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The fundamental problem of finding all intersections among a set of line segments in the plane
has numerous important applications. Reliable implementations need to cope with degenerate input
and limited precision. Representing intersection points with fixed precision can introduce extraneous
intersections. This paper presents simple solutions to these problems and shows that they impose
only a very modest performance penalty. Test data came from a data compression problem involving

a map database.
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1 Introduction

The problem of finding all intersections among a set of line segments in the plane is fundamental
to computational geometry and essential in various applications such as hidden line elimination [9],
clipping and windowing [7], and physical simulations [11]. Other possible applications include com-
puter vision [12], circuit design [5], constructive solid geometry [24], and various computational

geometry problems [1, 21, 27].

Unfortunately, the standard algorithms do not always work properly in practice because they
were designed for exact real arithmetic. It is possible to run the standard algorithms in exact
arithmetic, but the resulting intersection points require additional precision and rational arithmetic.
Since this i1s very unappealing for applications that require signficant computations involving the
intersection points, practitioners are likely to insist on using approximate values for these points. A
major difficulty is that this can introduce “extraneous intersections” as shown in Figure 1. (Since

the intersection process is scale-invariant, it is convenient to use an integer grid.)

The original sweep line algorithm by Bentley and Ottmann [2] finds intersections among n seg-
ments in time O((n+ k) logn) time, where k is the number of intersections. Brown’s modification [3]
reduces the space requirement to O(n + k). The saving is fairly modest because Pach and Sharir
show that the original algorithm uses O(min(n+k, nlog® n)) space [22]. Chazelle and Edelsbrunner’s
optimal O(nlogn + k) algorithm [4] is complicated enough to be unattractive in practice. The ran-
domized algorithms by Clarkson [6] and Mulmuley [19, 20] are simpler, but [2] is still the algorithm

to beat in practice.

Practical segment intersection algorithms need to handle degeneracies such as segments parallel
to the sweep line or three segments crossing at the same point. Care must be taken that the

basic operations are accurate enough to avoid topological inconsistencies due to rounding error. A
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Figure 1: (a) Original input; (b) the result of rounding the intersection to integer coordinates. The

extraneous intersections in (b) are marked by circles.

careful implementation of the Bentley-Ottmann algorithm can surmount these problems, but they

are harder to deal with for a complicated algorithm such as Chazelle and Edelsbrunner’s.

Perhaps the most interesting difficulty is the danger of extraneous intersections as illustrated in
Figure 1. A naive approach is to run the basic segment intersection algorithm on its own output and
repeat until no new intersection points are found. One iteration on the input in Figure la produces
Figure 1b; the next iteration produces Figure 2; and the third iteration leaves Figure 2 unchanged.
The approach works reasonably well in common cases where the iteration count is very small, but

there i1s no guarantee it will be small.

(13,6)

(=1, -2)

Figure 2: The result of finding the extraneous intersection points in Figure 1b and rounding to

integer coordinates.

More reliable solutions can be found in the literature. None of them keep all of the segments
perfectly straight, and Milenkovic and Nackman have shown that it would be impractical to do
so [18]. Greene and Yao propose using short line segments called “hooks” to keep track of what

segments need to be bent [10]. They insert enough extra vertices to ensure that no grid points lie
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strictly between a segment and its adjusted version. The number of extra vertices needed depends

on the length of the segment.

Milenkovic has proposed algorithms that avoid this dependence on segment length. One involves
rounding the intersection points and replacing the segments with polygonal lines as determined by
a shortest-path condition [15, 14]. The intermediate points come from the other segment endpoints
and rounded intersection points. There is also a generalized version that uses more points [16].
Milenkovic has extended his ideas to solve the difficult problem of performing a sequence of geometric

operations on polygonal regions in the plane reliably and with limited precision [17].

Sugihara has a completely different segment intersection algorithm that starts with the Delaunay
triangulation and uses incremental updates [23]. Tt copes with degeneracies and extraneous inter-
sections, but 1ts running time has a large term that depends on how close segments can get without

intersecting.

