Space-Efficient Outlines from Image Data via Vertex
Minimization and Grid Constraints

John D. Hobby

AT&T Bell Laboratories
Murray Hill, NJ 07974-2070

When processing shape information derived from a noisy source such as a digital scanner, it is
often useful to construct polygonal or curved outlines that match the input to within a specified
tolerance and maximize some intuitive notion of smoothness and simplicity. The outline description
should also be concise enough to be competitive with binary image compression schemes. Otherwise,
there will be a strong temptation to lose the advantages of the outline representation by converting
back to binary image format.

This paper proposes a two-stage pipeline that provides separate control over the twin goals of
smoothness and conciseness: the first stage produces a specification for a set of closed curves that
minimize the number of inflections subject to a specified error bound; the second stage produces
polygonal outlines that obey the specifications, have vertices on a given grid, and have nearly the
minimum possible number of vertices. Both algorithms are reasonably fast in practice, and can be
implemented largely with low-precision integer arithmetic.

1 Introduction

In fields such as image processing, font generation, and optical character recognition, it is often
useful to extract outlines from a digital image. In the case of binary images, a naive approach to
this problem yields jagged polygonal outlines that have large numbers of very short edges as shown
in Figure la. Such outlines are undesirable because the jagged appearance is due to noise introduced
by the scanning process. A suitable polygonal approximation such as in Figure 1b has a smoother
appearance and and fewer vertices. Filtering out the noise and reducing the vertex count makes the
outlines more useful and speeds subsequent processing.

(a) (6)

Figure 1: (a) A simulated character shape outline as might be obtained from a digital image; (b) a
polygonal approximation with a smoother appearance.

There are many polygonal approximation algorithms that convert input such as Figure la into
output reminiscent of Figure 1b. This is probably due to the ill-defined nature of the problem and
the competing goals of speed, vertex minimization, and faithfulness to the input. Often neglected is
the goal of smoothing out the “jaggies” caused by noise from the scanning process. The algorithm
actually used to generate Figure 1b achieves such smoothness by minimizing the number of inflections

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 2

in the output [6]; i.e., vertices can be classified as left turns or right turns and the number of
alternations between the two is minimized subject to a bound on the approximation error. (See [6]
for a complete description of this algorithm and discussions of competing polygonal approximation
algorithms.)

The only other approach that minimizes inflections is Montanari’s idea of minimizing the perime-
ter subject to the error bounds [7]. (See also Sklansky [12, 13, 14].) Unfortunately, this tends to
maximize the error rather than minimize it, since minimizing the perimeter demands taking the ex-
treme inside track when going around a curve. Figure 2 illustrates this by comparing the minimum
perimeter curve with the result of the algorithm from [6]. For reasons that will become clear later,
we refer to that algorithm as the Stage 1 algorithm.

(a)

Figure 2: (a) Part of an outline extracted from a binary image; (b) corresponding output from the
Stage 1 algorithm with the best polygonal approximation marked by a dashed line; (¢) the same
output with the minimum perimeter path shown as a heavy line.

Figure 2 illustrates the data structures produced by Stage 1. These consist of a sequence of
trapezoids that define a class of minimum-inflection curves that stay within a tolerance of the
original input. The polygonal approximation shown in Figure 1b is formed by taking the center line
through each trapezoid as indicated by the dashed line in Figure 2. Any curve that passes through
the each trapezoid in the correct sequence and has no more inflections than the dashed line has the
minimum possible number of inflections. Hence the trapezoid sequence contains all the information
needed for a a spline approximation or a more concise polygonal approximation.

This trapezoid sequence facilitates a two-stage process, whereby Stage 1 attempts to find speci-
fications for the “best possible” polygonal approximation, and Stage 2 considers compromises that
reduce the vertex count and make it easier to store the output concisely; i.e., the vertices are re-
stricted to a grid whose spacing is a parameter of Stage 2. The result is an algorithm that minimizes
the number of inflections subject to the choice of error bound in Stage 1 and among all such ap-
proximations, chooses one that obeys the grid constraints imposed in Stage 2 and has nearly the
minimum number of vertices allowed by these constraints.

This pipeline approach allows separate control over the approximation error in Stage 1 and
the grid spacing in Stage 2. It also allows additional constraints to be imposed via an additional
pipeline stage. For instance, it is possible to impose a secondary error tolerance that limits the
amount by which the final output can deviate from Stage 1’s midline approximation (the dashed

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 3

line in Figure 2b). This is simply a matter of examining the trapezoids produced by Stage 1 and
modifying them so that the parallel sides do not get too far apart.

Another possibility is to modify the input to Stage 1. The raw input can be any source of
polygonal outlines where noise can be eliminated by finding approximations that minimize inflections.
Outlines can be derived from edge detection in a gray-level image as is done by Rosin and West [10].
Such outlines may be considerably less noisy than Figure la, but edge detection is still a local process
that provides relatively little control over features like inflections.

We do not consider spline approximations because they are outside the scope of this paper and
there is evidence that they would be of marginal utility for the application to scanned document
images. The character shapes in a 400 dot-per-inch with 10 point text are only about 40 pixels high
and they do not tend to have big sweeping curves. Figure 1b is an extreme case, but even there, it
is hard to see how a single curve segment could replace more than about five edges.

Section 2 discusses document processing and other applications in more detail. Section 3 discusses
the interface between Stage 1 and Stage 2 and explains how Stage 1 simplifies the application of grid
constraints in Stage 2. The next three sections cover the Stage 2 algorithm: Section 4 explains how to
scan the grid points visible from a given view point and chose the one that allows the best potential for
further progress; Section 5 discusses how to handle the competing demands of maximizing forward
and backward visibility at an inflection; and Section 6 presents the main algorithm for Stage 2.
Next, Section 7 discusses an optional intermediate pipeline stage that provides better control over
the approximation error in Stage 2. Although dynamic programming techniques can be used to
minimize the vertex count, the experimental results in Section 8 suggest that it is much better to
settle for near minimum since this produces a reasonably fast algorithm. Finally, Section 9 gives
a few concluding remarks and two appendices that give proofs that the casual reader may want to
skip.

2 Applications

There are numerous applications for the high-quality polygonal approximations generated by the
Stage 1 algorithm [6]. These include optical character recognition (OCR), understanding engineering
drawings, robotics, and processing fingerprints. The more concise output generated by the two stage
algorithm could benefit any of these applications, since they all involve processing the extracted
outlines and reducing the vertex count speeds up the processing.

A major area where vertex minimization and grid constraints are important is data compres-
sion. Virtually any image representation scheme that involves outlines could benefit from this. For
instance, the present algorithm has been considered for very low bit-rate video encoding [2].

The primary motivation for this work is the need for compact representations of scanned docu-
ments in applications such as electronic libraries. For example, the RightPages project described by
O’Gorman [8] involves an electronic library of scanned documents on which OCR is used to allow
searching for keywords and other text. Since OCR is not reliable enough to generate complete page
descriptions, the scanned page images need to be retained so that the document can be rendered on
the user’s display screen or printer. Several types of processing in the electronic library application
benefit from availability of the outline representation. The simplification and data compression from
the Stage 2 algorithm make it attractive to throw away the binary images and use the outline form
as the primary representation.

When a document is first scanned into the system, the resulting page images need to be processed
to remove noise and correct for the skew angle. The skew comes about because the lines of text are
not likely to be perfectly aligned with the scanner’s pixel grid. It is important to correct the skew
because small angle rotations lead to annoying image defects. Agazzi, Church, and Gale [1] have

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 4

found that a good way to do the required rotations is to use the Stage 1 algorithm to convert to
outlines, then rotate the outlines and scan-convert them to get another binary image.

It would be desirable to retain the outlines since, the page images need to be rescaled to cope
with a wide range of output devices as explained in [1]. The techniques of [1] would still be very
useful, but 1t would surely improve the results to start with the outlines rather than the binary
images derived by scan-converting them. The Stage 2 algorithm described here should make this
feasible by reducing the space required to store the outlines enough to be competitive with the best
available compression techniques for binary images.

Another possible benefit from retaining the outlines is that they could be used as input for the
OCR process. Intense research and commercial interest in optical character recognition has lead to
a wide variety of competing systems, but some of them do convert input images into outline form.
Since the large number of “typographical errors” introduced by typical OCR systems are a major
limitation, it is important to have the best possible outlines for those systems that use outlines.

3 The Output of Stage 1

How does the sequence of trapezoids produced by the Stage 1 algorithm determine a class of
inflection-minimizing polygonal approximations to the original input, and what properties does the
trapezoid sequence have that might assist in constructing polygonal approximations with vertices
confined to the output grid? These questions require an examination of the Stage 1 algorithm. In
the following discussion, polygonal approximations with vertices confined to the output grid will be
called grid-restricted polygonal approzimations.

3.1 Grid Properties Useful in Stage 2

As explained in [6], the input is a tolerance ¢ and a polygon with vertices
(X11Y1)7 (X21 Y2)1 (X37 Y3)7 e

The tolerance is enforced by requiring the output to pass within co-norm distance € of each vertex.
Hence, the approximation must pass through squares of the form

{(z,y) | Xi —e<2< Xi+e, Vi—e<y<Yi+e }. (1)

Subsequent removal of unnecessary z and y extrema can cause parts of the squares to be trimmed
away to give “tolerance rectangles” of the form®

The points (X; £ ¢€,Y; £ ¢) at the corners of the tolerance rectangles are interesting because they
appear in the output of the Stage 1 algorithm. An important benefit comes from choosing € so that
these points belong to a grid that is suitable for Stage 2. For instance, if the initial outlines come
from binary images, the X;, Y; coordinates are integer numbers of pixel units. If the final output is
to have vertices on a grid that is some integer factor K times finer than the pixel grid, it suffices to
force ¢ to be a multiple of 1/K pixel units.?

1 There is also another trimming step to handle “interfering quadrant boundaries.” This trimming can be done to
guarantee tolerance rectanglesin the form of (2), but it is more natural to allow trimming at arbitrary grid coordinates.

2 Actually, it is 2¢ that needs to be a multiple of 1/K. We use the more stringent condition because it allows better
trimming in the context of the preceding note.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 5

Forcing the corners of the tolerance rectangles (2) to be grid points causes the Stage 1 algorithm
to begin with a trapezoid sequence

RiRoLsLy, RoR3L3Ly, R3R4L4L3,. ..,

where the trapezoid corners L1, Ls, ... and Ry, Ry, ... are grid points. The ¢th trapezoid has
parallel edges R;R;+1 and L;y1L;, as shown in Figure 3. (Some of the trapezoid edges can be
degenerate such as RsRg and L7Lg which degenerate to points labeled Rsg and Lz in the figure.)

Lg Ly

Ry “Rs

Figure 3: Part of a typical trapezoid sequence as derived from the tolerance rectangles used by the
Stage 1 algorithm. Consecutive trapezoids touch at dotted lines and are bounded by parallel edges
shown as solid lines.

The Stage 1 algorithm has two operations that change the trapezoid sequence: a “replacement
step” that eliminates some trapezoid vertices without introducing any new ones, and a process of
edge extension that is illustrated in Figure 4. Edge extension introduces trapezoid vertices that are
generally not grid points, but the new vertices are always convez trapezoid vertices. A trapezoid
vertex V is a convex trapezoid vertex if the trapezoids that meet at V' have less than 180° total
interior angle at V. The opposite of a convex trapezoid vertex is a concave trapezoid vertez. In
Figure 4, Lo, L3, Lg, and Ly are convex trapezoid vertices and L5, Ry, R34, and Rsg7 are concave
trapezoid vertices. The following lemma is a consequence of the fact that Stage 1 introduces only
convex trapezoid vertices.

Lg Ly

Lier
. . P\L
L2/ 56

IR,

Figure 4: An example of how the Stage 1 edge extension step can alter the trapezoid sequence. New
trapezoid vertices Lbs, and Lig; replace Lo, Ls, Las, Lg, and Ly.

Lemma 3.1 Ife s a multiple of the grid spacing and and the input vertices for the Stage 1 algorithm
are grid points, then output of Stage 1 has all concave trapezoid vertices at grid points.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 6

Another consequence of the edge extension step is that all nontrivial trapezoid edges lie on
lines that pass through grid points. Segments produced by the edge extension step contain convex
trapezoid vertices such as point Las in Figure 4; other segments start and end at grid points. Edge
extension can reposition the end points of existing segments but the resulting segments still lie on
the same line. This proves the following lemma:

Lemma 3.2 Ife s a multiple of the grid spacing and and the input vertices for the Stage 1 algorithm
are grid points, then all nontrivial trapezoid edges lie on lines that pass through grid points.

3.2 Ensuring there is a Grid-Restricted Path through the Trapezoids

The trapezoid sequence produced by Stage 1 defines a class of inflection-minimizing paths, but [6]
does not guarantee that any such paths have vertices restricted to grid points as required by Stage 2.
This turns out to be quite simple if we allow a few minor changes in how Stage 1 handles borderline
cases. The 1dea is to make Montanari’s minimum perimeter path satisfy the requirements.

Figure 2 illustrates the situation. From Lemma 3.1, the concave trapezoid vertices lie at grid
points. The minimum perimeter path through the trapezoid sequence must have vertices only at
concave trapezoid vertices since any other type of vertex would allow local changes that reduce the
perimeter.

The only problem is that [6] uses strict inequalities in (1) and (2) and treats the trapezoid edges
shown as solid lines in Figures 24 as out of bounds. Thus we need to modify the Stage 1 algorithm
to allow error < ¢ instead of < e.

