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Abstract

Consider the problem of processing shape information de-
rived from a noisy source such as a digital scanner. The ob-
ject is to construct a polygon or a closed curve that matches
the input polygon to within a fixed error tolerance and max-
imizes some intuitive notion of “smoothness and simplicity”.
Part of this goal should be to minimize the number of inflec-
tions.

The algorithm presented here finds an inflection-
minimizing polygonal approximation and produces a data
structure that characterizes a set of closed curves that fall
within the error tolerance and minimize the number of in-
flections. The algorithm runs in linear time, is reasonably
fast in practice, and can be implemented in low-precision
integer arithmetic.

1 Introduction

Important practical problems in fields such as robotics,
optical character recognition, and font generation of-
ten involve extracting shape information from a digital
image. The data from the image can be readily con-
verted into polygons, but the resulting polygons tend
to have large numbers of short edges and many extra-
neous inflections. Depending on how the conversion is
done, shape boundaries extracted from black-and-white
images look like the polygons in Figure la or Figure 1b.
It is also possible to extract similar information from
gray-level images as explained by Rosin and West [27].

The “jaggies” in Figure 1 represent noise that
complicates the polygons and tends to interfere with
character recognition, shape matching, or whatever
the shape information is to be used for. This paper
presents an algorithm that gives superior results and is
fast enough to be very practical. The algorithm has
been implemented and is being tested on real-world
applications.

The need for simple approximations that elimi-
nate noise has motivated a lot of work on polygonal
and spline approximation beginning with Freeman and
Glass [10], Montanari [19], and Ramer [24]. None of
these early papers give linear-time algorithms, and Mon-
tanari’s algorithm takes time Q(n®) on an n-vertex poly-
gon.

Subsequent work has focused on reducing running
time, improving quality of approximation, and minimiz-
ing complexity of output. Tomek [33, 21] and Reumann

*AT&T Bell Laboratories, Murray Hill, NJ 07974

(a) (6)

Figure 1: Simulated character shape outlines as might
be obtained from a digital image.

and Witkam [25] developed linear-time algorithms that
are fast in practice. They sequentially choose a subset
of the input vertices based on a bound on the maximum
pointwise error for the resulting polygonal approxima-
tion. Robergé [26] gives an improvement that reduces
the number of vertices chosen.

A slightly better formulation of the greedy approach
is the cone intersection method of Williams [35, 36],
Sklansky and Gonzalez [30], Leung and Yang [17], and
Badi’i and Peikari [4]. All but [4] run in linear time; [36]
is unique in that the output vertices are not restricted
to be a subset of the input.

Other linear-time algorithms include Wall and Dan-
ielsson [34] which measures error by keeping track of the
area between the input polygon and the approximation.
Algorithms by Davis [6], Hemminger and Pomalaza-
Réez [12], and Ansari and Delp [2] provide little control
over the approximation error.

None of the linear-time algorithms achieves an
optimal trade-off between the approximation error and
the number of output vertices. Existing methods for
doing this involve at least Q(n?) time. See Pavlidis [20],
Williams [36], Kurozumi and Davis [15], Dunham [8§],
and Imai and Iri [14]. Some speed can be gained looking
for local rather than global optima, but algorithms by
Pavlidis [23, 21, 22], Dettori [7], and Ansari and Delp [2]
are all significantly worse than linear.

Another important way a polygonal approximation
algorithm can be optimal is to minimize the number of
inflections subject to a bound on the error. In order to
approach the intuitive notion of “the smoothest allow-



able approximation” it is surely necessary to minimize
inflections. The only relevant algorithms are based on
Montanari’s idea of minimizing the perimeter subject to
the error bounds [19]. (See also Sklansky [28, 29, 31].)
All of these algorithms have the basic flaw that every
output vertex is at the maximum allowable distance
from the input. Hence, the minimum perimeter method
does not yield approximation algorithms; it just com-
putes the minimum number of inflections. An earlier
paper by the present author [13] does claim to mini-
mize inflections, but it only works for perfect, noise-free
images.

When spline approximations are needed, they can
be generated by extending polygonal approximation
algorithms as Albano [1] and Gangnet [11] have done,
or by postprocessing a polygonal approximation as
Liao [18] and Rosin and West [27] do. The algorithm
presented below is well-suited to such post-processing.