Existing techniques for avoiding extraneous intersections are often not used in practice because of
a perception that they involve a lot of complicated machinery. Milenkovic’s shortest path technique
is probably quite practical, but it is underutilized because his papers give very little detail and they
contain a lot of other material that may discourage practitioners. Section 2 presents a conceptually
simple alternative that performs well in practice and has not appeared in print. We also discuss
handling degeneracies in the Bentley-Ottmann sweep algorithm since this is an essential part of

practical segment intersection.

Section 3 shows how the algorithm performs on test data derived from a data compression
application. The proof that the algorithm avoids extraneous intersections is delayed until Section 4.

Finally, Section 5 gives some concluding remarks.

2 The algorithm

The purpose of the algorithm is take a set of line segments, find all intersection points, and insert
them into the appropriate segments. The intersection points are to be rounded to some fixed grid
and everything has been scaled so that grid points have integer coordinates. It is also convenient to
assume that segment endpoints have been rounded to grid points. The set of points that rounds to

a grid point (7, ) is (¢,7) + R, where
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and + denotes the Minkowski sum.! Region (i, j) + R is the tolerance square for point (i, j).

The first step is to use the Bentley-Ottmann sweep line algorithm to find the intersection points.
Let T be the set of all segment endpoints and intersection points, and compute the set [T by
rounding each point in 7' to the nearest grid point; i.e., [T'| contains the points (¢,j) such that
(7,J) + R intersects T. Each time a segment s intersects tolerance square P + R for some P € [T,
alter s by bending it so it passes through P. Call this operation inserting P into segment s. This

181 + S; is the set of sums P; + P» for Py € S1 and P, € S2, and (4, ;) + R is short for {(4,7)} + R.
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avoids extraneous intersections by taking segments that pass dangerously close to [T'| points and
bending them so they meet the points in [T'| as shown in Figure 3. The proof that this works will

be given in Section 4.

(a) (b)

Figure 3: (a) Sample input with points in [T| marked by solid dots and the tolerance squares

outlined by dashed lines; (b) the result of inserting [7'] points to avoid extraneous intersections.

2.1 Intersecting Segments with Tolerance Squares

Let [z] = |z + %J and [(z,y)] = ([=], [y]) for all z,y. It is tempting to think that intersections with
a tolerance square [P]+ R could be found by examining the data structures for the Bentley-Ottmann
sweep algorithm when it encounters P. Say the sweep line is vertical and moves left-to-right. The
problem is that the segment in question could end at & = [P,], while the z coordinate P, of P
could be almost % unit larger than this. Thus the Bentley-Ottmann sweep needs to stay at least %

units ahead. Call the Bentley-Ottmann sweep “Pass 1” and whatever follows “Pass 2”.

One way to proceed would be to treat Pass 2 as a separate problem. Add the four segments that
make up the boundary of each tolerance square and use a segment intersection algorithm to find all
intersections between the original segments and these new segments. Pass 2 could be done with the

Bentley-Ottmann algorithm or with an S—T intersection algorithm [1, 13].

How expensive is this? If there are n original segments and k intersections among them, there
are up to 2n + k tolerance squares and up to 8n + 4k new segments are needed. The number could
be less if we know in advance that some segments share endpoints, but even 4n + 4k new segments
would make the second intersection-finding step much slower than the first. Of course this is a very

naive estimate, but anything like a 400% overhead for Pass 2 is unacceptable in practice.

The best way to reduce the overhead is to use as much information as possible from Pass 1 and
take advantage of the special properties of the tolerance squares. Although it may be possible to do
this for almost any intersection algorithm, the following discussion assumes that Pass 1 is a Bentley-
Ottmann sweep. The vertical edges of the tolerance squares need not be represented explicitly, and

the horizontal edges come in batches that start and end together. Thus we define Batch ¢ to contain

1

all tolerance square edges that begin at z =1 — 35

and end ata::i—i—%.
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Figure 4a illustrates how segment starting, ending, and crossing events give rise to tolerance
squares. Pass 2 uses a sweep line algorithm where tolerance square edges (horizontal dashed lines
in Figure 4b) are kept in a separate list, the tolerance edge list. Thus there are two lists of current
segments: the main active list contains original segments exactly as in Pass 1; and the tolerance
edge list contains only tolerance square edges. Some segments on the main list might start or end
at * = ¢, while all edges in the tolerance edge list start at « = ¢ — % and end at z = ¢ 4+ % No
segments start or end on i — % <z<itoroni<z<i+ %, so the vertical slabs corresponding to

these x values are called hammocks.

