum occurs
when

- 98 -

(If by = 0 or by = 0 then there is only one intersection point and only one of the choices for r is

viable).

Using the suggested values for 7 in the expressions for 7 and u yields

rtu= (b2 + b2)es + bap or T4u= (b2 + b2)es + bap
b2 bl ’

hence the lemma follows. O

Lemma C.2 provides the necessary lower bound for 7 + u, but the bound is only useful if we
can guarantee that b is not too small. The necessary lemma is best expressed in rotated coordinates
(e£,n), where

b2_b17’+ €(b1+b2)5

¢= +1

_ 62(])1 + bz)r+ G(bl — bg)
p

3

S—f—{(),

{0 = b2(b1 — b2) — €2b1(b1 + b2)
This makes p€ = 7+ u and pn = €17 + tou, where
{1 = bl(bl — bg) + €2b2(b1 + bg)

On the curve we have ¢ = 7/(7 + u) and therefore n = 1, where ¢ = (¢; — o)t + {g.

The upcoming lemma uses the parameterization & = 9(t)/h(t) where

by — by €(by + b2)

(D) = h(t) and (D) = 220(0) + TG0 + A(D),

Since we are assuming that h(t) > Ay, for 0 <t < 1, we have 0 < hpin < A(f1) < Ahmin < Ah(fo).

We are now in a position to verify that the rest of the assumptions of Lemma C.3 below hold
when [by| > |b2|. The bound on A'(t) = h'(t)/(t1 — to) comes from the fact that A'(0) = 3(Z; — Zo)
and h'(1) = 3(Z3— Z3) while a value of Z; or Z3 less than (A— %()\— 1)) hmin would force h(%) < hmin
or h(3) < hmin; €8, h(3) = §71 + 5520 + 572 + 3: 73 < 371 + 3 min.

Since the (€€, n) coordinates are rotated and scaled by a factor of

V(s —b1)* + (b1 +52)” V(b = 51) + (b1 +82)° || _ V2]
ol - lel = el

the bound v/rZ + s2 < L becomes /€262 + 12 < +/2|e| L/ |p|. Similarly, the bound on the magnitude

of (e£'(t),n'(t)) comes from the fact that

@8 () (00),60)
(). <) = =30 ‘(h(t)) 0

el

bl

has magnitude at most 6L + Z/(XA — 1)L and this needs to be scaled by v/2|¢| L/ |p| and divided by
% =11 —1o.

The only other assumptions are that £; > 0 and #; —#; > 0. These are easily verified when
|b1| > |b2| by l'lOtiIlg that {1 = (b% - blbg)(l - 62) + GZ(b% + b%) and {1 — {0 = (b1 — b2)2 + 62(1)1 + b2)2.
Lemma C.3 Let

27X — 3) || L 2| L 2
2v2|p|

- 99 -

and suppose that |b1| > |ba| and a rational cubic curve
ep(t) t(t)
4 t)) = | = —_—
defined on some intervalty <t <ty witht; >0 and &(to) = 1 has endpoints at most oy units apart.
I[f0 < h(f) < Ah(fo) and

/625/({)2+77/(t*)2 < ; 041{ and |}7LI(7)| < (734371({)

1 — ¢t 1 — ¢

ap)\ - 2830 15 (27AZ = 9X) |¢] L) _
(-2)us (G- T+ m (55)

Proof. The basic idea is that since n = €, the restrictions on h(f) and the fact that (t) is a
quadratic polynomial do not allow £(%) to behave as it would have to if #; were much greater than
[to]. Since (o) = 1 and therefore [t1£(¢1) — to| = |n(t1) — n(to)| < s, we immediately have

je(t)| < ol E 22
t1
Differentiating 77({) = {g(ﬂ yields
D) + €)1 = I (D] < TR+ TP < 2

and solving for ¢'(¥) yields |¢/(t1)| < |€(t1)|/t1 + a1/(f3 — fot1) when T = #; and |¢'(fo)] >
1/ |to] — a1/ |fofl —t%| when t = #;5. Note that we can assume ty # 0 because otherwise 1 =
|€(t0) + t0&' (to)] < a1/t1 and the lemma holds because the left-hand side of (55) is nonpositive.