Tolerance squares and tolerance rectangles must be treated as including their boundaries while
trimming to remove unnecessary z and y extrema. This involves changing a few < and > tests
to < and > tests and being careful to cope with quadrant boundaries where tolerance rectangles
have height 0 or width 0. The other change is to allow the replacement step to create degenerate
trapezoids whose parallel sides are collinear. This is matter of changing one inequality and making
sure that the edge extension step illustrated in Figure 4 is implemented carefully enough to cope
with the degeneracies. We have the following lemma:

Theorem 3.3 If the Stage 1 algorithm is modified to allow error < € as ezplained above and the
conditions of Lemma 3.1 are satisfied, then there is a minimum-inflection polygonal path through the
trapezoid sequence with all vertices at grid points.

4 The Best Visible Grid Point Subproblem

The Stage 2 algorithm takes a trapezoid sequence as described in Section 3 and tries to find a
grid-restricted minimum vertex polygonal path that passes through the trapezoids in order. Begin
by considering the simple case where no inflections are involved and we are given specific starting
and ending points Py and Pgoa. Without the grid constraints, we would just start at Po, find an
“optimal” visible point P; as shown in Figure 5, and use the same strategy to generate P, Pj, etc.
until finding a F; from which Pyoq is visible. All such optimal points F; lie on the outer boundary
of the trapezoid sequence as does PlOpt in the figure. (“Outer” and “inner” are defined relative to
the curvature implied by the sequence of trapezoid directions.)

The region visible from Py is delimited by a tangent line through some point @; on the inner
boundary. Since such tangent lines can be ordered according to their point of tangency, points such
as Py can be ranked according to the limit of visibility from there. When two tangent lines have the
same point of tangency, their direction angles can be used to break the tie.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 7

Figure 5: Input trapezoids for Stage 2 and the region to search when finding the best grid point
visible from P;. All points on a single white stripe are equally desirable.

The same ranking scheme applies when points P; are restricted to be grid points, but it is
necessary to search for the best grid point visible from the previous P;. The region to search is the
area delimited by the tangent line. Part of this region is shaded in Figure 5 and the rankings are
suggested by white stripes.

The simplest method for finding the best grid point visible from a point such as Pq is to scan
each row of grid points in the shaded region and stop when the scanning process has covered all
points as that are as good as the current best grid point. Section 4.1 shows how suitable affine
transformations can make this simple scanning process reasonably efficient.

Since this scanning process is inefficient when the grid is fine, Section 4.2 presents an alternative
approach based on continued fractions. Section 4.3 generalizes this to cover a subproblem that will
be useful when dealing with inflections.

4.1 Scanning a Simple Polygon for Good Grid Points

One way to find the best grid point visible from a point such as P, in Figure 5 is to scan a polygon
such as the shaded region in the figure. If the polygon contains grid points, they can be ranked by
finding tangent lines. If no grid points are found, the process starts over with a new polygon. The
new polygon can be the entire region delimited by the line containing segment Py@;, or it can be a
subset delimited by a tangent line through @3, @; or the vertex between Q)5 and @Q;.

The important part of this process is scanning the grid points in a closed convex polygon.
Since the polygon could be very long and narrow and rotated by any angle, we first transform
the coordinate system to reduce to simpler cases. The idea i1s to choose an affine transformation
that maps grid points to grid points and causes the polygon to occupy a significant fraction of its
bounding box.

Start with a polygon P and a direction D, in which scanning should proceed. (For the shaded
region in Figure 5, D, should be perpendicular to the white stripes near PlOpt and pointed toward
the rest of the polygon; i.e., it should be PlOpt — Qo rotated 90° counterclockwise.) Construct
supporting lines for P perpendicular to 1D, and complete a circumscribing parallelogram as shown
in Figure 6. This is done by taking the points of support A and C, and finding a pair of supporting
lines parallel to the dashed line AC. Since the resulting parallelogram has twice the area of the
convex quadrilateral ABC'D, it has at most twice the area of P. (Somewhat better ratios could be
obtained via the more sophisticated techniques of Schwarz et. al. [11].)

If the circumscribing parallelogram is VapVpcVepVap as shown in Figure 6, the area of the
bounding box is

(lza] + [z2)(ly1] + [y21), (3)

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 8

Ve

Figure 6: The construction for a parallelogram that circumscribes P, has two edges perpendicular
to Dy, and has area no more than twice the area of P.

where (z1,31) = Vap — Vap and (z2,y2) = Vep — Vap. The following algorithm constructs a
transformation matrix 7' that maps the set of integer grid points Z? to itself and tries to map
(z1,y1) and (z2,y2) so as to reduce (3) as much as possible.

Algorithm 4.1

1. Set T11 = T52 = 1 and T3 = T3 = 0 so T is the 2 x 2 identity matrix.

2. Choose k € Z to minimize |z1+ky1| + |z2+kyz2|. In case of ties, prefer £ = 0 if possible. Then
set £y = @1 + ky1, T2 = xo + kyr, T11 = T11 + k15, and Ty = Tio + kT,

3. Choose | € Z to minimize |y;+lz1| + |ya+lz2]|. In case of ties, prefer | = 0 if possible. Then
set y1 = y1 + kx1, yo = y2 + kzy, Ty = To1 + 111, and Doy = Thy 4+ 175,

4. Stop if £ =1 = 0; otherwise go to Step 2.

The purpose of Algorithm 4.1 is to find a transformation matrix 7" that reduces the problem of
scanning grid points the polygon P to the case when P occupies a constant fraction of its bounding
box. This guarantees that an ordinary scan-conversion algorithm can find the grid points in the
transformed P without considering more than O(y/area(P)) scan lines. The efficiency of this process
is a demonstrated by Lemmas A.1 and A.2 in Appendix A.

We need to show that this scan-conversion can be done in order of increasing 1), component. It
turns out not to be all that important to get the ordering exactly right. In practice, we can just
modify T to negate x and/or y so as to map D, to be as compatible as possibly with ordinary left-
to-right, top-to-bottom scanning. If the ordering by D, component has to be exact, the following
algorithm does the job. It assumes that the D, component of (¢, j) is ai + 3; for fixed non-negative
parameters « and 3.

Algorithm 4.2

1. Use ordinary scan-conversion to generate a list of (i, a;, b;) triplets, where the desired integer
grid points of the form (7, j) are those where a; < j < b;.

2. Sort the (i,a;,b;) triplets by ai + Ba;, and set pointers p and ¢ to the beginning of the list.
Let dg4() be the function that evaluates ai+ fa; for a given triple.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 9

3. Advance g¢ to the last triple that has dy(¢) < 1+ dy(p).

4. Output (p—i, p—a;) and advance p—a;. Delete triple p if p—a; > p—b;; otherwise insert p
after ¢ and advance ¢q. Make sure p points to the head of the list.

5. If the list is not empty, go to Step 3.

Appendix A proves the following theorem:

Theorem 4.1 Suppose Algorithm 4.1 is used to generate a transformation T for a convez polygon
P and a direction Dy, and then Algorithm 4.2 scans T(P) and its output is mapped by T—1. This
outputs the grid points in P ordered by D, component and takes time

0 <log (%) +/Aplog(Ap) + n + k) : (4)

where Agp 1s the area of P’s bounding box, Ap is the area of P, n 1s the number of sides in P, and
k 1s the number of grid points produced.

4.2 Using Continued Fractions to Find the Best Visible Grid Point

The polygon searching algorithm in Section 4.1 is a useful tool, but it is not ideally suited to the
problem of finding the best visible grid point as illustrated in Figure 5. The figure contains clues
to the nature of the trouble: the shaded polygon has an arbitrary boundary, and the white stripes
are not parallel. More precisely, it is not clear how big to make the search polygon, and there is no
unique /), that is always consistent with the notion of ranking grid points according to the tangent
line they lie on.

Continued fractions are useful for finding grid points because they make it efficient to scan the
rational directions between two given directions. Figure 7a shows an example for Dy = (—1,7) and
D3 = (—11,3). The rational directions are the vectors from (0, 0) to the integer grid points that are
marked by dots along the Dy D1, Dy Dy, and D D3 segments. A key property of the construction is
that the rational direction vectors are “as short as possible” in the sense the shaded region in the
figure contains no grid points. The main idea is to use this construction where Dy is a multiple of the
optimal tangent line direction prt — (g, and the direction from prt to Py 1s Dy, for some index k.
Directions closest to Dy are considered “best.” The idea is to start at Qg in Figure 7b and take
one step in the best possible rational direction, and repeat this process until reaching E(prtPo),
where ¢(AB) is the line defined by segment AB and directed from A to B. The first step goes to R;
because R} is out of bounds. The next step goes to Ra, and the process terminates there because
R5 1s on the correct side of K(prtPo). The argument that Ry must be the best grid point visible
from P; is based on the fact that there are no grid points in the interior of the shaded region.

The continued fraction algorithm can be thought of in terms of rational directions by writing
(¢,p) in place of each fraction ¢/p. Expressed in this form, the algorithm generates a sequence of
approximations Dy, Dy, D, ..., Dy to a rational direction D, where Dy = (1,0), Dy = (0, 1), and
Dy = D. The algorithm also generates integer coefficients ¢;, where D; = Dj_y +¢;D;_y. The
approximation sequences

D01D21D47"'1D2l_(k—1)/2ja Dk (5)

and S ~ ~
D1, D3, D5, ..., Daygyaj-1, Di (6)

approach D from opposite sides. Adding intermediate directions

Di_o4Di1, Dig+2D; 1, Di_9a4+3D;_1,...,Di_o+ (c; — 1)D;i_4 (7

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 10

Figure 7: (a) Rational directions between Dy = (—1,7) and D3 = (—11,3) with a grid-point-free
region shaded. Dots mark the ends of the direction vectors. (b) How to use the rational directions
to find the best grid point Ry that is visible from Py. (Point Py should be some distance away in
the direction of the arrow.) (c¢) A close-up of the region near R; and Rs.

between each D;_5 and D; where 2 < i < k refines (5) and (6) so that consecutive approximates D
and D' are CF-neighbors; i.e., the set of rational directions between D’ and D" is

{mD' +nD" |m>0,n>0}.

The above properties allow the following algorithm to construct a sequence of rational directions
between given initial and final directions Dg and Dgpn. Inserting intermediate directions from (7)
would produce a sequence of CF-neighbors. The algorithm assumes that Dg; belongs to the first
quadrant; this assumption can be removed via rotations by a multiple of 90°.

Algorithm 4.3

1. Use the continued fraction algorithm to approximate Dyg;.

2. If Dsy is clockwise from Dg;, output the entries of (5) in reverse order, stopping when some D;
is not clockwise from Dgy. This may require extending (5) by prepending (0,—1) or (—1,0),
(0,-1).

3. If Dgy is counter-clockwise from Dg;,output the entries of (6) in reverse order, stopping when
some D; is not counter-clockwise from Dg,. This may require extending (6) by prepending

(—1,0) or (0, —1), (=1,0).

4. Let Dj be the last direction in the output so far, and find a,b such that Dg, = aDj +bD;.
Then use the continued fraction algorithm to approximate (a,b) and output the entries of (5)
transformed by the matrix 7" that maps (1,0) to D; and (0, 1) to D;.

The running time for Algorithm 4.3 is dominated by the continued fraction expansions of Dg
and Dg,. This 1s known to be

O (log(|| Dt]) + log([| Den)
where ||-|| denotes any standard vector norm.

The output of Algorithm 4.3 is used as described above to make successive steps from a starting
point @y toward an initial goal Plopt, turning as necessary to avoid crossing the outer boundary of
the trapezoids. Call this outer boundary the far path. The directed line from PlOpt toward P is the
near line; it defines a limit of visibility from P that the stepping process must reach.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 11

Let Dg, Dy, Dy, ..., D, be the output of Algorithm 4.3 with Dg = PlOpt — Qo and Dg, =
Py — Plopt. The continued fraction algorithm produces additional integer parameters cg, ¢1, ¢a, ...,
¢n—1 that determine the sequence CF-neighbors (7) between any D; and D;41. They are
J(Di — Diy1)

Ci

Ditq1 + for 0<j<e. (8)
Using these to find the next step from some current grid point P, requires a test_pts() function that
takes a uniformly-spaced sequence of integer vectors, and finds the last such vector V for which
P, + V is not outside of the far path. The function should return a failure code if there is no such
vector. Here is the algorithm that uses test_pts() to find the best grid point visible from Py.

Algorithm 4.4

1. Use Algorithm 4.3 with Dy = prt — Qo and Dg, = Py — PlOpt to produce directions D; for
0 < j < n and integer parameters ¢; for 0 < j < n. Then set i = 0, P, = Qo, fim = £(QuQ1),
and give Pj a null value.

2. Apply the test_pis() function to (8). If it fails, increment ¢ and repeat this step; otherwise, let
D be the function result and let D' = D+ (D; — D;11)/¢;.

3. If P.+ D and PlOpt are on opposite sides of f};,, stop. The best visible grid point is Ps.

4. If necessary, search for points P, + jD + kD’ that lie on or between the near line and the far
path and not on the wrong side of #,. If successful, let P be the best point found and let

bim = U Qo Fs).

5. Find the smallest integer [for which P, + [D is across the near line. Then apply the test_pts()
function to the sequence D, 2D, 3D, ..., ID. Let the result be D" and set P. = P, + D".

6. If P, and PlOpt are on opposite sides of in, stop. The best visible grid point is P;.
7. If D" = 1D, halt—the best visible grid point is P.. Otherwise, go back to Step 2

Algorithm 4.4 initializes the f;y line to £(Qo@1) in order to ensure that (g is the point of
tangency for the tangent lines that determine which grid point is best. This corresponds to the
heavy dashed line in Figure 8. The effect on Algorithm 4.4 is to limit the search region to the dark
shaded region in the figure. If no grid points are found there, Algorithm 4.4 will return a null value
and it will have to be restarted with @) playing the role of Qg so as to search the lightly-shaded
region in Figure 8. The algorithm could be generalized to avoid starting over from scratch in such
cases, but this turns out to be relatively unimportant in practice.