Figure 4: (a) A batch of tolerance squares and the segments whose starting, ending, and crossing
events are responsible; (b) the “hammocks” between special z coordinates (marked by dotted lines).

Tolerance squares are outlined by dashed lines and crossing events are marked by open circles.

Pass 2 processes batches one-at-a-time in left-to-right order so that the algorithm for Batch ¢ can
assume Batch 7 — 1 has been processed successfully. It operates by resynchronizing the main active
list and the tolerance edge list when the sweep line reaches the end of a hammock. This happens in
Steps 4 and 6 below. Here is the complete algorithm for processing Batch ¢, starting with the main

active list set up for x =i — % — ¢ for some infinitesimal positive e:

Algorithm 1 is essentially the same as applying the Bentley-Ottmann algorithm to the original
segments and the tolerance square edges, except that the new edges are stored in a separate list
and crossings between original segments and tolerance square edges are delayed until the end of a
hammock. The delay avoids the need to insert into the event queue, and the separating the tolerance
edge list makes the main active list easier to maintain. Key information such as where in the main
active list a new segment should be inserted can be saved from Pass 1 so that the main active list
can be a doubly linked list and insertions, deletions, and interchanges can be performed in constant

time.

Step 4 requires maintaining a relative ordering between the tolerance edge list and the main

active list so that we can compare each tolerance square edge with the segments above and below
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Algorithm 1 The Pass 2 algorithm
1. Collect events £ from Pass 1 where the z coordinate of the starting, stopping, or intersection

point rounds to 1.

2. Create horizontal edges for the top and bottom of the tolerance squares for events E and sort

them by y values. Then locate the y values in the main active list. For each j where there are

1

top and bottom edges at y = j &+ % and the main active list has segments between y = j — 3

and y =j + %, insert (i, j) into each such segment.
3. Update the main active list so it is valid for z = ¢ — €.

4. Relocate the y values for the horizontal tolerance edges in the main active list using z = 7, and
deduce which segments must have crossed through or into tolerance squares. For each such

crossing, insert the point at the center of the tolerance square into the segment.

5. Update the main active list so it is valid for z = ¢ + % — €. When encountering a vertical
segment, immediately walk through the tolerance edge list and insert vertices on the vertical

segment for the squares it passed though.

6. Repeat Step 4 with z =i + %

it and do as many interchanges as necessary to achieve a consistent ordering. A new vertex gets
inserted each time a segment crosses below the top edge of a tolerance square or above the bottom

edge.

Steps 3 and 5 involve inserting, deleting, and interchanging segments on the main active list to
reflect the events from Pass 1. What if a pair of segments to be interchanged have tolerance square
edges between them? If Segment a is about to cross below Segment b as shown in Figure 5, we can
scan the tolerance edge list and find which tolerance squares should be below a at the end of the
current hammock, i.e., at £ = ¢ if we are in Step 3 and at z =7 + % if we are in Step 5. Move these
tolerance square edges below b and move the others above a. Edges of the former type are e; and ey
in Figure 5; b has crossed above these edges so those that are bottom edges of tolerance squares
cause vertices to be inserted in b. Similarly, edges such as ez and e4 that a has crossed below cause

insertions in a if they are top edges of tolerance squares.