We begin in Section 2 with a summary of the
applications that have motivated this work. The goal
of the algorithm is to minimize inflections subject to
a bound on the maximum error, and among all such
polygonal approximations, to choose one that lies as
close as possible to the input polygon. The general
approach will be to maintain a data structure that keeps
track of the set of allowable approximations with no
more than a certain number of inflections. Section 3
discusses the sets of allowable curves and how to keep
track of them. Section 4 presents the algorithm, and
Section 5 shows that the algorithm runs in linear
time and that the result obeys the error bounds and
minimizes the number inflections. Section 6 presents
performance data that demonstrate the practicality of
the algorithm, and Section 7 gives some concluding
remarks.

2 Applications

There are numerous application domains where high
quality approximations are worth a little extra process-
ing time.

Optical character recognition (OCR) uses a digital
scanner to scan a page of text and then identifies letters
and words. This is a problem of substantial research and
commercial interest; existing hard-copy libraries would
be more useful if available electronically. Processing
time is a serious concern in OCR systems, but the
major limitation is accuracy, especially when there is
no prior knowledge about fonts. An OCR system can
introduce so many “typographical errors” that fixing
them is almost as expensive as retyping from scratch.

It is essential for an OCR system to extract ac-
curately the character shapes from the scanned image.
Contours like Figure 1 need to be approximated by sim-
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pler, less noisy polygons that can be processed more ef-
ficiently. The algorithm presented here is an ideal way
to do this. Henry Baird of AT&T Bell Laboratories
plans to incorporate our implementation into his OCR
system. He is currently using the Wall and Danielsson
algorithm [34]; he plans to continue to use that algo-
rithm for easy cases, and to switch to our more elabo-
rate algorithm when the system requires more accuracy.
Figures 10 and 11 in Section 6 give examples of how the
polygons produced by our algorithm compare to those
from faster algorithms: they appear much smoother and
they follow the input polygons more closely.

Another potential application domain is automated
fingerprint processing. Sparrow explains [32] that it is
very difficult to extract a storable feature set that allows
isolated fingerprints to be recognized in the presence of
common distortions (such as smudging, blurring, and
stretching). He proposes some automatable techniques,
but information loss during preprocessing led him to do
some of the feature extraction by hand.

A promising approach to feature extraction com-
bines our algorithm with an edge detection algorithm
such as that of Lee et. al. [16]. The edge detection algo-
rithm generates polygonal boundaries, which are then
smoothed via our algorithm as shown in Figure 2. We
have tested this approach on fingerprint images pro-
vided by Tony Russo of Bell Labs; the results look good
but have yet to be fully evaluated.
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Figure 2: Part of a digitized fingerprint with the
polygonal outlines as processed by our algorithm. An
edge-detection algorithm produced a binary image and
then found polygonal contours like those in Figure la.
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Figure 3: A polygon P with vertices numbered and
tolerance rectangles shown with thinner lines.

Much work in computer vision involves extracting
outlines from a digitized image and smoothing them
while retaining important features. In the shape match-
ing problem, a robot identifies parts coming down an
assembly line by scanning images for shapes that match
a set of templates. Davis [6] begins the shape match-
ing process by finding a polygonal approximation to
the shape outlines that preserves the important features
while eliminating noise. Our algorithm could definitely
be applied to this problem and is superior to Davis’
algorithm in terms of control over the approximation
error and the smoothness of the output (as measured
by inflection count).

Another computer vision problem is digitizing en-
gineering diagrams to be stored in CAD/CAM sys-
tems. (Some existing nuclear power plants are described
only in hundreds of thousands of hard-copy drawings.)
Smoothing polygons is an important step in reading
such diagrams; see Bixler et. al. for more details [5].

3 Data Structures for Allowable Curves

In order for a polygon @ to match the input polygon P
to within an error bound of ¢, we require () to pass P’s
vertices in order, each within co-norm distance ¢. More
precisely, if P has vertices Py, Ps, ..., P,, there must
be points Q(t1), Q(t2), ...Q(ty) occurring in order on
@ such that

1P — Q(t:)]|,, <€ forl<i<n.

Thus the input data may be thought of as a sequence of
2¢ x 2¢ tolerance rectangles through which the approxi-
mating polygon must pass.