Note that Step 4 says to search a certain polygon “if necessary.” Figure 9a shows an example
where such a search is necessary. In this case, a D’ step from P, takes one across the far path but a
D+ D' step goes to P’ which is on the far path and hence “in bounds”. If the far path is not directed
into the D-D’ sector when it crosses the D’ ray from P,., points such as P’ in Figure 9b must be
across the far path. There are two reasons for this: Step 2 of the algorithm guarantees that P, + D’
is across the far path; and the far path direction at the D’ ray from P, and the lack of inflections
prevent the far path from crossing the D-directed ray from P, + D’. Hence the “if necessary” test
in Step 4 should be a test of the far path direction at the as it crosses the D’ ray from P,.

Since experimental evidence shows it is very seldom necessary to search the convex polygon
described in Step 4, it is not worth developing a special algorithm for this purpose. Algorithms
4.1 and 4.2 can do the job.

Run time bounds for Algorithm 4.4 would not be particularly informative because of unlikely but
theoretically expensive operations such as the search in Step 4. Refer to Lemma A.3 in Appendix A
for a proof that Algorithm 4.4 finds the correct grid point.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 12

Figure 8: Input trapezoids for Stage 2 and the regions searched by Algorithm 4.4 when it is started
at Qg (dark region) and @, (lighter region).

Figure 9: (a) A case where the far path direction crosses the D' ray from P, with a direction in the
D-D' sector, allowing the shaded region to contain a grid point P’. (b) a case where the far path
direction avoids the D-D’ sector and grid points such as P’ need not be considered.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 13

4.3 The Trade-off between Forward and Backward Visibility

The previous discussion has centered on finding a grid point P; that is visible from Py and allows
the next point P, to be placed as far from P, as possible. We now generalize this situation to make
the above algorithms work in the presence of inflections. The problem is to search for grid points in
a region defined by a tangent line such as the line E(QtoPlopt) that is tangent at Qz¢ in Figure 10.
Since Algorithm 4.4 does not allow inflections in the far path, it may be necessary to trim the search

region by extending the inflection edge as indicated by the heavy dashed line in Figure 10.

Figure 10: Input trapezoids for Stage 2 and the region to search when finding the trade-off between
forward and backward visibility. All points on a single white stripe are equally desirable for the one
direction or the other.

This time, two sets of tangent lines are used for ranking the grid points. The white stripes
roughly parallel to K(Qtopfpt) are tangent lines with points of tangency at ;o or at its predecessor
Q:1. Such tangent lines measure visibility back towards @¢1, and they are ranked according to the
direction of the tangent line. The other white stripes in the figure are tangent lines with points of
tangency at successors of Q;g. The successor point marked Qg is the point of tangency for prt.
Tangent lines through points such as)y correspond to the best visibility in the forward direction.
They are also ranked according to their direction. As the tangent line direction approaches that
of E(Qmpfpt), the point of tangency moves back to QQ¢’s predecessors (1, @3, ... and the forward
visibility gets worse.

We can find the trade-off between forward and backward visibility by simply running Algo-
rithm 4.4 more than once. Each subsequent call to Algorithm 4.4 uses a near line based on the
previous result as shown in Figure 11. First, Algorithm 4.4 finds a grid point P; that has best
forward vision in the region delimited by the line E(Qtopfpt). Next we restrict the region by using
£(Q:oPr) as the near line, and use Algorithm 4.4 to find a grid point P; that has the best forward
vision in the restricted region. We could then find another grid point by using £(Q+1 P=) as the near
line. In order for Algorithm 4.4 to choose P;, the dark shaded region in Figure 11 must be free of
grid points since any grid points there would have better forward vision than P;. Similarly, the light
shaded region must be free of grid points in order for P, to be chosen.

Each P; has the best possible forward vision subject to the constraint that it be outside of the
tangent line through P;_;. This is exactly the same as requiring P; to have better backward vision
than P;_;. This generates the trade-off between forward and backward vision if we are careful to
require P; to be strictly outside of the tangent line through P;_;.

Slight modifications to Algorithm 4.4 are needed in order to get it to treat grid points on the
near line as unacceptable. This could be done by reversing a few inequalities, but it is more efficient
to take advantage of the lack of grid points better that P;_; by initializing P. = FP;_; instead of
P, = Qo in Step 1 of Algorithm 4.4 and using P;_; in place of PlOpt when initializing Dy and
Dgp. Thus in Figure 11, the search for P, starts at P, and immediately chooses a P, increment

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 14

Figure 11: (a) Input trapezoids for Stage 2 and the near lines to use when finding the first two
points P; and P2 on trade-off between forward and backward visibility. (b) A close-up of the area
near P, and P;. The interiors of the shaded regions are free of grid points.

that keeps P, above £(QoP1). This produces the correct results because it is equivalent to running
Algorithm 4.4 with the near line infinitesimally displaced from £(Q;oP1) and the far path modified
to run along the boundary of the dark shaded region to Pi; i.e., the modified far path runs along
£(Qo P1) until hitting the original far path, then it continues along the original far path. Generalizing
the above argument gives the following theorem:

Theorem 4.2 Suppose Algorithm 4.4 has found the grid point Py that has best forward visibility
and lies in the region defined by a tangent line E(QmPlOpt) as shown in Figure 11. Then running
Algorithm 4.4 j—1 more times with Step 1 modified as explained above generates a sequence of grid
points Py, P3, Pa, ..., P;, where each P; has the best possible forward vision subject to the condition
that it have better backward vision than P;_1.

5 Computing the Trade-Off at an Inflection

When there is inflection in the sequence of trapezoid directions, the first step is to find an inner
common tangent line such as the line £(Q;Q:) in Figure 12. There is a unique inner common tangent
line for each inflection. It has one point of tangency @ at a trapezoid vertex following the inflection
trapezoid and another point of tangency @} at a preceding trapezoid vertex. The common tangent
line divides the region covered by the trapezoids near inflection into a forward region R and a
backward region R’. The object is to find a pair of mutually-visible grid points P € R and P’ € R'.

Points in P; € R are ranked according to their forward visibility by finding for each P;, a tangent
line through that point and some successor of (); and rating P; according to the direction of the
tangent line as explained in Section 4. A similar ranking scheme rates points in R’ according to
their backward vision by finding tangent lines through some predecessor of @}. In Figure 12, Py is
the best grid point in R and Py is the best grid point in R'.

If the best grid point P; € R can see the best grid point P{ € R’ then it is natural to consider
segment P{P; to be the best way for a grid-restricted polygonal path to get past the inflection.
Unfortunately, P; and P/ might not be able to see each other, in which case more work is required
to find an optimal pair of mutually-visible grid points P € R and P’ € R'. There can then be
trade-off between the best forward visibility from P and the best backward visibility from P’. The
purpose of this section is to see how to find at least one point on this trade-off and to provide a way

of finding the whole trade-off if desired.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 15

Figure 12: How to use the techniques of Section 4.3 to find a good pair of mutually visible points
at an inflection. The £(Q}Q:) line is the inner common tangent, and the shaded regions are free of
grid points.

5.1 Finding a Pair of Grid Points on the Visibility Trade-Off

In order to search for pairs of mutually-visible points, we need to know what can prevent a point
P € R from seeing a point P’ € R': segment P’'P could cross a trapezoid edge near Q}; or
it could cross an edge near ();. The former case involves edges incident on Q}Q%, where Qf is
the last concave trapezoid vertex among the immediate successors of ;. In the latter case, P'P
crosses an edge incident on Qr@Q; where Q7 is the first of the concave trapezoid vertices immediately
preceding Q. Tt is not possible for P'P to cross both the Q;Q} obstacle and the Qr@; obstacle.

Figure 12 suggests using the techniques of Section 4.3 to find the best few grid points in R chosen
according to Theorem 4.2, and then find a similar list of points P/, P, ... in R’. In a situation
similar to Figure 12, we might proceed as follows.3

First, find P; € R with best forward visibility and P € R’ with best backward visibility. Suppose
P|P; crosses the Q;Q} obstacle and P;P; crosses the QrQ+ obstacle. Note that P is chosen to have
the best backward visibility among all grid points whose visibility around the Q}Q} obstacle is
sufficient to allow any hope of seeing P;. Thus no grid point in ¥/ (P3) can see Py, where Ur/() is
the function that finds the region of R’ where the backward visibility is at least as good as a given
point. Since P; is the only grid point in the region ¥z (P;) of points in R with forward visibility at
least as good as Pj, no grid point in ¥z (P4) can see any grid point in ¥z (Py).

The logical next step is to examine P, Ps, ..., looking for a grid point with enough visibility
around the Qr@Q; obstacle to make it possible to see P;. Suppose P, does not satisfy this condition,
but Ps does. At this point Pj and Ps might be mutually visible, or there might be some other pair
of mutually-visible points P’ € ¥z:(P4) and P € ¥r(Ps).

If the above procedures fail to find any mutually-visible grid points, we have a situation very
similar that before the examination of P, and Ps, except that R and R’ play opposite roles. The
two situations are as follows, where k£ and k' are integer parameters to be determined later:

1. Either &' = 0 or the following hold: no grid point in ¥ (Py) can see any grid point in Ur: (P},);
point Py, cannot see P/, because of the Q}Q% obstacle; and other grid points in ¥ (Py) cannot
see P/, because of the QrQ: obstacle.

2. Either k = 0 or the following hold: no grid point in U (P) can see any grid point in ¥/ (P},);
point P/, cannot see Pj, because of the @;@; obstacle; and other grid points in ¥ (F{,) cannot
see Py because of the Q@ obstacle.

3Figure 12 has Points Py, Py, Ps and Pll repositioned to make the grid-point-free regions more visible. They would
have to be much closer to the £(Q}Q¢) line in order for the Q;Q'I and Q ;@ obstacles to interfere with mutual visibility

as supposed in the following discussion.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 16

Before examining Ps and Ps, we have Situation 2 with £ = 1 and k&’ = 2; after searching Ur/(P4)
and ¥ (Ps), we have Situation 1 with £ = 3 and &' = 2. This suggests the following algorithm:

Algorithm 5.1

1. Use Algorithm 4.4 to find the best grid point P; € R. Then set k = 1 and k¥’ = 0.

2. Use Algorithm 4.4 to find the next best grid points P, ;, P{.y o, P{.43in R' as explained in
Section 4.3, stopping at the first P}, for which P}, P does not cross the Q,Q} obstacle.

3. If k > 1, use Algorithms 4.1 and 4.2 to find grid points in the portion of ¥/ (P})\ ¥/ (P},)
for which the Q;Q; obstacle does not block vision to Py_1. Let P’ be the best such grid point
that can see grid points in W (Py); let P be the best grid point in ¥ (Py) that can see P'.
(If P’ and/or P fail to exist, go on to Step 4.)

4. If Step 3 has found a pair (P’, P), halt and return (P’, P). If P}, can see Py, halt and return
(P/, Py). Otherwise set k' ={'.

5. Use Algorithm 4.4 to find the next best grid points Pry1, Pri2, Prys in R as explained in
Section 4.3, stopping at the first P; for which Pj, P does not cross the QrQ+ obstacle.

6. If k' > 1, use Algorithms 4.1 and 4.2 to find grid points in the portion of ¥z (P)\ Ur(Pr)
for which the Q}Q’ obstacle does not block vision to P/,_,. Let P be the best such grid point
that can see grid points in Wr/(P},); let P’ be the best grid point in Wx/(Py,) that can see P.
(If P and/or P’ fail to exist, go on to Step 7.)

7. If Step 6 has found a pair (P, P), halt and return (P, P). If P; can see Pj,, halt and return
(P4, Pr). Otherwise set k = [and go to Step 2.

The algorithm works by ensuring that Situation 1 holds at the start of Step 2 and Situation 2
holds at the start of Step 5. Regions U/ (Py,) and ¥z (Py) expand until reaching a pair of mutually
visible grid points. The algorithm assumes that ¥z:(Pj) and Ur(Py) are defined to be the empty
set.

Theorem 5.1 Algorithm 5.1 finds mutually-visible points P' € Wg:(P},) and P € Ugr(Py) such
that no other mutually-visible points P' € Wg:(P},) and P € Yr(Py) can have P’ better than P’
and P better than P.

Proof. Step 1 makes Situation 1 vacuously true. Step 2 then ensures that P, is the only grid point
in Wg/(P) that has enough visibility around the Q;Q} obstacle to see Pj. Step 4 halts if P}, Py
does not cross the Qr@Q); obstacle or if Step 3 has found a pair (P’, }5) If we can show that Step 3
finds such a pair whenever any grid point in W/ (P/,) can see a grid point in ¥ (Py), it follows that
Situation 2 will hold at Step 5 if the algorithm gets there. Similarly, Situation 1 must be restored

before returning to Step 2 if we can show that Step 6 finds a pair (P’, P) whenever any grid point
in U (P;) can see a grid point in Wr:(Fy,).

Since Situation 1 holds at Step 2, Step 3 can safely exclude ¥/ (Py,) and still be guaranteed of
finding the best grid point P’ € Wg/(P}) that can see any point in U (Pg). Thus Step 3 finds a
pair (P, P) in the cases required above. By making P be the best grid point in ¥ (P;) that can
see P’ it guarantees that the result (P’, P) in Step 4 satisfies the theorem. A similar argument
shows that Step 6 finds a pair (P’, P) when required and any result returned in Step 7 also satisfies

the theorem.