Since ¢/ () = h()¢'(t) + E(T)h'(T), we have
|’l/)/({1)| S 71(*1) <<|‘£(tt11)| + P (6 %)) 3

T — 1oty t1 — 1o

- til(_lfo (?—11 - <1 -2+ ag) |£(t1)|)
¥/ (fo)| > h(to) ((L o) a |5<to>|)

[tol — [tots — €2 t1 —to

_ h(to) (tl —to o1 _a3) .

S ti—to \ ol lto]

(2l

Since () is a quadratic polynomial, we have

(i) — 5000 = ul) + B),

hence it suffices to show that we cannot have ¥(o) = h(fo) and [¢(t1)| = |€(£1)h(1)| when &1/ [
is too large. From
> M (B oy p) > MO (1 (12 oy s)
2 lto] [to] 2 [to] 2

t —to

5—¥'(to)

\wo) ¥

and

- 30 -

it immediately follows that

{1 (5])\al |{ | |{0| + as
ol < t1> a3 o <3+ o t
and therefore

t A 3 t A2

_1<1—ﬂ>§a3+3+ (1 + (s +)"2)+A<a3+3+%>ﬁ+—20. (56)

|t0| 121 2] 121 2] ty

When #1/ |to] < az + 3 + as/t;, we have
_ _)
<1_ﬂ>t_lgt_1§a3+3+%:&_g+\/§|€|ll§283/_E (272 79)\)|€|L
t1 /) [to] = [tol o4 4 b 36 4 V21 |pl

as required. Otherwise the last two terms in the right-hand side of (56) have upper bounds of A
and A/9 respectively. Substituting the upper bounds for the last two terms of (56) and using the
given expressions for aq, ag, and ag yields the desired result. O

Lemma C.4 If |¢| L < 0.031 |p| /(A — %) then all points on the curve (r(t), s(t)) satisfy

I+l > 0.031 |p|
~A-043
where T = rby + esby and u = —rby + esbs + p.
Proof. First consider the case when |b3] > 0.1. Lemma C.2 implies that

el L
> Jbap + es] > [bapl — le| L = (|b2 - %) . (57)

lbap + csf

TH+ul> ———
| [max(|b1|, |b2])

hence

0.031 0.031 0.031

ol > (01— 200 5 003 s B
oLy 0T TE) =T M= Y oas

|7+ u| > <0.1 -

When |by] < 0.1, the strategy is to use Lemma C.3 to get a lower bound on |b3] and then plug
this into (57). Since
1 = (b7 — biba)(1 — €%) + €*(b] + b3)
is a weighted average of b7 — byby = 0.99 — b1y > 0.89 and b? + b2 = 1, it follows that ¢; > 0.89.
Using |b; — b2| < 1.1 in
to = ba(by — by)(1 — €7) — €*(b] + b3)
shows that [fo] < 1.1 |b2| + €2
The bounds on #; and #; make it possible to apply Lemma C.3. From #; > 0.89 we have

o _ (QIA-3)[L _27-0.031 1
ti - 089-2v2]p] 089-2v2 3

and

(2702 —9X) |e| L < (2722 —9A) |e| L < 27-0.031A < 2
V21 |pl 0.89v/2 |p| 0.89v/2 37
hence (55) becomes

2 (e 5] —
=0.89 1——)t
3 = (t1> '

IN

<283/\ 15 (27)\2—9/\)|6|L)|t|
36 4 Vaii|pl ’

307A 15 - 307A 15 9

- 31 -

Using
307h 15 L300y 18 5, OA—1 9.0.0312
)2 <0.031238 " 2 <0031 = < 0.01
<36 4)6 (=17 a=37" a1
it follows that
20.89 — 0.01 0.062

ba| > > .
-] LIGEZA -5 ~ X —0.43
Plugging this into (57) completes the proof. O

We now have a lower bound on the magnitude of 7 4+ u, but we need a lower bound on the

magnitude of (‘fj—;, %) in order to get for Lemma C.1 to give a lower bound on the gradient magnitude.