They are called tolerance rectangles instead of
tolerance squares because it is sometimes desirable to
restrict the class of allowable polygons @ by trimming
off parts of some of the squares. In Figure 3, for
instance, trimming off the upper half of the tolerance
rectangles for P, and P, and the lower half of the
tolerance rectangles for P53 and P, eliminates a pair of
y-extrema.

quadrant
boundary

Figure 4: (a) Two quadrant specs with the relevant
part of the original input path shown as a dashed line.
(b) Corresponding general-purpose data structures.

This suggests an initial data structure consisting
of a circular list of tolerance rectangles R;, Ra, ...,
R,, where the allowable polygons are those that pass
through each R; in order. Suitable trimming yields
quadrant specs of the form Ry, Rgy1, ... R, where the
R; are monotonic in z and y. That is, if RY and RY"
are the lower-left and upper-right corners of R; then for
all vectors
{A|A=R! —R! ot A=R!, —R! for k <i<l},
no two of them can have z-coordinates of opposite sign
and the same goes for the y-coordinates.

Further trimming makes the list of quadrant specs
non-interfering in the sense that the last tolerance
rectangle R; of one quadrant spec and the first tolerance
rectangle Ry of the next cannot have a nontrivial
intersection.

The data structures can then be converted to the
general form suggested by Figures 4a and 4b. Figure 4a
shows the tolerance rectangles in a quadrant spec and
Figure 4b illustrates the corresponding general-purpose
data structures. The dotted lines crossing diagonally
through the tolerance rectangles in Figure 4a are re-
tained in Figure 4b and connected to form a series of
parallelograms, triangles, and trapezoids through which
any approximating path is required to pass. Call these
tolerance trapezoids. One path through them is the
dashed line joining the midpoints of the dotted lines.
When a pair of connecting lines fail to be parallel, the
offending quadrilateral is divided into two triangles as
indicated by the dotted line between RY and RY'.

Because the quadrant specs are non-interfering,
consecutive ones are separated by a quadrant boundary
edge like the bottommost horizontal edge in the figure.

More formally, the general data structures consist
of a doubly-linked, cyclic list of edge structures, each
of which contains a direction vector D, left and right
side endpoints L and R, forward and backward links It
and [~ and a few flags that will be discussed later. For
an edge e, endpoints e—L and e—R are at the ends
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Figure 5: Edge structures before and after the transfor-
mation.

of one of the dotted lines in the figure, and e—D is
the direction of the dashed line just before it reaches
(e—=L + e—R)/2, and vertices e—R, e—L, e—l"—1L,
e—["—R define the tolerance trapezoid.

4 The Algorithm

The algorithm removes inflections via a transformation
called the replacement step. Section 4.1 describes the re-
placement step, Section 4.2 presents the main algorithm
and Section 4.3 discusses post-processing.

4.1 The Replacement Step Let us start with an
example. Figure 5a shows edges e1, ez, ... e; with
each e;—L labeled L; and each ¢;—R labeled R;. The
replacement step changes the paths Ly LsLs, RoR3R4,
L3L4Ls, and R4Rs5Rs into single lines; e.g., the edge ea3
inserted between es and e3 has L = Ly, D = Lz — L1,
R = Rj, while es—IL becomes Li. Thus es3 is the
replacement edge that causes LiLoL3 to be replaced by
LyLs.

The inflections at e; and eg in Figure 5b are
removable inflections. They could be eliminated by
extending the right side of ess backward and the left
side of e5g forward.

In general, the replacement step involves examin-
ing a sequence of edge directions Dj, Dj41, ..., Dy and
finding the directions D;,, D;,, ... D;, where inflections
occur. Let a, b, ¢, and d be consecutive inflection edges
and suppose that directions turn leftward between b— D
and ¢—D as in Figure 6. Then the right side of the re-
sulting replacement edge is the outer common tangent of

a—R a—IT—=R - b—I"—R

and
¢c—R c—IT—R - d—I"—R.

If this common tangent is a— R f— R, the replacement
edge eq3 has D = f—R — a—R and this D determines
where €, is inserted in the sequence b, b—It, ... c. If
it is inserted after some edge 7, edges a through v get

Figure 6: A situation where the replacement step is
aborted because y—L is not left of the common tangent
for subpaths a—R ... b—=l"—Rand c—R ... d—=I"—R
whose ends are marked by dots.

their R fields reset to a—/R and edges e, through
get R = f—R. Finally, set eqp—L =v—L.