The algorithm must return some result because repeated failure will eventually cause Py, and P/,
to reach points such as Q7 and Q1 where the Q;Q; and Q}Q} obstacles cannot interfere. O

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 17

Before going on, we need to clarify Steps 3 and 6 of Algorithm 5.1. In Step 3, requiring that the
@1Q; obstacle not block vision to Pr_; is equivalent to restricting to a half plane defined by the
tangent line from Pj_; to the @Q;Q; obstacle. The hard part is searching for a grid point Pe Ur(Pr)
that can see P’.

The tangent lines from P’ to the @}Q% and QrQ: obstacles define a cone in which P must lie
in order to see P’. Call this the wisibility cone for P'. Either the visibility cone contains some P;,
Piy1, Piga, ..., Pj_y for 1 <4 < j <k as shown in Figure 13, or it falls between P;_; and P; for
some j < k as shown in Figure 14. In the former case, the best grid point visible from P’ must be
P; because Theorem 4.2 guarantees that P; is the best grid point in R whose visibility around the
Q1@+ obstacle exceeds that of P;_1.

Figure 13: (a) The search area for P in Step 3 of Algorithm 5.1 (shaded) with grid-point-free regions
shaded lightly; (b) A close-up showing that P; is the best grid point in the cone.

The other case is when the visibility cone for P’ falls between P;_1 and P;. There is then a
convex quadrilateral that needs to be searched for grid points. In the example of Figure 14, j = 2
and the quadrilateral is the dark shaded region. In general, it is the intersection of the visibility
cone with

VR (Pp)\ (). 9)

The following algorithm summarizes the process of finding the best grid point in ¥z (Py) that can
see P’

Figure 14: (a) The search area for P in Step 3 of Algorithm 5.1 (shaded) with grid-point-free regions
shaded lightly; (b) A close-up showing how the visibility cone falls between P; and Ps.

Algorithm 5.2

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 18

1. Use binary search to locate the visibility cone for P’ relative to Py, Ps, P3, ..., Py. Let i be
the smallest index for which does not hit P'P; the Q;Q; obstacle, and let j be the smallest
index for which P’P; hits the Q}Q obstacle.

2. If i < j return P;. Otherwise, use Algorithms 4.1 and 4.2 to search for grid points in the
intersection of (9) with the visibility cone and return the best such grid point.

An almost identical algorithm can be used to find the best grid point in Ux/(Py,) that can see P
as required by Step 6 of Algorithm 5.1.

The contribution of Algorithm 5.2 and its variant to the run time of Algorithm 5.1 depends on
the distribution of k& and [values during Steps 3 and 6 of the algorithm and on the number of grid
points in the parallelograms from which apexes of the visibility cones are chosen. A theoretical
analysis of these quantities would probably be uninformative since it is difficult to get tight upper
bounds and Section 8 will show that they are small in practice.

The rest of the run time for Algorithm 5.1 is dominated by the calls to Algorithm 4.4 in Steps 1, 2
and 5. This is also difficult to bound theoretically, but the average number of calls to Algorithm 4.4
per invocation of Algorithm 5.1 typically ranges from 3 to 4.8 in practice. (See Section 8 for details.)

5.2 Finding the Rest of the Visibility Trade-Off

Theorem 5.1 guarantees that Algorithm 5.2 finds mutually-visible points P’ € ¥x/(P/,) and P €
U (Py) for which the backward visibility from P’ and the forward visibility from P cannot be
simultaneously improved. How can we extend the algorithm to find the complete trade-off between
backward visibility from P’ and forward visibility from P?

Step 3 of Algorithm 5.1 selects P’ from a quadrilateral like the dark shaded region in Fig-
ure 15a and 15b. Tt then uses Algorithm 5.2 to decide whether each P’ point can see any points
Pc UR(Pr). A simple way to extend the search would be to try all feasible P’ points and rank
them according to forward visibility from the point P returned by Algorithm 5.2. This would mean
search the dark shaded region in the figure, as well as the lightly-shaded cone; i.e., searching the
region between the common tangent £(Q;Q:) and the tangent line from P_; to the Q1@ obstacle.
Theorem 5.1 was based on the argument that P’ must lie in this region in order to have any chance
of seeing a grid point P € U (Py) that is better than Py.

Figure 15: (a) The cone in R’ to search for grid points that can see grid points in W (Py) \ {Pr}.
(b) A close-up of the actual search region.

For any given j, using P;_; in place of P;_; modifies the above procedure to search for pairs
of grid points (P’, P) with P’ € R’ and P € R better than P;. Similarly, searching a cone based

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 19

on the tangent from P/_; to the Q;Q} obstacle and finding the best visible grid point in Wi, (P})
for each grid point in the cone yields grid points (P, P) with P € R and P’ € R’ better than P.
Hence we have a procedure for finding pairs of visible grid points (P’, P) where P improves upon
the result of Algorithm 5.1 at the expense of P/, and there is a similar procedure that improves P’
at the expense of P. This gives the required trade-off.

6 The Main Algorithm for Stage 2

The main algorithm for Stage 2 depends on handling inflections as explained in Section 5 and using
the ideas of Section 4 to find minimum-vertex grid-restricted polygonal paths between inflections.
The major complication is that inflections cannot always be considered in isolation. We say that
common tangents £(Q;-1Q;) and £(Q;+1Q;j+2) interfere if they cross each other inside a trapezoid
that is bounded by a segment of the path from @); or ;41 as shown in Figure 16.

In Figure 16, interfering tangent lines £(Q1Q2) and £(Q3Q4) cross each other to form the light
shaded region and interfering tangent lines £(@Q3Q4) and £(Q5Qs) delimit the dark shaded region.
Considering the inflections in isolation would lead to an output path with two vertices per inflection,
even though it would be better to find a polygonal path of the form P, P, P3P, where Py Py crosses
U(Q1Q2), P2P5 crosses £(Q3Q4), and P3P, crosses £(Q5Qs). In other words, the goal is to find grid
points P; € R’, P, in the light shaded region, Ps in the dark region, and Py € R so that P; has the
best possible backward visibility, P4 has the best possible forward visibility, and P; can see P;; for
1<i< 4

Figure 16: Regions to search when common tangents at successive inflections interfere.

A dynamic programming approach could be used in the case of Figure 16 to find the trade-off
between backward visibility from P; € R’ and forward visibility from P, € R. This turns out not to
be worthwhile because the simple greedy approach explained in Section 6.1 performs almost as well
in practice. Section 6.2 presents some comments about the dynamic programming approach, and
Section 6.3 explains the empirical lower bound on the vertex count that shows dynamic programming
s unnecessary in practice.

6.1 The Greedy Algorithm

How should the greedy algorithm handle the situation shown in Figure 167 Start by using Algorithms
4.1 and 4.2 to find a grid point P in the light shaded region near the intersection of £(Q1Q2) and
£(Q3Q4). Then use the same algorithms to scan the dark shaded region for a grid point Ps that can
see Py and lies close to £(Q5Qs). Finally, Algorithm 4.4 can be used to find grid points P; and Py
such that P4 can see P3 and has the best possible forward visibility and P; can see P, and has
optimal backward visibility.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 20

In general, there could be any number of inflections where the ith common tangent line £(Q;Q;-1)
interferes with €(Q;+2Q;+3). This produces a whole series of regions like the shaded regions in
Figure 16. The greedy algorithm handles this case by finding a grid point P in the first such region,
then finding P;41 in the ith region for ¢ = 2, 3,4, ... It is greedy in the sense that it never backtracks
and it selects each point in a manner intended to maximize the chance of finding a visible grid point
in the next region.

When searching for some P;, the algorithm might find that no grid points in the appropriate
region can see P;_1. This can be handled by simply ignoring the fact that £(Q;Q;4+1) interferes with
UQ;i4+2Qi+3). For instance, this happens for ¢ = 3 in the case of Figure 16 if no grid point in the
dark shaded region can see Py. Ignoring the interference between £(Q3Q4) and £(@Q5Qs) involves
using Algorithm 4.4 to select the best grid point visible from P; and then using the techniques of
Section 5 to find a pair of mutually-visible grid points that span the @5Q¢ inflection.

The above ideas lead to the following algorithm. It uses the term interference region to refer to
convex regions such as the shaded regions in Figure 16 where the cone defined by the interfering
tangent lines intersects the trapezoids. Function incg (i) is the function that returns ¢ + 1 if i < k
and 1if 2 = k. The notation Py refers to a dummy point that cannot occur in the input.

Algorithm 6.1

1. Let k& be the number of inflections and find points @1, @2, @3, ..., @=2x that define the inner
common tangents. Also initialize M[i] = Py for i <i < k.

2. If k£ > 0, go on to Step 3. Otherwise, let Py be any concave trapezoid vertex and use Algo-
rithm 4.4 to find and output grid points Py, P, Ps, ..., each visible from its predecessor. Halt
after the first 7 > 2 for which P; can see Py.

3. Try to find the first [for which ¢(Q2-1Q%) does not interfere with ¢(Qar—1Qar), where
I = incg(l).

4. If there such an [, setip = P,; otherwise set [= k, I’ = 1, and use Algorithms 4.1 and 4.2
to find a grid point P in the interference region for £(Q2r—1Q2x) and £(Q1Q2). Then set
M[k]= P and i=1.

5. Set 7' = incg(7) and check whether E(Qgiilegi) and €(Q2i'—1, Q2i’) interfere. If so, use
Algorithms 4.1 and 4.2 to find a grid point P’ in the interference region that can see P and is
as close to £(Q2ir—1,Q2i’) as possible. If successful set P = P’ and M[i] = P’; otherwise, set
P = Py,.

6. If i’ # [, set i = 7’ and go back to Step 5. Otherwise, set i = 1.

7. Let i' = incg(é). If M[i'] = Pa and M[i] # Pa, use Algorithm 4.4 to make M ~[i] the
grid point visible from M|[7] with best forward visibility. If M[i{] = Px and M[i] # Pa, use
Algorithm 4.4 to make M T[i] the grid point visible behind M [i’] with best backward visibility.
If M[i] = M[i'] = Py, use Algorithm 5.1 to set M*[i] and M ~[i'].

8. If i # k, set i = i’ and go back to Step 7. Otherwise, set i = 1.

9. If M[i] # Pa, output MJ[i]. Otherwise use Algorithm 4.4 to find and output a minimal
sequence of grid points starting at M ~[i] and ending at M *[i] where each point is visible from
its predecessor.

10. If ¢ # k, set ¢ =i+ 1 and go back to Step 9. Otherwise, halt.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 21

Step 2 handles the case where there are no inflections; Steps 4-6 scan for interfering inflections
and set up an array M whose ith entry gives a suitable grid point in the interference region that
follows the ith inflection. Null values in this array mean that the final output will have at least two
vertices between the inflections ¢ and incg (7). Next, Steps 7 and 8 choose output vertices before and
after each inflection and set up arrays M~ and M1 to store output vertices not already in the M
array. Finally, Steps 9 and 10 output the vertices stored in the M, M~ and MT arrays, adding
intermediate vertices if necessary.

In Step 4, Algorithms 4.1 and 4.2 need a goal direction D,. This should be chosen to favor points
close to where £(Q2r—1Q2r) and £(Q1Q32) intersect. Step b also uses Algorithms 4.1 and 4.2. Tt is
best to precompute the tangent lines that delimit the cone where P is visible so that the interference
region can be intersected with the cone before starting Algorithms 4.1 and 4.2.

Note that Algorithm 6.1 invokes Algorithms 4.1, 4.2, and 5.1 at most once per inflection, and it
invokes Algorithm 4.4 at most once per output vertex. Sections 4.2 and 5.1 explain that worst case
bounds for Algorithms 4.4 and 5.1 would not be very useful, but that they take nearly constant time
in practice.

Letting £ = 1 in Theorem 4.1 does give time bounds for Algorithms 4.1 and 4.2. If it were
not for the dependence on the polygon and bounding box areas Ap and App, the total time for
all invocations of Algorithms 4.1 and 4.2 would be proportional to the number of input trapezoids
plus the number of output vertices. The Ap and App terms could theoretically predominate, but
square roots and logarithms in (4) make this unlikely in practice. Tt does not seem worthwhile to
give detailed arguments on the size of the Ap and App terms and how to modify the algorithms to
limit them if necessary. The results in Section 8 will support the claim that Algorithm 6.1 is nearly
linear in practice.

6.2 Dynamic Programming

Since Algorithm 6.1 uses a greedy heuristic that is not guaranteed to minimize the number of output
vertices, it 1s worth considering how it could be modified to give such a guarantee. This involves
finding the full trade-off between forward and backward visibility at an inflection as explained in
Section 5.2 and using dynamic programming to find a similar trade-off for sequences of inflections
where common tangent lines interfere as shown in Figure 16.

Suppose we have a sequence of k inflections where the common tangent line at the ¢th inflection is
£(Q2;-1Q2;) and the common tangents for successive inflections interfere. The object is to find grid
points in R’ with maximal backward visibility and grid points in R with maximal forward visibility,
where R’ and R are the regions determined by £(Q1Q32) and £(Q2r-1Q2r) as indicated in Figure 16.

The dynamic programming algorithm needs to maintain two pieces of information for each grid
point in each interference region: which grid point in the previous interference region leads to the
best point in R’, and the tangent line direction that is used to rank the point in R’. Maintaining
this information requires finding all grid points in each interference region instead of stopping at the
first one that meets the visibility requirement. It is also necessary to scan the previous interference
region each time a new grid point is found. The net effect is to replace Steps 4-6 of Algorithm 6.1
by a dynamic programming process that requires additional time and additional space. The time
and space for Steps 4-6 are multiplied by a factor roughly proportional to the square of the number
of grid points in a typical interference region.