A few other implementation details are worth mentioning;:

e Each active segment should have a pointer to the tolerance square edge immediately above
and such edges should have pointers back to the segment below. The pointers should be null
when a segment’s upper neighbor is another segment or a tolerance square edge has another
edge for a lower neighbor. It simplifies the program to zero out the segment-to-edge pointers

at the start of Step 4 and regenerate them afterward.

e When a segment start event is encountered in Step 2, it is necessary to store a pointer to one
edge of the corresponding tolerance square so that Step 5 can locate the new segment in the

tolerance edge list.
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Figure 5: Segments @ and b have tolerance square edges e; and ey caught between cross when they

cross. The vertical dotted lines mark the limits of a hammock.

e When Step 2 locates new tolerance square edges in the main active list, it should scan up or

down from a reference segment derived from the responsible event. Any segment that crosses

1
2

involved in an ending event, the segment above which the new segment is to be inserted for a

z = 1 — = will work, but efficiency dictates a careful choice. Possibilities include the segment
starting event, the segments involved in a crossing event, or (if both of these start at = %)
the segments above which they are to be inserted. Another option is to start wherever the

next lower tolerance square edge wound up.

o Positively sloped segments should receive new vertices in order of ascending y, and the order
for downward segments should be descending y. This means Step 4 should go up the tolerance
edge list looking for segments that cross below a tolerance square edge, and then it should go
down the list looking for crossings of the opposite type. A similar discipline is needed when

removing tolerance square edges from between segments that are about to cross.

Theorem 2.1 Algorithm 1 can be made to run in time O(N;log N; + k}), where N; is the number
of segment starting, ending, and crossing events collected in Step 1, and k} is the number of vertices
inserted. Without the sorting in Step 2, the time would be O(N; + k).

Proof. Each event collected in Step 1 is used only two other times: once to create a pair of tolerance
square edges in Step 2; and once to update the main active list in Step 3 or 5. Each update takes
constant time except for crossing events where there are tolerance square edges to be moved. This

movement and the similar processing in Steps 4 and 6 can be charged against the vertices inserted.

All that remains is to show that locating the tolerance square edges in the main active list in
Step 2 takes O(N;) time. This depends on the choice of reference segments. Always choosing the
final position of the next lower tolerance square edge would mean scanning the main active list
without backtracking. This is not quite good enough because the main active list could have many

segments that do not start, stop, or cross anything on 7 — % <z<i+ %

Suppose the last reference segment was r;, the corresponding final position was s;, and the next
higher edge belongs just below s; 11 and came from event e. The next reference segment r; 11 should
be s; or one of the segments involved in event e. If such a segment crosses * = ¢ — % above r;

and s; then that segment should be r; 1, otherwise set r;;1 = s;. This guarantees no segment is
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passed more than twice when Step 2 scans the main active list to locate new tolerance square edges.
Furthermore, segments not involved in events on 7 — % <zr<i+ % are not passed at all, since they
cannot be between r;11 and s;y1. Thus the total time for this part of Step 2 is O(N;) as required.
O

2.2 Handling Degeneracies

A practical implementation of the Bentley-Ottmann algorithm and Algorithm 1 must work when
segments can be parallel to the sweep line, three or more segments can share a common intersection,
and segments can intersect at their endpoints. Most of the basic ideas needed to solve these prob-
lems are known, but they are not treated adequately in the literature. Edelsbrunner and Miucke’s

simulation of simplicity is relevant but does not immediately yield an attractive solution [8].

Degeneracies have little effect on Algorithm 1 as long as it inherits a valid sequence of events
from the Bentley-Ottmann sweep. Since tolerance squares contain their bottom edges but not their
top edges, a segment that hits the sweepline at some y = yg should be treated as above any tolerance
edge whose y coordinate is yg. The algorithm needs no other changes in order to handle borderline

cases of segments intersecting tolerance squares.

The Bentley-Ottmann sweep can handle degeneracies by judicious use of three key ideas: add an
infinitesimal tilt to the sweepline; shorten each segment a doubly infinitesimal amount by trimming
off both ends; and ignore confusion about the relative order of crossing events. The infinitesimal
shortening rule prevents Pass 1 from reporting intersections at segment endpoints. This is harmless

because Pass 2 finds tolerance square intersections in such cases.

What about confusion about the relative order among crossing events? This is only a problem
for coincident crossings, but the key idea is best illustrated with a non-degenerate situation such as
Figure 6. If crossings should be in the order a-b, a-c, b-¢, but b-c is erroneously scheduled before a-c,
the algorithm can just ignore the erroneous crossing when it detects that b and ¢ are not adjacent
in the sweepline data structure. After processing the a-c¢ crossing, b and ¢ become adjacent and the

crossing is rescheduled.