The replacement step consists of performing the
above operation for each for each pair of consecutive
inflection edges b and ¢. If directions turn right between
b—D and ¢—D, it is necessary to swap L and R and
swap left and right in the above description. If as in
Figure 6 the replacement edge e,s would fail to have
L left of R relative to the e,g—D direction, then the
replacement step is aborted and the edge y—I{T before
which e, would have been inserted becomes a break
edge.

It is not necessary that ¢ and d be inflection edges,
rather there must be no inflections between @ and b or
between ¢ and d. Hence when doing the replacement
step for edges eg, eg—It, ..., €,, we can always use
eo as the first @ and €, as the last d. Also note that
the replacement step might cause some edges to become
trivial in the sense that their L and R points both
coincide with their predecessor’s. Such edges should
always be removed whenever they occur and consecutive
edges with equivalent directions D should always be
combined.

Another complication is that consecutive replace-
ment edges must not interfere: the ~ for one replace-
ment edge cannot precede the previous one’s # and the
replacement edge before that one cannot have a # that
follows the original edge’s «. This is easily achieved by
choosing replacement edges one at a time and restrict-
ing the range of allowable o and 7 values to those that
do not interfere.

4.2 The Main Routine The algorithm uses a recur-
sive routine smooth(eg, €,) that eliminates unnecessary
inflections on eg—I*, ..., e,—I~ by applying the re-
placement step.

ALGORITHM 4.1.
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1. Take the initial data structures, and trim the
tolerance rectangles as necessary to eliminate as
many z and y extrema as possible and produce non-
interfering quadrant specs.

2. Convert the data structures to the general-purpose
form by setting L and R fields to the appropriate
vertices of the tolerance rectangles as explained in
Section 3.

3. Call smooth(p, q) for each pair of consecutive quad-
rant boundaries, letting p and ¢ be the quadrant
boundary edges.

4. Perform a final clean-up scan over the data struc-
tures to remove any removable inflections as will be
explained in Section 4.3.

5. For each edge e, output the polygon vertex (e—L+
e—R)/2.

The smooth() routine uses I/ to mean “IT or I~
depending on the sign of f” and LR(e, o) to mean “e—1L
if o > 0 and e—R if 0 < 0”. The replacement step fails
for eg . ..e, if there are less than two inflections between
edges eg and e, .

void smooth(eq, €p)
loop
if (the replacement step fails for eg .. .e,) return;
else Let 7 be the break edge, if any, else ¥ = e,;
Let ¢1, ¢ be the first, last replacement edges;
Make LR(a1,01) and LR(Bk—J_, o)) the
ends of their replacement segments;
emark(c1, —o1, —1, a1);
emark(cy, —ox, 1, Br);
smooth(eg, 7);
if (¥ = e,) return; else eg = y—{—;

void emark(e, o, f,e')
Delete edges e—l/, e—l/ =1/ ...
Flag edge € as “needing o side f extension”;

e —I1-f;

Note that ¢; and ¢; could be degenerate in
smooth(). This happens when a replacement edge has
a—R = f—R so that D = (0,0). Such edges can nor-
mally be omitted from the data structures, but smooth()
must include them and give them nonzero directions
when they appear as ¢; or ¢x. Any direction between
a—I{t—D and f—D is adequate, but it is better to
match the direction of the adjacent replacement edge ¢y
or cj_1 if possible.

One way to speed up smooth() would be to add
additional parameters e} and e/, that delimit a subrange
of ey, eg—IT, ..., e, where inflection edges are possible.
Initially e}, = eg and €/, = ¢, but recursive calls could

Figure 7: How the left side of an edge e34 might need
to be extended point C to points A and B.

take advantage of the fact that the replacement step
does not allow inflections before ¢; or after cy.

4.3 Eliminating Removable Inflections What
does smooth() do in the case of Figure ba? It generates
connecting the edges labeled es3, €34, €45, and es5g, but
then calls to emark() delete €3 and eg. These gaps in the
data structures need to be repaired but smooth(eg, ep)
cannot do it without clobbering edges outside of the
en—I~ range.

The marked edges should be thought of places
where neighboring tolerance trapezoids are to be
trimmed as shown in Figure 7. Extending the left side
of es4 forward from C to A trims tolerance rectangles for
eq, €5, €6; extending back to B does similar trimming
for es, es, €1.

Implementing Step 4 of Algorithm 4.1 is simply
a matter of scanning the edge structures and calling
the following recursive routine for each edge e that is
marked for o side f extension. The return value tells
where to resume scanning.