The process outlined above produces pairs of grid points (P/, P;) where P/ € R/, P, € R, and
there is a £ link grid-restricted path from P/ to P; for each i. They should be sorted so that as
i increases, the backward visibility for P/ declines and the forward visibility for P; improves. Since
common tangents at consecutive inflections do not necessarily interfere, there are a whole series of

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 22

such trade-offs where the jth trade-off
7} = ((Pll,j’ Pl,]')’ (Pé‘,j:PQ,j): R (Prlzj,j’Pﬂjy]'))

has k; link paths between each pair of grid points PZ»’J» and P;;. The remaining task is to select
some index ¢; for each 7; that minimizes the total number of intermediate vertices needed between

all pairs of points P;, ; and Pz‘/j,,j'a where 7;/ is the trade-off that follows 7;.

Note that invoking Algorithm 4.4 once per intermediate vertex finds the minimum number of
intermediate vertices between P;, ; and P/ j+- Changing i; or ij; can change the vertex count by at
Iz
most 1, and increasing ¢; or decreasing 7;: cannot increase the vertex count.

This suggests another dynamic programming process where the auxiliary information for each
pair in 7; is the optimal 7;_; index #;_;, the minimum number of intermediate vertices on a path
from 77, and the minimum index #; for which the path can start from Pi/1,1~ The primary goal is to
minimize the number of intermediate vertices, and the secondary goal is to minimize ;. Computing
the minimum vertex count and the corresponding ¢; for a pair in 7; 4 requires using Algorithm 4.4
to find intermediate vertices along a path back to P,;; and then using binary search to find the

minimum ¢ for which P; ; can be reached with the same intermediate vertices.

This dynamic programming algorithm replaces Steps 7 and 8 of Algorithm 6.1 by a process that
invokes Algorithm 4.4 roughly nlog(n) times as often, where 7 is the average value of n; for all

trade-offs 7;.

A full optimizing version of Algorithm 6.1 would also need a version of Step 2 that tries multiple
possibilities for P; and selects the one that minimizes the vertex count. This multiplies the running
time by the number of starting points. Hence, a full optimizing version of Algorithm 6.1 can be
constructed by replacing various steps with dynamic programming versions that are slower various
factors. One of these factors is quadratic in the number of grid points in an interference region, and
the other two factors are linear or almost linear in the number of grid points in certain regions.

6.3 A Lower Bound on the Vertex Count

Section 6.2 gives a rough idea of how to find grid-restricted polygonal paths that really minimize
the vertex count and how to estimate the time penalty for doing so. One way to tell whether this
time penalty is worthwhile is to compute a lower bound on the vertex count.

We can find a lower bound on the vertex count by just ignoring the grid constrains. This produces
an algorithm similar to that of Goodrich [3]. Guibas, Hershberger, Mitchell and Snoeyink also give
algorithms for minimizing the vertex count under a variety of conditions [5]. They show that a
dynamic programming approach to finding the exact minimum vertex count takes quadratic time
even without grid constraints.

“Ignoring grid constraints” in Algorithm 6.1 amounts to replacing its calls to Algorithms 4.1,
4.2, 44, and 5.1 with simpler routines. In the terminology of Section 4.2, the replacement for
Algorithm 4.4 only has to intersect the near line with the far path to find the point Plopt. The
replacement for Algorithm 5.1 can just find the common tangent line and take the segment of it that
lies within or on the boundary of the trapezoids around the inflection. Instead of using Algorithms
4.1 and 4.2 to find grid points in an interference region, the modified Algorithm 6.1 just finds the
intersection of the interfering common tangent lines.

The version of Algorithm 6.1 that ignores grid constraints can readily be implemented using
floating point arithmetic, but some care i1s needed to ensure that rounding error does not cause it
to over-estimate the vertex count. Since the purpose is to find a lower bound, under-estimates are
harmless.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 23

If we want a lower bound theorem instead of a lower bound algorithm, there are two ways to
proceed: we could try define parameters that characterize the input well enough to allow for a
reasonably tight close-form expression; or we could try to get a bound on the amount by which
the vertex count from Algorithm 6.1 exceeds that of the modified version outlined above. The first
option seems quite difficult and 1t would not readily provide an answer to the question of whether
or not to use dynamic programming. The second option might work, but it would probably provide
a bound that is too weak to be very useful in practice. Hence, we only state it as a conjecture:

Conjecture 6.1 Modifying Algorithm 6.1 to ignore grid constraints as described above reduces the
number of output vertices by at most a factor of two.

7 Possible Refinements to the Trapezoid Sequence

A problem with the interface between Stage 1 and Stage 2 is that the error tolerance is playing
two roles: in Stage 1, it allows for noise introduced during the printing and scanning process; while
Stage 2 uses the error tolerance to decide how much the outlines can be altered in order to achieve
simplicity and compactness. This purpose of this section is to provide separate control over these
two types of error.

The idea behind Stage 1 error tolerance is that a relatively smooth underlying shape gives rise
to jagged outlines, and then the algorithm attempts to reconstruct the original shape by assuming
it has the minimum number of inflections allowed by the error tolerance. For example, there is an
underlying ampersand shape that gave rise to Figure la, and the output of Stage 1 in Figure 1b is
much closer to that underlying shape. We call this approximation Stage 1 midline approzimation
because it is formed by taking the midline through each trapezoid as shown in Figure 2.

There needs to be a secondary error tolerance e; that limits how far the output of Stage 2 can
deviate from the Stage 1 midline approximation. This tolerance applies to the co-norm distance d,
between parallel lines. Imposing it requires modifying the trapezoid sequence before running Stage 2:
transform each trapezoid R;R;y1Lit1L; so that the modified version R} R}, L;, L} satisfies

deo(0(RLRL), £(RiRig1)) = doo (AL Ly, AL Lig)
deo(0(RLRLy), (L L)) = min(2cs, doo (E(Ri Ry, €(LiLiy))) (10)

where ¢(AB) is the directed line containing segment AB. Figure 17 illustrates how this can be
done. Replacing trapezoids R1RyLoL1, RoRslLsLs, and R3R4L4L3 with modified versions involves
replacing the solid lines with the heavy dashed lines so as to eliminate the shaded parts of the of
the original trapezoids.

Trapezoids like Ry RyLs Ly in Figure 17 are unaltered because £(Ry Rz) and £(LyL1) are within co-
norm distance e; of the midline approximation. When this happens, parts of neighboring trapezoids
can be within co-norm distance e; of the midline approximation even though they do not belong
to the modified version of the neighboring trapezoid. For instance, the lightly shaded region in the
figure is close to the Ry RsLsL; midline but outside of the tolerance for Ry RsL3Ls.

7.1 The Simple Inflection-Free Case

Let us see how to construct a refined trapezoid sequence in a simple case. Suppose we can choose j
and k so that the direction sequence

Ri+1_Ri+Li+1_Lia fori:j_la .71.7+117k (11)

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 24

Figure 17: Part of a trapezoid sequence with regions that violate the secondary tolerance €5 shaded.
The heavy dashed lines are at oo-norm distance €3 from the midline approximation (light dashed
line).

has no inflections and is confined to 180° sector. Thus as ¢ increases, the directions always turn left
or always turn right. Either way L;_1, L;, Lj41, ..., Lyy1 and Rj_q, Rg», Rjy1, ..., Ry define the
boundaries of two convex regions. Extending segments L;_1L;, R;_1R;, LyLyy1, and Ry Ry to
infinity produces semi-infinite regions £;; and R;, one of which is contained in the other. Region
L, is the intersection of half planes bounded by directed lines £(L; L) for j — 1 <i < k, and Ry
is the intersection of similar half planes bounded by £(R; R;11).

The natural way to construct a refined trapezoid sequence is to find directed lines
(RS R)), (RGRG), (R Ry)

and

L5 L5), ULGLG 1), MLy L)
satisfying (10), and use them to define half planes that intersect to form semi-infinite regions R;k
and E}k analogous to R;; and £;;. This almost works, but we must relax one of these regions to
ensure that concave trapezoid vertices lie at grid points. Otherwise, the exclusion of regions like
the lightly shaded parallelogram in Figure 17 would make it difficult to guarantee the existence of a
suitable grid-restricted polygonal approximation.

If as in Figure 17, the directions (11) turn right as ¢ increases, R, is contained in £}, and the
modified trapezoid sequence will have a left boundary based on E}k and a right boundary based on
the convex hull of the grid points in R;k The alternative when (11) turns right is to have the right
boundary based on R}k and the left boundary based on the convex hull of the grid points in E}k.

Algorithm 7.1 gives a simple iterative routine that constructs the boundary of [,}k or R}k by
treating directed lines £;_1, ¢;, £;_1, ..., £ as the boundaries of half planes to be intersected. With
l; = (R}, R},), it gives the boundary of R;k, and setting ¢; = £(L}, L},) gives the boundary of

/

Jk*
Algorithm 7.1

1. Initialize ¢ = j and set the boundary B to £;_;.

2. If 4; intersects the last segment of B, terminate that segment at the intersection point and
append a new segment with ¢;’s direction. If there is no intersection, remove the last segment
and repeat this step.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 25

3. Advance 7 and terminate if 7 > k. Otherwise go back to Step 2.

We also need an algorithm that computes the convex hull of the grid points in E}k or R}k This
can be done with the help of a subroutine that takes directed lines ¢ and ¢; and a grid point P on
¢ and finds the boundary of the convex hull of the set of grid points to the right of both directed
lines. Call this the grid hull subroutine. Figure 18 gives an example where grid points are marked
by dots and the desired convex hull boundary shown as a heavy line. The part before P on line £ is
shown dashed because it is not used by the algorithm below.

Figure 18: Directed lines £ and ¢; and the convex hull of the grid points in the region to the right
of both lines. The directed lines are shown as arrows and the convex hull boundary is marked by a
heavy line.

Algorithm 4.4 can be used to implement the grid hull subroutine if it is given special input data
structures and the algorithm is modified to output each new value of P, as a convex hull vertex.
Use P as Qo; use #; as both the near line and the far path; and place @1 anywhere so that £(QuQ1)
is parallel to £. This makes PlOpt the point where £ and ¢; cross. These inputs guarantee that Step 4
will never need to do a search.

Theorem 7.1 If the grid hull subroutine is implemented as described above, it successfully computes
the convexr hull of the grid points in the region bounded by £ and ¢;.

Proof. Refer to Corollary A.4 in Appendix A. O

We can use the grid hull subroutine to generalize Step 2 of Algorithm 7.1 and obtain an algorithm

for the boundary of the convex hull of the grid points to the right of directed lines £;_1, 4;, £;41,

.., £x. This algorithm assumes that each line ¢; has a rational direction and that the directions
turn right as ¢ increases. The left-turning case can be handled analogously.

Algorithm 7.2

1. Shift £;_; to its right until the resulting line passes through grid points. Then set the boundary
B to this line and initialize ¢ = j.

2. While ¢; does not intersect the last segment of B, remove the last segment and repeat this
step.

3. Call the grid hull subroutine with £ equal to the line containing the last segment of B and P
equal to the starting point of that segment. (If £ is the only segment in B, P can be any grid
point on £ to the right of £;.) Then remove the portion of B before P and append the result
of the grid hull subroutine.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 26

4. Advance 7 and terminate if 7 > k. Otherwise go back to Step 2.

We can now summarize the process of finding a modified trapezoid sequence for the R; and L;
that appear in (11) assuming no inflections and directions confined to a 180° sector. If the directions
turn right as 7 increases, use the £(L}, L;,) lines from (10) as input for Algorithm 7.1 and use the
output to replace L; for j —1 < i < k+ 1. Then use the £(R}, R;, ;) lines as input for Algorithm 7.2
and use the output to replace R; for j — 1 <7 < k+ 1. Since Algorithm 7.2 can produce segments
whose directions do not belong to (11), the two lists of output segments need to be interleaved
according to their direction angles and null segments need to be inserted where one list skips over a
segment direction from the other list. This produces sequences of matching segments R} R ; and
L{LY,, that define the modified trapezoids. If the directions in (11) turn left as i increases, the
procedure is the same except that Algorithm 7.2 is used in place of Algorithm 7.1 and vice versa.

Lemma B.1 in Appendix B shows that the trapezoids produced by this process are a refinement
of the input trapezoids and they contain the Stage 1 midline approximation.

7.2 Finishing the Refined Trapezoid Sequence

Before we can extend the techniques of the previous section to handle the entire trapezoid sequence,
we have to deal with the restriction that the direction sequence (11) is confined to a 180° sector. This
restriction is partly illusionary because algorithms 7.1 and 7.2 only operate on the last few segments
in the boundary path being built. The main purpose of the 180° limitation is to allow reasoning
about the algorithms using on the basic properties of convex sets rather than a more complicated
theory such the Guibas-Ramshaw-Stolfi theory of polygonal tracings [4].

In practice, the way around the 180° limitation is simply to ignore it. Instead of generalizing
Lemma B.1 to cover this situation, it is more convenient to subdivide the trapezoid sequence into
subsequences where the segment directions span no more than 180°. In the trapezoid sequence of
Figure 19a, subdividing at R5RsLsL5 yields subsequences

RleLng, ey R5R6L6L5 and R5R6L6L5, ey R9R10L10L9

that obey the 180° limitation. Refining each subsequence as suggested in Section 7.1 gives Figure 19b.

Figure 20 illustrates the process of merging trapezoid subsequences after subdividing at R; R; 1 Liy1L;
and refining separately. As in Figure 19, the segment directions turn right as the index increases.
Figure 20a is based on the subsequence that ended at R;R;y1L;41Li. As explained in Section 7.1,
this trapezoid has been extended to infinity in the direction implied by the arrows. The heavy
dashed lines are the segments of the refined trapezoid boundaries that cross the dotted line R;L; or

lie behind 1t.