Figure 6: Segments a, b, and ¢ with their crossings labeled according to the order in which they

might be processed.

Theorem 2.2 [If the Bentley-Ottmann algorithm s modified to ignore crossing events where the
segments involved are not adjacent, the event queue need not maintain the relative order of crossing

events. The algorithm still finds all of the intersections and runs in time O((n + k) logn).

Proof. Assume the sweepline moves left to right. Whenever a segment @ is immediately below a

segment b in the sweepline structure and a has slope greater than b, the algorithm ensures there is
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an event in the queue for the crossing of @ and b. When the sweepline hits a starting or ending event
at some z value zg, the queue contains no crossings with z values less than zy. Thus the sweepline

structure must be in order at such times and all the correct crossings must occur.

Since crossings are scheduled only when segments actually start, end, or cross, the total number
scheduled is at most 2(2n+#k), for n segments and k actual crossings. Thus scheduling some crossings

that ultimately get ignored does not increase the asymptotic running time. O

What does all this mean in terms of the primitive operations that support the Bentley-Ottmann
sweep? Suppose the sweepline is almost vertical and moves almost left-to-right; i.e., it has slope
—1/e and moves in the (1,¢) direction for some infinitesimal positive €. The following geometrical

primitives suffice:

1. Find the point where two segments intersect.

2. Decide if an intersection point is to the right of the sweepline and to the left of the endpoints

of the segments involved.
3. Decide which of two events the sweepline hits first.

4. Decide whether a segment starting point is above or below an existing segment.

Consider the primitives in order. Intersection points must be computed accurately enough to
ensure correct results when comparing = or y coordinates with segment endpoints. Suppose the
coordinates of segment endpoints are integers of magnitude at most some constant L and segments
span at most some other constant L in x and y. Then intersection points have rational coordinates

with denominators less than 2L% , and floating point with a relative accuracy of one part in
9T 12
2LLA

is sufficient to produce results that compare correctly with integers.? In fact, Algorithm 1 needs to

1
29

Intersection points need not compare correctly with each other because of Theorem 2.2.

correct comparisons with numbers of the form i + %, so the true requirement is one part in 4LL% .

An important tool for implementing the other primitives is slope comparison. If the direction

vectors for segments a and b are (Aagz, Aay) and (Bagz, Bay), it suffices to test the sign of
AAy BAI‘ - AA:L'BAy - (1)

This requires numbers of size 2L% and works even if a and/or b is vertical. Vertical segments have

Ay > 0 and other segments have Az > 0 so that (1) treats vertical segments as having slope +oo.

The second primitive is for deciding whether to schedule a crossing event when two segments
become adjacent on the sweep line. The idea is to reject the crossing as behind the sweepline if the
lower segment does not have a greater slope. Otherwise, we can safely compute an intersection point

and then make sure it is behind the endpoints of both segments; i.e., we compare the intersection

2Precision on the order of I? suffices if the input segments are suitably adjusted and the endpoints are not required

to remain on the integer grid [14].
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(Z,9y) lexicographically with each segment endpoint (z;,y;) and make sure < z; or Z = z; and
Yy <y

The third primitive is a simple lexicographic comparison between two points. For segment
starting or ending events, the point involved is a segment endpoint; otherwise, it is an intersection

point where two segments cross. In case of a tie, ending events come first, then crossing events, then

starting events. (This is a consequence of the infinitesimal shortening rule.)

The last primitive involves comparing an integer y value with the y intercept of an active segment
on the sweepline. When the segment is not vertical, the difference in y values is a rational number of
magnitude at most 2L and a denominator at most L. Thus a relative accuracy of one part in 2L LA
suffices for evaluating the sign of the numerator. If the segment is vertical, the comparison should
just use the y value of the upper endpoint, since a segment whose starting point lies on a vertical
segment is considered to be below due to the infinitesimal shortening rule and the infinitesimal tilt
of the sweepline. Because the former rule forces the sweepline to advance an infinitesimal amount,
slope comparison should be used to break ties between the y values of the existing segment and the

new segment’s starting point.