60—>l+ e

edge pointer eextend(e, o, f)
Let £ be the e—D directed line through LR(e, o);
for (¢ = e—l/ | e—=l/ =l e—=l/ =1 =17 )
if (¢’ is marked for o side f extension)
¢/ = eextend(e’, o, f);
if (LR(¢',0) is on o side of £) break;
Intersect £ with segment LR(e'—1/ o) LR(¢',0);
for (€=ce,...,e'/—=I"7) Let LR(€, o) = intersection;
return ¢’ —I{~7;

A few comments about eextend() are in order.
The recursive call is needed to avoid losing track of
the trimming for edge ¢’ when trimming its tolerance
trapezoid. The intersection point need not be stored
or explicitly computed until it is actually needed in
Step 5 of Algorithm 4.1 or when another invocation of
eextend() compares that point to the line £.



Figure 8: An extremal cut at edge e;.

5 Theorems

Our first tasks are to show that Algorithm 4.1 mini-
mizes inflections and that the output matches the in-
put polygon. Let the tolerance trapezoid TR(e) for
edge e be the open-ended segments e—L e—R and
e—l"—L e—Il"—R and the interior of the trapezoid
they define.

Figure § illustrates the main tool for recognizing
inflections. A line ¢ is an eztremal cut at edge e; if
there is a direction D perpendicular to £ and an edge
sequence €;, ..., e; containing e; where the following
hold: 1) directions e;—D, ..., e;—D have nonnegative
D components; 2) directions e;—It—D, ..., ¢;—D
have nonpositive D components; 3) T'R(e;)NTR(e; —IT)
is on the D side of ¢; 4) TR(e;) N TR(e;—I~) and

TR(er) N TR(ex—I*) are both on the —D side of £.

LEMMA 5.1. Every quadrant boundary edge and the
predecessor of every break edge discovered by Algo-
rithm 4.1 has extremal cut.

Proof. If e is a quadrant boundary edge, then e; is
e and the edge sequence ¢;, ..., e; is formed by the
quadrants before and after e. If e—It is a break edge,
then e is the v for a failed replacement edge and the
replacement edge construction makes a—I% ... 3 the
edge sequence for an extremal cut.

To see that a subsequent replacement edge cannot
destroy an extremal cut, consider the possible locations
for a— L and f—L relative to £ and observe that their
difference always has an appropriate D component. A
similar argument works for the o side of edge e after
eextend(e, o, f).

To get a lower bound on the number of inflections,
we need monotonicity conditions in order to prevent
tricks such as replacing 90° right turns by 270° left
turns. The z and y monotonicity conditions implied
by the quadrant specs fulfill this purpose.

THEOREM 5.1. No polygonal path that matches the
quadrant specs for the input polygon can have fewer
inflections than the result of Algorithm 4.1.

Proof. An extremal cut at e; can be classified as
leftward or rightward according to the type of turn
between e;—D and e;—IT—D. A polygonal path @
that passes through the tolerance trapezoids in order
and is monotone in £’s direction while on the D side of ¢
must have a turn that agrees with the classification. If
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@ has proper monotonicity at the extremal cuts given
by Lemma 5.1, it must have as many inflections as the
result of the algorithm.

Let P be a polygonal path that passes through the
tolerance rectangles in each quadrant spec while obeying
z and y monotonicity. Successively transforming P by
replacing z,y monotone subpaths with line segments
cannot add inflections. Such transformations yield a
path that can serve as @).

DEeFINITION 5.1. A polygon @ matches edge struc-
tures ej, ea, ..., ey if the following hold: 1) @
passes sequentially through Q(¢1), ..., Q(tn), where
Q(t;) € TR(e;) N TR(e;—1r); 2) Q(t) passes sequen-
tially through TR(e;,), TR(ei,), ..., where ¢; is

e;.—IT or e;.—I.
7 3

LEMMA 5.2. Suppose TR(e;) U --- U TR(ej) C
TR(ej)U---UTR(e}), where TR(ex )N TR(er) # 0 if and
only if |k — 1| <1 and similarly for TR(e},) and TR(e}).
Then any polygon that matches the edge structures with
ei, ..., ej replaced by e}, ..., €}, also matches the orig-
inal edge structures.