Figure 20b is analogous to Figure 20a, except it shows the initial segments of the result of refining
the subsequence starting at R; R;41L;41Li. The idea behind the merging process is that Figure 20a
shows what happens before reaching the R;11 — R; + Liy1 — L; direction, Figure 20b shows what
happens after passing that direction, and the intersection of the two is a good way to treat the
R;Riy1L;41L; in the merged sequence.

The dashed lines in Figure 20c are computed by finding the shaded regions in Figures 20a and 20b,
intersecting the lightly-shaded regions, and finding the convex hull of the grid points in the intersec-
tion of the darker regions. The lightly shaded regions in Figures 20a—20c belong to the half plane
S! on or to the left of the midline

/ <Li + R; Li+1;Ri+1) (12)

2 2

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 27

(6)

Figure 19: (a) Part of a trapezoid sequence as produced by Stage 1; (b) The result of splitting
at RsRgLgLs and computing separate refinements for each half. Heavy dashed lines show the
boundaries of the refined trapezoids and the shaded areas are the regions removed by the refinement
process.

Figure 20: (a) The last trapezoids from separately refining a subsequence ending at R;R;y1L;4+1Li;
(b) the first trapezoids resulting from separate refinement starting at R; R;41L;4+1Li; (¢) the result
of merging the two refined subsequences.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 28

and the darker regions belong to the half plane 87 on or to the left of the directed line £(R; R;41).

These definitions of S! and S are appropriate when the segment directions turn right as you
advance through the trapezoid sequence. If they turn left, we have the left turn case where S! is the
region on or to the right of (L; L;11) and 87 is the region on or to the right of (12). Intuitively, S!
is the region far enough from the “inside edge” to give possible locations for the refined trapezoid
boundary L;L;,, and 8] is far enough from the “inside edge” to give possible locations for RiR .

The following algorithm assumes that the running Algorithms 7.1 and 7.2 with input based on
a sequence of trapezoids ending at R;R;y1L;41L; produced output for which LY is the last left-side
vertex not in 8! and RY is the last right-side vertex not in S7. Running the algorithms with input
from a trapezoid sequence starting at R;R;y1L;11L; is assumed to have produced L}, , and R}, as
the first left-side vertex not in S! and the first right-side vertex not in S

Algorithm 7.3

1. If this is the left turn case, apply Algorithm 7.2 to the list formed by taking the segments
following L} in order followed by the segments preceding L, ;. Otherwise, apply Algorithm 7.1
to the same list.

2. Use the segments just computed to replace everything after L; and everything before L ;.

3. If this is the left turn case, apply Algorithm 7.1 to the list formed by taking the segments
following R}’ in order followed by the segments preceding R, ;. Otherwise, apply Algorithm 7.2
to the same list.

4. Use the segments just computed to replace everything after R and everything before RY,,.

5. Scan the vertices between L} and L}, |, and construct trapezoids by pairing them with with
vertices between R} and R, ;. Choose the interleaving so that the the segment directions
change monotonically.

Algorithm 7.3 emphasizes clarity over efficiency. Steps 1 and 3 begin by running Algorithms
7.1 and 7.2 on the last few segments of their own output. The main effect of this is to restore the
segments as originally computed but put them at risk for removal in Step 2 of Algorithm 7.1 or
Step 3 of Algorithm 7.2. Another possible improvement is to quit early in Algorithm 7.1 or 7.2 if
it becomes clear that the rest of the output will be the same as the input. It may also be possible
to optimize Step 5 of Algorithm 7.3 by making use of the pairings in the trapezoid sequences being
merged.

We also need a version of Algorithm 7.3 that works when there is an inflection at trapezoid
R;R;iy1L;41L; as illustrated in Figure 21. This allows any trapezoid sequence to be refined by
breaking it into inflection-free subsequences and then merging them together.

The shaded regions in Figures 21a and 21b are analogous to the shaded regions in Figures
20a and 20b. Instead of intersecting them, we merge them by finding inner common tangents: the
new left-side boundary follows the heavy dashed boundaries of the lightly-shaded regions and passes
between them along their common tangent; the new right side boundary passes between the darker
regions along their common tangent.

In the following algorithm, By and By are the left- and right-side boundaries from running
Algorithms 7.1 and 7.2 with input based on a sequence of trapezoids ending at R;R;y1Liy1L;;
similarly, Bz' and BE are the left- and right-side boundaries from running the algorithms with input
based on a sequence of trapezoids starting at R; R;41L;41L;. For each vertex V in B, there is a
unique vertex p(V) in By that belongs to the same pair of trapezoids; similarly, each vertex V' in
Bj, has a unique partner p(V') in By, and the same goes for Bf and B}.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 29

Figure 21: (a) The last trapezoids from separately refining a subsequence ending at R;R;y1L;4+1Li;
(b) the first trapezoids resulting from separate refinement starting at R; R;41L;41L;; (¢) the two
refined subsequences just prior to merging.

Algorithm 7.4

1. Scan backward from the end of B; and forward from the beginning of Bz' until finding a
common tangent V3 Va. Then replace everything after Vi in B and everything after V5 in BE
with the segment V1 V5.

2. Scan backward from the end of By and forward from the beginning of BE until finding a
common tangent VaV,. Then replace everything after V3 in By and everything after Vj in BE
with the segment V3V,

3. If Vi # Vi, V3 # Vi, and segments V1 V3 and V3Vy are parallel, stop.

4. Tf p(V1) precedes V3, let Viy = Vi and Vi1 = p(V7); otherwise let V1 = V3 and Vi3 = p(V3). If
p(Va) follows Vg, let Via = Vo and Vg = p(V2); otherwise let Vo = V4 and Vip = p(Va).

5. Assign p(V) = V,1 for all vertices V strictly between Vi3 and Vi3 and p(V) = Vjy for all V/
strictly between V,1 and V5.

An informal restatement of Steps 3-5 of Algorithm 7.4 might be “pair up all the vertices so as
to define a trapezoid sequence with a single inflection at V3 V5 or VaVy.”

Lemmas B.2 and B.4 in Appendix B show that Algorithms 7.3 and 7.4 preserve the key proper-
ties of the refined trapezoid sequences being merged: the region covered by the refined trapezoids
is a subset of the similar region for the original trapezoids, and it contains the Stage 1 midline
approximation. Appendix B uses these lemmas to prove the following theorem.

Theorem 7.2 Suppose a trapezoid sequence produced by Stage 1 is broken into inflection-free sub-
sequences whose directions are confined to sectors of < 180°, and that these are refined separately as
ezplained in Section 7.1 and then merged using Algorithms 7.3 and 7.4. If the region covered by the
ortginal and refined trapezoids are Ry and Ro, then the Stage 1 midline approzimation is a subset
of Ro and Ro C Ry. The same relation holds for any number of contiguous subsequences if the Ry
and Ro are modified by having their first and last trapezoids extended to infinity as in Lemma B.1.

7.3 Choosing the Secondary Tolerance

Sections 7.1 and 7.2 explain how to do refinement on inflection-free subsequences of the trapezoid
sequence and then merge them together to create a refined version of the original data. The purpose
of the refinement is to force the output of Stage 2 to stay within a specified tolerance of the Stage 1
midline approximation. Equation (10) limits the co-norm deviation to €z, but this is subsequently
relaxed by up to 1 grid unit so as not to destroy the grid point property from Lemma 3.1:

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 30

Theorem 7.3 If a refined trapezoid sequence s computed as in Theorem 7.2, the result will have
all concave trapezoid vertices at grid points.

Proof. Section 7.1 introduces concave trapezoid vertices only via Algorithm 7.2, and that algorithm
forces all vertices to be at grid points. Algorithms 7.3 and 7.4 do not create any new concave
trapezoid vertices. O

It may be a good idea to try to adjust €3 and the grid spacing so that the (R} R}, ;) and (L} L;)
lines from (10) are likely to pass through grid points. This can be done by running Stage 1 with a
grid two times coarser than the target grid and choosing €, to be a multiple of the target grid spacing.
Then Lemma 3.2 guarantees that if R; # R;y1 and L; # Liyq, lines £(R; R;41) and €(L; L;yq) will
pass through points on the course grid and therefore their bisector will pass through points on the
fine grid. Making €3 a multiple of the fine grid spacing then forces £(R;R;) and £(L;L}) to pass
through grid points.

8 Experimental Results

The Stage 1 and Stage 2 algorithms were implemented in C++ and tested on binary images of
pages of scanned text from standard database of test documents [9]. Stage 1 converts outlines into
trapezoid sequences, and Stage 2 converts them into grid-restricted outlines. Table 1 gives statistics
that show how the algorithms perform on a fairly typical sample image.* The table shows that
Stage 2 reduced the vertex count from the Stage 1 midline approximation by a factor of 1.4 to 2.3,
depending on the error tolerance and grid spacing. This must be close to the best possible, because
number of output vertices ranges from 2.0% to 4.8% more than the lower bound from Section 6.3.

A B C D E F G H
grid spacing 1 0.5 0.5 0.33 0.25 0.25 0.25 0.25
Stage 1 tolerance 1 1 1 0.67 0.75 0.75 0.75 0.5
secondary tolerance - - 0.5 0.33 - 0.5 0.25 0.25
input vertices 39438 40261 40261 45303 45444 45444 45444 43827
output vertices 17777 17417 19662 26265 21500 22508 28016 32401
§6.3 lower bound 16961 16989 19106 25174 20929 21906 27344 31759
inflections 3461 3466 3466 5691 5233 5233 5233 6325

interfering inflections 1607 1628 1362 2306 2394 2272 1880 2260
M entries in Alg. 6.1 1600 1620 1360 2291 2370 2254 1867 2259
Alg. 4.4 invocations 17194 17167 19477 25830 23951 24063 28742 31478
number from Alg. 5.1 7553 7874 8199 11678 13541 12761 12319 12522

restarts 1218 532 837 1024 554 654 698 418
polygon searches 513 423 408 368 610 546 400 46
visibility cone searches 14 14 7 20 39 12 10 20
outline bytes 29100 33111 35661 47269 43578 44859 51965 57872
CCITT-g4 bytes 47072 47072 47072 47072 47072 47072 47072 47072

Table 1: Statistics for the Stage 2 algorithm on input from a 300 dpi binary image of a page of
text from [9]. Columns A-H give statistics for various settings of the grid spacing, the Stage 1 error
tolerance, and the Section 7 secondary tolerance.

4The table is based on journal page image a002 from [9]. Tt is a fairly clean image scanned at 300 dots per inch.
It includes text and mathematical formulas, but no drawings or halftone images.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 31

A simple binary file format was developed in order to estimate the space required to store the
outlines. Each outline was encoded as a pair of starting coordinates followed by a vertex count and a
list of (Az, Ay) pairs. All numbers were encoded using a scheme where small numbers require 4 to 8
bits, and roughly two additional bits are required each time the magnitude doubles. Table 1 lists
the number bytes for this scheme in the “outline bytes” row. It ranges from 62% to 123% of the size
of the compressed binary image file that served as input to Stage 1. This input was in TIFF format
with the best compression scheme readily available for binary images: CCITT Group 4 facsimile
compression. A simple bitmap would have required more than a megabyte.

Table 1 also gives statistics that are relevant to the design of Algorithms 4.4 and 6.1. Since
Algorithm 6.1 creates one M entry each time it is able to use a single grid point between a pair
of interfering inflections, the close relationship between M entries and interfering inflections means
that the algorithm seldom uses two vertices where one might do.

Section 4.2 explained that Algorithm 4.4 has to be restarted with a new (g vertex if it fails to
find a grid point. This is relatively harmless in the tabulated cases because the number of such
restarts is never more than 7.1% of the total invocations. The table also shows that the polygon
searches in Step 4 of Algorithm 4.4 are also not critical because they are an even smaller percentage
of the total invocations. The next row of the table shows that the visibility cone searches used in
Steps 3 and 6 of Algorithm 5.1 and defined in Algorithm 5.2 are extremely rare. The practical cost of
Algorithm 5.1 is that it accounts for 40% to 57% of the Algorithm 4.4 invocations that are listed in
the table. The average number of Algorithm 4.4 invocations per invocation of Algorithm 5.1 ranges
from 3.1 for Column H to 4.8 for Column E.

The grid spacing and tolerance values in Table 1 represent a trade-off between image quality
and the compactness of the outline representation. The table shows how reducing the Stage 1 or
secondary tolerance or reducing the grid spacing increases the outline byte count, and Figures 22b—d
show how reducing the tolerances improves image quality. On the other hand, reducing the Stage 1
tolerance below 0.5 pixels would prevent the “jaggies” in Figure 22a from being eliminated.

Testing the algorithm on all 979 journal page images from [9] produced the timing and data
compression statistics in Table 2. All of the test images had the same scanning resolution and
similar page dimensions, but some pages were much more complicated than others. Hence, all the
statistics were normalized by dividing by the number of input vertices vy produced by the Stage 1
algorithm. This number tends to be high for images with large dark smears or halftone pictures.
The table attempts to list statistics for such images separately, since they are particularly difficult
cases for outline-based algorithms.

The run time was consistently proportional to vy, except that it increased slightly when vy was
high or halftone pictures were present. Stage 2 was approximately twice as expensive as Stage 1
and combining Stage 2 with optional refinement increased this to a factor of 3. These numbers
may be somewhat higher than necessary because no effort has been made to optimize the Stage 2
implementation.