2.3 Putting It All Together

The basic idea is very simple: the Bentley-Ottmann sweep collects starting, ending, and crossing
events in the order they are actually performed; then they are passed to Algorithm 1, one batch at
a time. Any segment intersection algorithm could be substituted for Bentley-Ottmann, but then
it would be less clear how to handle degeneracies and how to find tolerance square intersections

efficiently.

Since Algorithm 1 uses the events to maintain the segment order on the sweepline, the Bentley-
Ottmann sweep should pass along crossings events only when it actually swaps segments. Then
Algorithm 1 finds tolerance square intersections and inserts the corresponding vertices. All the

tricky geometric primitives and tie-breaking rules are part of the initial Bentley-Ottmann sweep.

The Bentley-Ottmann sweep also has the monopoly on complicated data structures. The time
bound O((n + k)logn) requires the sweepline to be a balanced tree as suggested in [2], although
simpler data structures are likely to be more attractive in applications where the average number

of simultaneously active segments is less than about 100.

Does Theorem 2.2 allow the event queue to be simplified? It would, except that Algorithm 1
needs the crossing events to be sorted by rounded z coordinate. Without this restriction, the priority
queue could be replaced by a fixed array of starting and ending events with unordered lists of crossing
events interspersed; i.e., each event in the array would point to the list of crossing events that belong

immediately afterward.

The overall time bound depends on the number of segments n, the intersection count & and the

number of tolerance square intersections k’. Since

D Ni=n+k and > ki=F
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in Theorem 2.1, a total of

O((n+ k)logn + k') (2)

is spent in Algorithm 1. In practice, N; is very small and £’ is close to k so that the total time for
Algorithm 1 is essentially O(n+ k), which is dominated by the O((n+ k) logn) for Bentley-Ottmann.
In theory, the £’ in (2) could dominate because £’ could approach the trivial upper bound n(n + &)

if all the segments are almost collinear.

3 Results

The algorithm was implemented in C'++ and tested on nine small but highly-degenerate input sets
involving vertical segments and coincident intersections. Then larger input sets were derived from

a data compression problem involving a U.S. government map database [25].

The map database specifies roads, rivers, and other features as polygonal lines defined by se-
quences of latitude, longitude pairs given in multiples of 107° degrees. Intersections are indicated
by having the same latitude, longitude pair appear in the representation of each road. This forces
some straight roads to have many vertices in their polygonal representation as shown in Figure 7.
An essential step in compressing this database is to eliminate the unnecessary vertices and depend
on a line segment intersection algorithm to recover the intersections during decompression. Thus
the input to the segment intersection algorithm is a set of polygonal approximations to map features
as shown in Figure 7b. For testing purposes, the polygonal approximations were done with the Wall

and Danielsson algorithm with the maximum average error set at 10=* degrees latitude [26].

/ % /

(a) (6)

Figure 7: (a) Roads from the map database with data points marked by dots; (b) the same roads
with polygonal approximations that bypass explicit intersections. The region shown is about 330

meters by 220 meters.

This application is interesting because the map data contains degeneracies, involves large num-
bers of line segments, and needs to be decompressed quickly. It also turns out that rounding
intersections to grid points can generate extraneous intersections, and these need to be carefully

controlled if the correct connectivity is to be preserved.

Table 1 summarizes some test runs for a C++ implementation on an SGI 4D/380S with 33Mhz

MIPS R3000 processors. The overhead for finding tolerance square intersections ranges from a factor
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of .12/.07 = 1.73 for the smallest problem to a factor of 46.64/37.8 = 1.23 for the largest. Thus the

time for the Bentley-Ottmann sweep dominates as predicted in Section 2.3.