Proof. Let S = TR(e;) U---U TR(ej) and S' =
TR(e},)U---U TR(e},). The condition on TR(ex) N
TR(e;) guarantees any polygonal path through S sat-
isfies Condition 2 of Definition 5.1. Hence portions of
@ passing through S’ obey Condition 2 for the original
edge structures and thus all of @) does too.

Condition 1 ensures there exist 7/, j', where Q(t},) €
TR(e;)NTR(e; —17), Q(t;) € TR(e})N TR(e},—>l+),
and Q(t) passes through S’ between ¢}, and t;,. This
portion of Q(¢) must cross each TR(eg) N TR(er—IT)
for i < k < j as required by the lemma.

i+

THEOREM 5.2. Any polygonal path that matches
the edge structures computed by Algorithm 4.1 also
matches the input polygon.

Proof. We shall prove the invariant that any path
matching the current edge structures matches the in-
put polygon. This is true initially because TR(e) N
TR(e—lI%) is a subset of the tolerance rectangle from
which the edge e was derived.

Inserting a replacement edge e,3 preserves the
invariant because of Lemma 5.2. Tolerance rectangles
TR(a—l%), ..., TR(B) are replaced by a sequence
whose union is a subset. Non-consecutive tolerance
trapezoids cannot intersect because each TR(a—l')
through TR(y) are circularly ordered around a—R
or a—/L and TR(y—It) through TR(B) are ordered
around f—R or f—1L.

A similar argument allows Lemma 5.2 to be applied
to the actions of eextend(). In this case the circular
ordering is around the new vertices that are labeled A
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Figure 9:
hourglass.

(a) An hourglass; (b) A zero inflection

and B in Figure 7. Hence the algorithm preserves the
invariant as required.

LEMMA 5.3. Steps 1, 2, 4, and 5 of Algorithm 4.1

each take time linear in their input size.

Proof. Step 1 is linear because it involves three
simple passes through the input: pass 1 finds non-
removable x extrema; pass 2 does the same for y; and
pass 3 trims the tolerance rectangles. Step 2 is clearly
linear in the input size and Step 5 is clearly linear in the
output size.

It only remains to show that Step 4 is linear. This
follows because eeztend()’s return value allows edges to
be scanned without backtracking. Hence the time to
scan everything is linear.

Before we can show that smooth() is linear, we
need to deal with situations like Figure 9a where the
replacement step makes little or no progress. Part
of the problem is that an edge can have a null right
side (e—=R = e—{"—R) or a null left side (e—=L =
e—{"—L). Let a sequence of two or more edges €1, €3,

.., e where the directions ¢;— D turn monotonically
left or right be a left turn sequence or a right turn
sequence. If areplacement edge is to be useful, its a—IT
...  range must contain a left turn sequence with more
than one non-null right side or a right turn sequence
with more than one non-null left side. Such left or right
turn sequences are called vulnerable. If as in Figure 9a,
a sequence of edges contains no vulnerable left or right
turn sequence then it is called an hourglass. We have
the following lemma.

LEMMA 5.4. Inserting a replacement edge eqnp al-
ters the sequence of non-null left sides or the sequence
of non-null right sides if and only if the span a—IT,
a—It=lt .., B is not contained in an hourglass.

This suggests that smooth() should be modified to
keep track of hourglasses and avoid considering pairs
of inflections that belong to the same hourglass when
looking for replacement edges. The hourglasses need
to be updated before the recursive call to smooth(),
but this can be done quickly because any part of
an hourglass is an hourglass and the definition allows
hourglasses to be recognized in linear time.

It may seem that since the span of any replacement
edge contains two inflection edges, smooth() only needs
to keep track of hourglasses that have at least two
inflections.  In fact, zero inflection hourglasses (0-
hourglasses) such as the one in Figure 9b are also
dangerous because they could contain many edges and
yet have very few that are affected by the replacement
step.

What should smooth() do with a 0-hourglass? As-
sume without loss of generality that it is a left turn
sequence and thus has at most one edge with a non-null
right side. The trick is to avoid computing immediately
where in the sequence the non-null right side belongs.
For right turning 0-hourglasses, a non-null left side is
kept out of sequence. Either way, this out of sequence
side is called the free side. When the position of the free
side is needed at the end of Step 3 of Algorithm 4.1, it
can readily be derived from the edge directions.