Table 2 shows that the outline byte count generally compares favorably to TIFF bitmaps with
CCITT-g4 compression when the Stage 1 tolerance is 1 pixel and the grid spacing and secondary
tolerance is % pixel. Smaller tolerances would increase the ratio of outline bytes to bytes in the TIFF
files as suggested by Table 1. Refer to Figure 23 for a full accounting of how this compression ratio
depends on the complexity of the test pages with and without halftone pictures. Since the database
from [9] has separate flags for the presence of drawings and halftone images, Figure 23 makes a
similar distinction. The algorithm does particularly well on simple line drawings, but drawings
containing shaded areas are a difficult case.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 32

in the bore of the TF
ecessary, the space ¢

(a)

in the bore of the TF
ecessary, the space ¢

in the bore of the TF
ecessary, the space ¢

-

.‘

(6)

in the bore of the TF
ecessary, the space ¢

()

-

|

(d)

Figure 22: A magnified portion of test document h047 reproduced by various methods. (a) pixel
replication from the raw image; (b) from outlines generated with grid spacing and tolerances as in
column C' of Table 1; (¢c—d) the same for columns D and H, respectively.

without halftones

with halftones

input vertices vy <20k 20-60k 60-200k >200k | <60k 60-200k >200k
pages 24 227 608 8 16 84 12
output vertices /vy 0.489 0.487 0.492 0.522 | 0.502 0.510 0.526
§6.3 lower bound /vy | 0.475 0.473 0.479 0.516 | 0.491 0.499 0.521
Stage 1 psec/vr 68 64 63 47 62 56 45
refinement psec/vy 65 68 69 81 73 75 87
Stage 2 psec/vr 136 135 136 153 136 144 151
total psec/vr 290 286 288 307 294 300 311
outline bytes /vs 0.893 0.867 0.876 0.978 | 0.924 0.924 0.974
CCITT-g4 bytes /oy | 1.398 1.051 0.959 0.717 | 1.054 0.882 0.672

Table 2: Statistics for runs of the algorithm on images of journal pages from [9]. All runs used

tolerance 1 pixel, grid spacing and secondary tolerance % pixel. Images were classified according to
the number of input vertices vy and whether or not they include halftone figures. (This information

appears in “page attribute files” that come with the test images.) Timings were made on a 150
megahertz MIPS R4400 processor and normalized by dividing by vy. The total time includes some
overhead due to data structure conversions in the interface between Stages 1 and 2.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 33

1.6 — with halftone
1.4 —
outline 1.2
bytes per
CCITT-g4 1+
byte
0.8 7 with drawing
0.6 —

{ { { { { { {
5000 10* 2x10* 5x10* 10° 2x10° 5x10°

CCITT-g4 bytes

Figure 23: Average ratio of outline bytes to length of the CCITT-g4-compressed TIFF file as a
function of the TTFF file size.

9 Conclusion

While most of the algorithms presented here are not extremely complicated, their implementations
do add up to about 5600 lines of C++, not including Stage 1. In spite of this, the results in
Section 8 show that the algorithm is fast enough to be quite practical. There are numerous potential
applications where it useful to extract good outlines from image data and represent the outlines
compactly. The two-stage approach allows separate control over the Stage 1 noise tolerance and the
output grid and auxiliary error tolerance from Section 7. By using the trapezoid sequence data from
Stage 1, it avoids complications that Guibas, Hershberger, et. al. [5] encountered in deciding what
order the output path hits the input data points.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 34

Appendices

A Validity and Timing Results for Stage 2

The first task is to show that algorithms defined in Section 4.1 allow the grid points in a convex
polygon to be scanned efficiently in a specified order.

Lemma A.1 If VapVecVepVap s circumscribing parallelogram constructed for a convez polygon
P as explained in Section 4.1, invoking Algorithm 4.1 with (x1,y1) = Vap — Vap and (z2,y2) =
Vep — Vap produces a transformation matriz T that maps P into a polygon whose area is at least
one quarter of its bounding box area.

Proof. The construction of VapVecVep Vap is based on support points A, B, C, and D as shown
in Figure 6. This defines a quadrilateral ABC'D C P whose area is half of VapVecVepVap.
Since affine transformations do not change area ratios, it suffices to show that the transformed
parallelogram has at least half the area of its bounding box; i.e.,

|21y2 — a2y | (13)

must be at least half of
(lz1| + |z2[)([v1] + [y2])- (14)

When Algorithm 4.1 terminates, we must have
min(|zy + yi |+ |22 + y2|, [21 — | + o2 — yal) > max(|a| + |2a], |yi]+ |y2]) (15)

in order for Steps 2 and 3 to select £ = 0 and [= 0. We will use this to show that (14) is no more
than twice (13).

There are some symmetry transforms that do not affect (13), (14), or either side of (15): swapping
(z1,y1) and (z2, y2) or negating either one, or swapping (1, z2) and (y1, y2) or negating either one.
These allow us to assume without loss of generality

2y 22120, wi+ae> [yl +lyl, and yi+y2 <0 (16)

We can also assume that y; +y2 # 0 since (13) is equal to half of (14) when (16) holds and y; +y2 = 0.
These assumptions restrict (y1,y2) to the dark shaded region in Figure 24a since it would violate
(15) to have (y1,y2) in the lightly shaded region.

With these assumptions, |z1+y1| + |22 + y2| > |2z1| + |z2| from (15) can be written
max(+(z1 + y1) £ (z2 + y2)) > 21 + 3,

where the maximum is over the four choices of signs. The only choice that does not conflict with
(16) or y1 +y2 #0is —(x1 + y1) + (z2 + y2) > 1 + 2. Combining this with (16) gives

21 <y2—y1 < T + T2
—z1—22<y1 +y2<0. (17)

which corresponds to the dark area in Figure 24a. Thus

(1 4+ 22)(y2 — 1) + (21 — 22) (1 + v2) S 2z1(z1 + 22)+0
2 - 2

1Yz — Talh = >0 (18)

so that the absolute value in (13) is unnecessary.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 35

Figure 24: Tllustrations for the proof of Lemma A.1. The dark shaded region in (a) gives the possible
(y1,y2) values. Equation (16) restricts it to the left side of the dashed diamond, and (15) disallows
the lightly shaded diamonds. Dotted lines in (b) are (y1,y2) values for particular values of a; heavy
solid lines in the dark area show where (14) achieves particular values.

Treat (21, z2) as fixed and consider the set S, of (y1,y2) points that obey (15) and (16) and have
(13) equal to some value «, where

’ 3 ?
zi(z1+22) <a < — (19)

The set S, is the segment of the line z1ys — zay; = « that satisfies (17). Call it S,. Tt has an end

point at
—a oY%
20
<I1+CL‘2’1‘1+=’L‘2) (20)

as can easily be verified by substituting this for (y1,¥2) in 21y2 — z2y1 = o and (17).

Figure 24b suggests that the maximum of (14) on S, occurs at an end point where y; = —ya.
If so, (20) must be that end point, and evaluating (14) there gives 2a. Thus (14) is at most twice
(13) if @ obeys (19). Tt cannot violate the lower bound in (19) because of (18). Since (16) limits
ly1|+ |y2] to at most 21 + 22, (14) cannot be more than twice the maximum « allowed by (19). Thus
the lemma is true if (20) is the end point of S, where (14) is maximized.

The argument that (14) is maximized at (20) is based on the points

P = _371-1-1‘2’1‘1-1-1‘2 and Py = _3:’131-}-1‘2’351—1‘2
2 2 2 2

that are shown in Figure 24b. Since z;y;—=z2y; has the same value at (y1,y2) = P; and (y1,y2) = Pa,
it has the same value at fP; and fP, for any multiplier f. Choosing f = 2a(z; + z2)~? makes fP;
equal to (20) so that fP, is the point on the line containing S, where the value of (14) matches that
at (20). Hence it suffices to show that S, lies entirely between fPy and fP,. This is true because
S, is a subset of region defined by (17), and this region belongs to the cone defined by OP; and
OP; where O is the origin. O

Lemma A.2 Algorithm 4.1 runs in time proportional to the logarithm of the ratio by which (14) is
reduced.

Proof. Let X = (21, 22) and Y = (y1,¥2), and let ||-||; be the 1-norm so that || X||; = |z1|+ |21] and
the function minimized in Step 2 is || X + £Y'||;. This unimodal function of k achieves its minimum

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 36

at —x1/y1 or —xy/ys, or it is minimal for the entire interval —z1/y; < k < —x5/ys. Thus the
minimum over the integers can be found in constant time, and a similar argument applies to Step 3.

If Step 2 does not leave || X||, < ||Y]|,, we have
min(||X + Y|y, [|IX = Y(ly) > [IX]], >[IV,

so that Step 3 will find that ||Y + [X]|; is minimized [= 0. Thus the next iteration of Steps 2 and 3
will find £ = [= 0 and the algorithm will terminate. Similarly, the algorithm terminates after one
more iteration if Step 3 leaves |[Y]|; > [|X]|;-

After Step 2, we always have
min([[X + Y, , [[X = YI[,) > [[X]]; -

Thus if Step 3 finds { = %1, the new Y will have ||[Y|]; > ||X||; and the algorithm will terminate
after one more iteration. A similar argument shows that the algorithm will terminate in one more
iteration if Step 2 finds k = +1 after Step 3 has executed at least once.

Now consider an iteration of Steps 2 and 3 that is not the first and not the last or second-to-last.
If Xy and Y; are the values of X and Y before Step 2 and X; and Y7 are the values after Step 3, we
have seen that

K>2, [>2, and (Vi < Xl . (21)
Since Yy = Y7 — X7 and Xy = X; — kYY), we have
Xo=(14+kDX; — kY7, (22)
Thus
1 Xolly = [1+ &L - (1X1 |y — k[(1YAlly > (11 + kL= (kDY (23)

where (21) implies
[L+kl—|k|=14+kl(Jl|]-1)>3 if kl > 0;
[L4+kl|—|k|=—-1+|k|(Jl|] = 1) > 2 otherwise (24)
unless k = —1 = £2.
When k£ = —1 = 42, let 6, = £1 be the sign of k£ so that ¥ = 204 and | = —20},. This makes
(22) reduce to Xg = —3X; — 203 Y1 so that
3(X1 — O'kYO) = 3(X1 — O'k(Yl — le)) = (3 + 3le)X1 — 30'kY1
= —3X1 - 30'kY1 = Xo - O'kyl
and [|Xo||; > 3||X1 — oxYoll; — ||[Y1]];- Since the optimality of & implies || X1 — o5 Yo||; > || X1]];.
(21) gives
1 Xolly = 311Xy — oxYolly — [Yally = 3[IX0ll, = [[Yally > 2[4l - (25)
We conclude from (25) or from (23) and (24) that ||Y1]|; < % [|Xol||;. Since Step 2 leaves || X1[|; <

[[Yol|;, each iteration of Steps 2 and 3 other than the first or the last two reduces the product of
[|X]]; and [|Y]|,; by at least a factor of two. Since this product is (14), the lemma follows. O

Now we are ready to prove Theorem 4.1. Step 1 of Algorithm 4.2 computes the correct grid
points and the rest of the algorithm keeps them ordered by D, component.

Lemma A.1 guarantees that T'(P) has height < 2/Ap or width < 2¢/Ap. Hence Step 1 generates
at most 2/Ap triples and takes time O(n 4+ +/Ap). Step 2 takes

0(\/Ap log(Ap)),

and the primitive operations in the other steps are all executed at most once for each output point
or once for each triple. Finally, Lemma A.2 gives a time bound for Algorithm A.2 that matches the
first term of (4). This gives the time bound required by Theorem 4.1.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 37

Lemma A.3 Algorithm 4.4 finds the best grid point in the region bounded by the near line and the
far path, where “best” is measured in terms of the tangent line direction as described at the beginning

of Section 4.

Proof. Note that points on the #}j, line are equally “good” in terms of the tangent line direction
ordering. By testing against this line, the algorithm explicitly checks the ordering among points
found in Step 4 and between such points and the value of P, in Step 7.

The argument that this final P, value is the best grid point is based on excluding grid points from
potentially better regions such as the shaded area in Figures 25a. The P, increments in successive
iterations of Step 5 define a polygonal line

PO = POPLRE 7,

c

for some m. The segments of this line are directed along the D vectors chosen in successive iterations
of Step 2. Since Step 7 proceeds only if test_pts() rejected D" + D in Step 5, the subsequent call to
test_pts() in Step 2 will truncate (8) before reaching the old D. Thus the segment directions along

P%™ move monotonically away from the PlOpt — o direction.

PCO"QO
(a) (b)

Figure 25: (a) The successive P, values from Algorithm 4.4 (dashed line), with the grid-point-free
region shaded. (b) A close-up of the region near P3.

c

Let Py be the grid point closest to P? along ray through Plopt, and let]3]» be the result of adding
D to the new P, value P/ in Step 5. For j < m, all P; points are grid points rejected by test_pts() as
past the far path. (These points are marked by open circles in Figure 25b.) For any j < m, consider
the cone bounded by rays through Pj and Pj+1 from the apex PJ. We can use the sequence of
CF-neighbor directions between P; — PJ and Pj4; — PI*! to divide the cone into sectors by making
additional rays through the apex ch along each of the new directions. If Dj,k—l and li)jyk are a
two of these CF-neighbor directions, either Djyk = Pj+1 — PJ*! or test_pts() has determined that
Pi+ Dj,k—l and PJ + Djyk are both across the far path. In the former case, Step 4 scans the sector
for grid points; in the latter case, all grid points in the sector must be across the far path. Hence
we can conclude that all cones Pj chpj+1 contain no interior grid points, except those considered in

Step 4.

We have shown that the lightly-shaded region in Figures 25a and 25b is free of unconsidered grid
points. More precisely, if P>™ is the result of extending the last segment of P%™ until it hits the
far path, then the closed region bounded by QoPlOpt7 the far path, and P%™ contains no grid points
except those on P%™ which are considered in Step 4. Thus, the only grid points across the near

line and better than P/ are those between Qg P™ (the dotted line in Figure 25a), P>™ (the dashed

c

line), and the near line (the ray from P{P" directed toward Pp). Call this region R.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 38

The darker region in Figures 25a and 25b corresponds to Figure 7a. It is a union of triangles of
the form
pr=t preleps PP Digg. (26)

c

These contain no interior grid points, because such a grid point would have to be a weighted average
of Pcm_l, Pcm_1 + Dj -1, and Pcm_1 + Dj 1, where Dj; ;1 and Dj ; are CF-neighbors between D;
and Dj41. Since P™~! must be short of the near line and the last triangle (26) had D;;; equal to
the near line direction, the triangles must cover the entire region R.