sweep- run time

N. latitude | W. longitude € n k k' line B-O | total
40.675-40.7 | 74.575-74.6 10-5 297 84 86 14 0.07 | 0.12
40.65-40.7 | T4.55-74.6 10-5 905 341 346 27 0.24 | 0.37
40.6-40.7 74.5-74.6 1075 | 2894 | 1902 | 1939 57 0.94 | 1.44
40.6-40.8 74.4-74.6 1075 | 8614 | 3630 | 3723 7 333 | 4.94
47.6-47.8 | 122.0-122.2 | 1075 | 10829 | 4153 | 4474 7 4.53 | 6.64
47.6-47.8 | 122.2-122.4 | 1075 | 12752 | 14291 | 15362 115 5.97 | 9.05
40.6-41.0 74.4-74.8 1075 | 52359 | 35694 | 36418 233 37.80 | 46.64
40.6-40.8 74.4-74.6 1075 | 8614 | 3555 | 3750 7 3.37 | 4.85
47.6-47.8 | 122.0-122.2 | 1075 | 10829 | 4005 | 4485 7 4.67 | 6.42
47.6-47.8 | 122.2-122.4 | 1075 | 12752 | 14076 | 15355 115 5.84 | 8.90
40.6-40.8 74.4-74.6 10-% | 8614 | 2740 | 3833 7 3.42 | 4.87
47.6-47.8 | 122.0-122.2 | 10=* | 10829 | 2912 | 4560 7 4.25 | 5.90
47.6-47.8 | 122.2-122.4 | 10~* | 12752 | 12046 | 15171 115 5.88 | 8.55

Table 1: Results of test runs on the indicated portions of the map database as preprocessed by
the Wall and Danielsson algorithm [26]. The grid spacing is ¢ degrees latitude, and the n, k, and
k'’ columns give the number of segments, the number of intersection points, and the number of
tolerance square intersections. The “sweepline” column gives the average number of segments on
the sweepline, and the last two columns give average run time in seconds for Bentley-Ottmann and

Bentley-Ottmann plus Algorithm 1.

Table 1 covers a wide range of values for the grid spacing €. Since coordinates are integer
multiples of €, large € values make it more likely that nearby intersection points round to the same
coordinates. Such points are collapsed together if they both lie on the same input segment. This
makes the k values in the table decline with increasing ¢ because they were computed by counting

intermediate vertices added to input segments.

The main effect of increasing € is to increase the gap between k and k’. This is the number of
extra vertices added to avoid extraneous intersections like those in Figure 1. For the 40.6-40.8N.,
74.4-74.6W. data set, this number ranges from 3723 — 3630 = 93 at ¢ = 107° to 3833 — 2740 = 1093
at ¢ = 107
intersection count from 3630 to 3640 and a third iteration finds no more intersections. Thus iterated
naive rounding adds 10 vertices instead of 93 but takes 3.7545.30+4.97 = 14.02 seconds instead of
4.94 seconds. At ¢ = 10~*, the numbers are 57 new vertices instead of 1093 and 3.42+4.76 4+ 5.55 =
13.73 seconds instead of 4.87.

For comparison, a second iteration of naive rounding with ¢ = 107 increases the
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4 The Extraneous Intersection Theorem

Our original goal was to take a set of line segments, and break them up by inserting intersection
points so that no nontrivial intersections remain. Standard algorithms such as Bentley-Ottmann
are designed to do this. We only need to show that the discretization by rounding tolerance square
intersections preserves the property defined formally as follows: A set A4 of line segments is fully

intersected if unequal segments in A intersect at their endpoints or not at all.

The discretization process depends on the set T' of segment endpoints and on the region

_ 1 1 1 1
R I{(fb,y)|—§<l‘§§7 —§<y§.—}

obtained by negating the coordinates of points in the region R that Section 2 used for defining
tolerance squares. The discretization operator D7 maps any real point set S C R? into the set of

all segments AB such that there exists a segment AB C S where
[T|N(AB+ R™)={A, B}

and [T| = (T + R™) NZ? is result of rounding points in T' to integer grid points Z?%. (For a set of
segments A, Dr(A) is the union of all Dr(S) for S € A).

Theorem 4.1 If T is the set of segment endpoints from a fully intersected segment set A, then
Dr(A) is also fully intersected.

The proof depends on two lemmas. The first uses the notation [z] to mean |z + %J

Lemma 4.2 For any line segment s, there is a direction (g, ay) = (1, £1) such that no two points
in Z2N (s + R™) have the same azr + ayy.