LEMMA 5.5. Performing the replacement step on a
sequence of edges and 0-hourglasses takes O(H—i—E—I—B)
time, where H is the number of 0-hourglasses, E is the
number of edges outside of 0-hourglasses, and H is the
number of edges removed from 0-hourglasses.

Proof. Since 0-hourglasses are devoid of inflections,
the inflections can be found in O(H + E) time. After
the replacement step, there are O(H + E) edges outside
of known 0-hourglasses, hence it takes O(H + E) time
to find maximal-size 0-hourglasses in the output.

Once the inflections are found, how much time is
spent for each 0-hourglass in the span of a replacement
edge? Assume without loss of generality that the 0-
hourglass G is a left turn sequence so that its edges have
non-null left sides and its free side is on the right. If the
replacement edge effects right sides, it takes constant
time to replace G’s free side if necessary. Otherwise the
time is proportional to the number of edges in both G
and the span of the replacement edge. Since all these
edges have non-null left sides; at most one of them
can remain in G. Hence the time is proportional to
the contribution to H. Thus the total time for the
replacement step is O(H + H) within 0-hourglasses.
Adding this to the O(E) time outside of 0-hourglasses
gives the required total time O(H + E + H).

LEMMA 5.6. Let E, H, and H be as in Lemma 5.5.
After performing the replacement step on a sequence of
edges and 0-hourglasses, the following total is at least
H+ H+FE—2: Count 1 for each edge that has a non-
null left side and is in the span of a left side replacement
edge and 1 for each non-null right side in the span of a
right side replacement edge.

Proof Let T be the total in the statement of the
lemma. It 1s convenient to think of non-inflection



edges as trivial 0-hourglasses, thereby reducing E and
increasing H without affecting £+ H.

The span of a left-side replacement edge includes
two inflection edges and the right turn sequence be-
tween them; a right side replacement edge spans two
inflections and a left turn sequence. The free side of any
hour glass must belong to such a left or right turn se-
quence. Since we maintain maximum-size 0-hourglasses,
two consecutive ones with no inflections between them
must both have non-null free sides. Thus the contribu-
tion to 7' from free sides is H.

Since replacement edges span consecutive inflec-
tions, all but the first and last inflection belong to two
replacement edge spans and thus have a non-null side
in at least one of them. This contributes F — 2 to the
total 7.

The span of a left-side replacement edge can include
left turn sequences and the same goes for right-side
replacement edges and right turn sequences. All edges
removed from 0-hourglasses belong to this class and
there are at least H such edges. Thus 7' > H+E—2+H
as required.

THEOREM 5.3. When using the four parameter
version of smooth() defined at the end of Section 4.2
with modifications to keep track of hourglasses, the run-
ning time for Algorithm 4.1 is linear in the number of
input vertices.

Proof. For accounting purposes, let the cost of
an edge be 1 if it has a null side and 2 otherwise.
By Lemma 5.3, it suffices to show that the time for
smooth(eg, en, €, €},) is proportional to the cost of the
edges between ef, and e},. The proof is by induction
on the total cost. When the cost is small enough,
there must be less than two inflections so that the
replacement step fails immediately. In this case, the
time is proportional to the number of edges scanned,
hence proportional to the cost.

Between consecutive multi-inflection hourglasses G4
and (2, the replacement step generates one replacement
edge for each inflection pair in the sequence of inflections
starting with G1’s last inflection and ending with Ga’s
first one. Lemma 5.4 guarantees each replacement edge
replaces at least two existing non-null edge sides so that
the total cost reduction is at least half the quantity T
in Lemma 5.6. Since G; and G5 would have been
merged if there were no vulnerable left or right turn
sequence between them, we must have 7' > 1. Thus
the time given by Lemma 5.5 is proportional to the cost
reduction.

The above argument also works for edges before the
first multi-inflection hourglass or after the last one. If
there are no such hourglasses, the argument applies to

the entire input. If the entire ef, ..., e} range is a

J. D. Hobby

single hourglass, the calls to emark() clearly produce a
cost reduction proportional to their running time.

6 Performance

The algorithm has been implemented in C+4 and
tested on a variety of images. The program uses 32-bit
integer arithmetic; floating point is used only to gener-
ate the output polygon. The implementation includes
runtime checks for the invariants needed to prove The-
orem 5.2, but these checks were disabled during timing
tests. The modifications discussed in Section 5 were not
implemented because large “hourglasses” are very rare
in practice.