Lemma C.5 If|¢|L < 0.031 |p| /(A — %) then
dr\® [ds\® _ 0.031|p|
=) (=) >
dt dt) — A-043

Proof. Since t = 7/(7 + u) when 7 = rby + esb; and u = —rby + esby + p, we have

+.—(+)i T —d_T d_T_F@ T
TrTu=AT udt T4+u/) dt dt dt /| T+ u

:<b2_M) d7’+€<bl_w) ds

whenever 0 <t < 1.

T+ u E T4+ u E

Thus 7 + u is the dot product of (‘fl—';, %) and a vector

(bz — (bg — bl)t, G(bl — (bl + bg)t))

which lies on the line segment between (by,€by) and (b1, —€ba) and therefore has length at most
one. This forces the length of (4, 42) to be at least |7 + u|, and Lemma C.4 gives the desired lower
bound. O

Notice that Lemma C.5 gives a lower bound on the order of |p|, while the obvious upper
bound on the magnitude of (‘;—;, %) is a constant times L. The disparity reflects the fact that when
p/L and ¢ are both small, the curve can have “flat spots” such as those that lead to relatively large
errors in Section 3.1. In spite of the extra factor of |p| /L, Lemmas C.1, C.4, and C.5 give a good

bound on the gradient:

Theorem C.6 If |¢|L < 0.031|p| /(A — %) then the function G(r,s) defined in Section 2.2 has

dG* [(dG* _ 0.031%|p[> hmin
) + = > 70 WAL Tin
dr ds = (A—=0.43)2

on the curve (r(t), s(t)) for0<t<1.

References

[1] B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, and S. M. Watt. MAPLE Reference
Manual. WATCOM, Waterloo, Ontario, 1988.

[2] R. T. Farouki and V. T. Rajan. On the numerical condition of polynomials in Bernstein form.
Computer-Aided Geometric Design, 4:191-216, 1987.

[3] G. H. Golub and C. F. Van Loan. Matriz Computations. Johns Hopkins University Press,
Baltimore, Maryland, 1983.

-39

[4] John D. Hobby. Rasterization of nonparametric curves. ACM Transactions on Graphics,

9(3):262-277, July 1990.

[5] Richard R. Patterson. Projective transformation of the parameter of a Bernstein-Bézier curve.

ACM Transactions on Graphics, 4(4):276-300, 1985.

[6] T. W. Sederberg. Implicit and Parametric Curves and Surfaces for Computer Aided Geometric
Design. PhD thesis, Dept. of Mechanical Engineering, Purdue University, 1983.

[7] T. W. Sederberg. Planar piecwise algebraic curves. Computer-Aided Geometric Design, 1:241—
255, 1984.

[8] T. W. Sederberg and D. C. Anderson. Implicit representation of parametric curves and surfaces.
Computer Vision Graphics and Image Processing, 28(1):72-84, 1984.

[9] T. W. Sederberg, D. C. Anderson, and R. N. Goldman. Implicitization, inversion, and in-
tersection of planar rational cubic curves. Computer Vision Graphics and Image Processing,

31(1):89-102, July 1985.

[10] T. W. Sederberg and R. N. Goldman. Algebraic geometry for computer-aided geometric design.
IEEE Computer Graphics and Applications, 6(6):52-59, 1986.

[11] T. W. Sederberg and R. N. Goldman. Analytic approach to intersection of all piecewise para-
metric rational cubic curves. Computer-Aided Design, 19(6):282-292, 1987.

[12] T. W. Sederberg and S. R. Parry. Comparison of three curve intersection algorithms. Computer-
Aided Design, 18(1):58-63, 1986.

[13] J. G. Semple and L. Roth. Algebraic Geometry. Oxford, 1949.