Proof. Points in Z2N (s + R™) are of the form ([z;], [y;|), where (z;,y;) € s. Choosing ay, = 1if s

has positive slope and o, = —1 otherwise guarantees
aglzi] +ayly] # az @2 + ay[ys]

unless ([z1], [y1]) = ([22], [y2]). O
Lemma 4.3 If segments s; and so have endpoints in T' and intersect at their endpoints or not at

all, then any pair of unequal segments o1 € Dp(s1) and 02 € Dr(ss) intersect at their endpoints or

not at all.

Proof. Lemma 4.2 guarantees that there is a coordinate system

Az + ayy —ayT + agy
(€)= (g mr toun),
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where the endpoints of the segments in Dr(sy) all have different & coordinates. If these points are

(&1,1,m,1), (€1,2,m,2), -+, (E1,m1, M, m, ), they describe a piecewise-linear function on the interval
[€1,1,&1,m]:
Fi(§) = millrin —O Fmin(€ = &) where &1, <& < &1igr-
E1i41 — &1

A similar function F5(¢) for the discretization of s, is based on the endpoints (€2 ;,72 ;) for 1 < j <

mg of the segments in Dr(sz). Functions Fy and Fs approximate the lines

n=5A+mn¢& and n=p0+ 7€
that contain s; and ss.

The lemma can be thought of as a statement about the ¢ values where Fy(&) = F3(€). Since s;

and sy intersect only at their endpoints, we can assume without loss of generality that

Pr+m& < Pa+ 728 (3)

for all & where F} and F5 are both defined. Then it suffices to show that
Fi(§) < Fa(§) for €e€{§i|1<j<2, 1<i<my;, 1< <& jma;} (4)

so that F1(&) # F2(€) between &;; values unless Fy(€) = Fy(§) for an interval &; < & < & 41
When this happens, (&,:,n;,:;) and (§j,i4+1,7j,i+1) are the endpoints of a segment common to Dr(s1)
and Dr(sz).

Since the segments in Dr(s;) belong to s; + R~ for j = 1,2, the difference F;(&) — 3; — ;¢ is

limited to the range of 1 coordinates in R~. This ranges over an open or semi-open interval

Thus (3) implies F2(&1 ;) > m1,; if Bo +v2610 > mis + % Otherwise 2 + 72€1,; € n1,; + R and the
definition of Dy forces F»(&1,;) > 11,;. Similar reasoning shows F1(€2;) < 12, so that (4) holds and

the lemma follows. O

Theorem 4.1 follows from Lemma 4.3. The segments in Dr(.A) belong to Dr(s) for s € A, and
the lemma guarantees that such segments intersect only as allowed for segments in a fully intersected

set.

5 Conclusion

The simple idea of breaking segments where they intersect tolerance squares suffices to eliminate the
extraneous intersections that can result from rounding line segment intersections. Since Theorem 4.1
does not require input segments to start and end at grid points, the idea can also be used for rounding

segment endpoints to a coarser grid as can be useful in data compression applications.

Section 2 gives a very practical algorithm based on the Bentley-Ottmann sweep. It also gives a
simple, efficient scheme for handling degeneracies. The Bentley-Ottmann sweep was chosen for its

practical importance, but the ideas could be applied to other algorithms if desired.
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The algorithm improves on the time and output size bounds of Greene and Yao [10] by settling
for a weaker relationship between the input and output topologies. Greene and Yao show that
the intersection between two of their redrawn line segments is a single point or a polygonal line.
Lemma 4.3 allows the intersection to be a set of disjoint line segments, but the proof does show
that there is no interleaving: (4) forces the 5 coordinates of the output for segments s; and s3 to

be ordered as the 5 coordinates for s; and s, are.

Atts.

References
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ABSTRACT

The fundamental problem of finding all intersections among a set of line segments in the plane
has numerous important applications. Reliable implementations need to cope with degenerate input
and limited precision. Representing intersection points with fixed precision can introduce extraneous
intersections. This paper presents simple solutions to these problems and shows that they impose
only a very modest performance penalty. Test data came from a data compression problem involving
a map database.
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