When comparing the performance of polygonal ap-
proximation algorithms, we must expect a trade-off be-
tween speed and the quality of the results. The fastest
conceivable algorithm is to select every kth vertex of
the input polygon, where k is some fixed parameter.
This is probably much faster than any published algo-
rithm, but it provides no real control over the quality of
the approximation. No published algorithm is quite so
simple-minded, but some of them do use simple rules to
select a subset of the input vertices.

Table 1 gives comparative timings for a number of
algorithms of this type [35, 30, 4, 34, 26, 17] as well as
a number of other algorithms. By listing comparative
timing data from available literature, the table gives
a rough idea of the relative speed of a wide range
of competing algorithms. All except for Pavlidis [23]
produce a subset of the input vertices. The output for
[23] is a sequence of disjoint line segments. Most of
the sources agree that Robergé [26] gives the fastest
algorithm, although Fahn et. al. [9] claim their’s runs a
little faster.

The comparative timings were done with Robergé’s
“extension factor” parameter equal to 1; Robergé sug-
gests larger values for which his timings are 1.5 to 1.6
times slower. Thus Wall and Danielsson [34] is a rea-
sonable choice for speed comparisons. An optimized
C implementation was readily available; and this algo-
rithm is popular in certain application areas. The im-
plementation used one pass of Ramer’s algorithm [24] to
improve the output. Figure 10 shows the results of im-
proved Wall and Danielsson, and Figure 11 shows how
the results of Algorithm 4.1 compare.

Relative timings for Algorithm 4.1 and improved
Wall and Danielsson appear in Table 2. Algorithm 4.1
is 9.5 to 14.5 times slower, but is still quite fast on an
absolute scale.
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Time (ms./vertex) for each algorithm
Source N T | [24] [23] [35] [6] [30] [4] [22] [34] [26] 8 9] [17] (3]
6] 1000 1.6 31 10
Cyber 1000 16 .28 .09
8] 402 1 75 600 75 66 82 118 88 66 241
T.I 402 4 67 376 94 64 105 74 86 55 1300
[9] 292 1 5.4 5.0 126 4.2
VAX 292 4 45 4.1 112 3.2
M7 52 =~1 06 12
Sun 4 922 =T .04 .07
[3] 1337 big 8.3 20.2
Apollo 1750 big 9.0 7.3

Table 1: Published computation times in milliseconds per input vertex. The N and T" columns give the number of
input vertices and the error tolerance in pixels or as a multiple of the average input segment length A. Robergé [26]
used a CDC Cyber 6000; Dunham [8] used a T.I. Professional Computer; Fahn et. al. [9] used a VAX 11/780;
Leung and Yang [17] used a Sun 4/280; and Aoyama and Kawagoe [3] used an Apollo DN3000.

Input N T | Algorithm 4.1 | Wall & D.
“&” 196 1 67 7.0
2 70 6.7
4 75 7.2
“BeCe” 848 1 61 6.4
2 61 6.0
4 65 6.7
fingerprint 31536 1 91 6.7
2 89 6.3
4 89 6.1

Table 2: timings in microseconds per input vertex on a
40Mhz. MIPS R3000 processor. The N and T columns
give input vertices and error tolerance. Inputs were the
“&” in Figure la, 102-pixel-high outlines for the letters
“BeCe”, and fingerprint outlines excerpted in Figure 2.

Figure 10: Results from improved Wall and Danielsson
with tolerances (a) 1 pixel; (b) 2 pixels. Dots mark
output vertices and thin lines show the input path.

7 Conclusion

We have seen a polygonal approximation algorithm
with guaranteed smoothness properties and superior
aesthetics. It is designed to preserve input features as
well as possible and only throw away noise. Keeping
track allowable deviations from the output polygons
would allow for post-processing to minimize the vertex
count or compute spline approximations. There is a
time penalty for all this, but the implementation is fast
enough to be very practical: up to 15,000 vertices per
second on a MIPS R3000. (A page of text scanned at
400 dots/inch produces about 100,000 input vertices).

Figure 11: Results from Algorithm 4.1 with tolerances
(a) 1 pixel; (b) 2 pixels. Dots mark output vertices and
thin lines show the input path. [1] A. Albano. Representation of digitized contours in

terms of conic arcs and straight-line segments. Com-
put. Gr. and Image Proc., 3(1):23-33, Mar. 1974.
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