Hence if the algorithm returns P, there are no grid points between the near line and the far

path better than P™. The only other possibility is to return the best P, point, but this is only done
when a comparison against f};, shows that P is better than P”. O

The following corollary is simply a restatement of some the intermediate results in the above
proof. It is needed to prove that Section 7.1 implements the grid hull subroutine correctly.

Corollary A.4 Let PY™ be the polygonal line determined by the successive P, values computed by
Algorithm 4.4 as in the proof of Lemma A.3. If no grid points are found in Step 4, then all grid points
wn the closed region bounded by segment Qonpt, the far path, and P>™ lie on PY™. Furthermore,
all interior vertices of PO™ lie on grid points, and there are no inflection segments on P2™.

B The Validity of the Refined Trapezoid Sequence

The purpose of this appendix is to show that the techniques of Section 7 produce a refined trapezoid
sequence that includes the Stage 1 midline approximation. In other words, we prove Theorem 7.2.

Lemma B.1 Suppose trapezoids R;_1R;L;jL;_1 and RyRypp1Lg41Ly are elongated by withdrawing
R;_1 and Lj_; to infinity along ¢{(Rj_1R;) and £(Lj_1L;) and withdrawing Ryy1 and Lyyq1 to
infinity along £(RyRp41) and £(LyLyy1). Let Rp be the region covered by trapezoids R;Riy1Liy1L;
for j —1 <1 <k after the elongation and let Ro be the region similarly covered by the trapezoids
from the output of Algorithms 7.1 and 7.2 as outlined at the end of Section 7.1. Then Ro C Ry and
the midline approzimation from (Rj_1 + Lj_1)/2 to (Rp41+ Li41)/2 is a subset of Ro.

Proof. Section 7.1 defined semi-infinite regions £, and R}k as intersections of half planes, where
E;k uses half planes bounded by £(L;L;) for j —1 < i <k, and R;k uses half planes bounded by
LRIR).

(3

Assume without loss of generality that the directions (11) turn right as ¢ increases. (This is the
situation in Figure 17.) By construction, Ro is the set difference

ix \ CVg(Rjp), (27)
where C'V,(R) denotes the interior of the convex hull of the grid points contained in any region R.

If the relevant portion of the midline approximation is Mj, we can show that M;; € E}k by
exhibiting a set of half planes that contain M;; and have ﬁ}k as their intersection. The half planes
will be the regions to the right of directed lines £(L;L; ;) for j—1 <4 < k. Their intersection is £},
by definition, and (10) guarantees that segment i of M is parallel to £(L;L;) and to its right.
Since the segment directions in M;; turn monotonically and cover at most 180°, any segment of
M;}, is a supporting line. Hence My belongs to the £(L;L;,) half plane for each i and thus it
belongs to L’,;»k, the intersection of all such half planes.

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 39

Next, we need to show that M;; and CVg(R}k) are disjoint. Any point in M;; belongs to a
segment AB where A = (R;+L;)/2 and B = (R;j41+ L;4+1)/2 for some 7. Since R;k was constructed
to lie to the right of directed lines such as £(R;R;), (10) guarantees that R}, lies to the right of AB.
Hence, AB is disjoint from CVy(Rj};) and therefore M;; and CV,(R;};) are disjoint as required.
Thus M;; C Ro as required by the lemma.

In order to show that Ro C Ry, let
Rr = Ljr \ Rk, (28)

where £;} is the region on or to the right of directed lines ¢(L;L;11), for j — 1 < i < k and Ry is
the region to the right of £(R;R;41), for j — 1 < i < k. From (10), we immediately have E;k C Lk
and R;j C R;k Thus
CVy(Rjx) C CVy(Riy).
From Lemma 3.1, we have Rj; = CV,(R;) and thus
Rir C CVg(R}k) and [’;k C L.

Using (27) for Ro and combining this with (28) gives Ro C Ry as required by the lemma. O

The next three lemmas show that using Algorithm 7.3 or Algorithm 7.4 to merge separately
refined trapezoid subsequences preserves relationships similar to that in Lemma B.1.

Lemma B.2 Suppose trapezoid sequences
Rj—leLij—la~~~,RiRi+1Li+1Li and RiRi+1Li+1Li;~~~,RkRk+1Lk+1Lk (29)

are refined as explained in Section 7.1, and (11) has no inflections so that Algorithm 7.3 can be used
to merge the results. Let S; = ST US! and let RY and RY, be the regions covered by the original and
trapezoids and the merged refinements. Then

(M N Si) C (R NS;) C(RINS), (30)

where My, 1s the midline approrimation corresponding to Ry.

Proof. Recall from Section 7.2 that 87 U S! is a half plane bounded by #(L;L;y1) or £(R;R;41) and
defined so that all points in R? N S; lie on or between these lines.

Assume without loss of generality that the directions (11) turn right as the indices increase, and
apply Lemma B.1 to the two subproblems. The results can be written
Rji € CVy(Rj;) C T(M;i) € L; € Ly,
Rir C© CVy(Riy) C I(Mix) C Ly, C Lir,

where Z(M;;) and Z(M;;) are the convex regions bounded by the midline approximations for the

subproblems, £;; \ Rj; and L;; \ Rix are the regions covered by the input trapezoids for the two
subproblems, and £\ CVy(R};) and L}, \ CV,(R};) are the corresponding regions after refinement.

Combining this with
RirNS; = R]'Z' NR;rNS;
CVg(;k) ns; = CVg(R}i) n CVg(;k) ns;
IMip)NS; = I(./\A]'Z') ﬂI(E./\/i)”) N S)
LirNS; = [,]'Z' NLirNS;
gives Rjx C CVy(R}y) C I(Myy) C Ly, € Lj which is equivalent to (30). O

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 40

The correctness lemma for Algorithm 7.4 uses properties of a function ®(A, B) on semi-infinite
closed convex sets A and B with oriented boundaries. It requires an inner common tangent P Pp
of A and B with P4 € A and Pg € B chosen so that P4 is as early as possible on the boundary
of A and Pp is as late as possible on the boundary of B. The result of ®(A, B) is the closed region
that contains A and has as its boundary the boundary of A up to Pa, the segment P4 Pg, and the
part of B’s boundary that follows Pg. This is the lightly shaded region in Figure 26 together with
the darker region labeled “A.” The definition can be extended to handle borderline cases as follows:
if AN B is a point or a line segment, use that as P4 Pg; if AN B has interior points the function is
undefined.

Figure 26: An illustration of ®(A, B) for the proof of Lemma B.3.

Lemma B.3 Let & be the funciion defined above and assume ®(A1By1) and ®(A3By) are defined.
IfAl g A2 and B2 g B1 then q)(AlBl) g <I)(A2B2)

Proof. Let Sp be the points on the boundary of B from Pp onward and consider the union of all
lines tangent to B at points in Sp. This region contains A and has as its boundary the union of Sp
and the ray from Pp through P4. This is the same as ®(A, B) except that it contains points outside
of A for which the tangent line passes through A before reaching B. (This region is delimited by the
dotted line in Figure 26.) Eliminating this region produces an alternative definition for ®(A, B): it
is the union of all rays that start in A and are tangent to B at some point in Sp. Because P4 Pp
is a common tangent, rays from A tangent to B have points of tangency in Sp if and only if the
direction of the ray matches B’s boundary orientation at the point of tangency. This makes ®(A, B)
is the union of all rays tangent to B that start in A and agree with B’s boundary orientation at the
point of tangency.

Enlarging A provides more starting points for the tangent rays, so it can only add points to
®(A, B). Since ®(B, A) is the complement of the interior of ®(A, B), the same argument shows that
removing points from B also adds to ®(4, B). O

Lemma B.4 Suppose trapezoid sequences (29) are refined as explained in Section 7.1, and (11) has
an inflection so that Algorithm 7./ can be used to merge the results. If R and R, be the regions
covered by the original trapezoids and the merged refinements, then

M;x C Ry C Ry, (31)
where My, 1s the midline approrimation corresponding to Ry.
Proof. Let R} be the region covered by the trapezoid sequence ending at R; R;y1L;41L;, and let R
be the union of the corresponding refined trapezoids. Similarly, let R}' and Rg be the regions covered

by the original and refined versions of the trapezoids starting at R;R;y1Li41L;. Since Section 7.1
expresses the original and refined trapezoids as the difference of convex sets, we have

R; = Ry \ Ry2, R5 = Ro1 \ Roa,
R}F = Ry3 \ R4, RJ(S = Ros \ Roa,

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 41

where Ry through Ry4 and Ro1 through Ro4 are convex regions. We can also define a convex regions
I(M;;) and Z(M;;) whose boundaries are respectively M;; and M;y, the midline approximations
for Ry and R}'.

This allows us to rewrite the results
M;i CR; C Ry and M, C R, C R

of Lemma B.1 as

Ris C Ros CZ(M;;) C Ro1 C R

and

Rrs C Roa CI(M;;) C Ros C Rrs.

Lemma B.3 immediately gives

®(Ro2, Ros)

®(Ro1, Roa) (Rn, Rpa). (32)

Since

Ry = ®(Ro1, Roa) \ ®(Ro2, Ros),
RY = ®(Rr1, Rra) \ ®(Rp2, Ry3),

and the boundary of M is ®(Z(M;;),Z(M;y)), (32) is equivalent to (31) as required by the lemma.
O

Lemmas B.2 and B.4 make it easy to prove Theorem 7.2. The proof is by induction on the
total number of calls to Algorithms 7.3 and 7.4 Lemmas B.2 and B.4 each use the containment
relations guaranteed by Lemma B.1, but their proofs still work when this is replaced by the induction
hypothesis.

Atts.
References
Appendices A and B

Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints 42

References

[1]

[2]

[10]

[11]

[12]

[13]

[14]

0. E. Agazzi, K. W. Church, and W. A. Gale. Using OCR and equalization to downsample
documents. In Proceedings of the 12th International Conference on Pattern Recognition, pages

305-309, Jerusalem, Israel, October 1994.

Touradj Ebrahimi, Homer Chen, and Barry G. Haskell. Joint motion estimation and segmen-
tation for very low bitrate video coding. AT&T Bell Laboratories technical memorandum,

1994.

Michael T. Goodrich. Efficient piecewise-linear function approximation using the uniform met-
ric. In Proceedings of the Tenth Annual Symposium on Computational Geometry, pages 322-331,
June 1994.

L. Guibas, L. Ramshaw, and J. Stolfi. A kinetic framework for computational geometry. In
Proceedings of the 24th Annual Symposium on Foundations of Computer Science, pages 100-
111, 1983.

Leonidas J. Guibas, John E. Hershberger, Joseph S. B. Mitchell, and Jack Scott Snoeyink.
Approximating polygons and subdivisions with minimum link paths. In W. L. Hsu and R. C. T.
Lee, editors, ISA 91 Algorithms, pages 151-162. Springer-Verlag, 1991. Lecture Notes in
Computer Science 557.

John D. Hobby. Polygonal approximations that minimize the number of inflections. In Pro-
ceedings of the Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 93-102,
January 1993.

U. Montanari. A note on minimal length polygonal approximation to a digitized contour.
Communications of the ACM, 13(1):41-47, January 1970.

L. O’Gorman. Image and document processing techniques for the rightpages electronic li-
brary system. In International Conference on Patiern Recognition (ICPR), pages 260-263, The
Hague, September 1992.

Thsin T. Phillips, Su Chen, and Robert M. Raralick. CD-ROM document database standard.
In Proceedings of the International Conference on Document Analysis and Recoginition, pages

478-483, 1993.

Paul L. Rosin and Geoff A. W. West. Segmentation of edges into lines and arcs. Image and
Vision Computing, 7(2):109-114, 1989.

Christian Scwarz, Jurgen Teich, and Emo Welzl. On finding a minimal enclosing parallelogram.
Technical Report TR-94-036, International Computer Science Institute, Berkeley, California,
August 1994.

Jack Sklansky. Recognition of convex blobs. Pattern Recognition, 2(1):3-10, January 1970.

Jack Sklansky, Robert L. Chazin, and Bruce J. Hansen. Minimum perimeter polygons of
digitized silhouetts. IEEE Transactions on Computers, C-21(3):260-268, March 1972.

Jack Sklansky and Dennis F. Kibler. A theory of nonuniformity in digitized binary pictures.
IEEE Transactions on Systems, Man, and Cybernetics, SMC-6(9):637-647, September 1976.

Space-Efficient Outlines from Image Data via Vertex
Minimization and Grid Constraints

John D. Hobby

AT&T Bell Laboratories
Murray Hill, NJ 07974-2070

ABSTRACT

When processing shape information derived from a noisy source such as a digital scanner, it is often
useful to construct polygonal or curved outlines that match the input to within a specified tolerance
and maximize some intuitive notion of smoothness and simplicity. The outline description should
also be concise enough to be competitive with binary image compression schemes. Otherwise, there
will be a strong temptation to lose the advantages of the outline representation by converting back
to binary image format.

This paper proposes a two-stage pipeline that provides separate control over the twin goals of
smoothness and conciseness: the first stage produces a specification for a set of closed curves that
minimize the number of inflections subject to a specified error bound; the second stage produces
polygonal outlines that obey the specifications, have vertices on a given grid, and have nearly the
minimum possible number of vertices. Both algorithms are reasonably fast in practice, and can be
implemented largely with low-precision integer arithmetic.

