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ABSTRACT

When processing shape information derived from a noisy source such as a digital scanner, it is often
useful to construct polygonal or curved outlines that match the input to within a specified tolerance
and maximize some intuitive notions of smoothness, simplicity, and best fit. The outline description
should also be concise enough to be competitive with binary image compression schemes. Otherwise,
there will be a strong temptation to lose the advantages of the outline representation by converting
back to a binary image format.

This paper proposes a two-stage pipeline that provides separate control over the twin goals of
smoothness and conciseness: the first stage produces a specification for a set of closed curves that
minimize the number of inflections subject to a specified error bound; the second stage produces
polygonal outlines that obey the specifications, have vertices on a given grid, and have nearly the
minimum possible number of vertices. Both algorithms are reasonably fast in practice, and can be
implemented largely with low-precision integer arithmetic.
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When processing shape information derived from a noisy source such as a digital scanner, it is
often useful to construct polygonal or curved outlines that match the input to within a specified
tolerance and maximize some intuitive notions of smoothness, simplicity, and best fit. The outline
description should also be concise enough to be competitive with binary image compression schemes.
Otherwise, there will be a strong temptation to lose the advantages of the outline representation by
converting back to a binary image format.

This paper proposes a two-stage pipeline that provides separate control over the twin goals of
smoothness and conciseness: the first stage produces a specification for a set of closed curves that
minimize the number of inflections subject to a specified error bound; the second stage produces
polygonal outlines that obey the specifications, have vertices on a given grid, and have nearly the
minimum possible number of vertices. Both algorithms are reasonably fast in practice, and can be
implemented largely with low-precision integer arithmetic.

1 Introduction

In fields such as image processing, font generation, and optical character recognition, it is often
useful to extract outlines from a digital image. In the case of binary images, a naive approach to
this problem yields jagged polygonal outlines that have large numbers of very short edges as shown
in Figure la. Such outlines are undesirable because the jagged appearance is due to noise introduced
by the scanning process. A suitable polygonal approximation such as in Figure 1b has a smoother
appearance and fewer vertices. Filtering out the noise and reducing the vertex count makes the
outlines more useful and speeds subsequent processing.

(a) (b)

Figure 1: (a) A simulated character shape outline as might be obtained from a digital image; (b) a
polygonal approximation with a smoother appearance.

There are many polygonal approximation algorithms that convert input such as Figure la into
output reminiscent of Figure 1b. This is probably due to the ill-defined nature of the problem and the
competing goals of speed, vertex minimization, and faithfulness to the input. Often neglected is the
goal of smoothing out the “jaggies” caused by noise from the scanning process. A carefully-designed
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polygonal approximation algorithm can actually improve the outlines by eliminating noise-induced
“jaggies.” The algorithm that generated Figure 1b tries to do this by emphasizing smoothness and
quality of fit with little regard to reducing the vertex count [7].

The goal of the present work is to retain the advantages of smooth, well-fitting outlines, but
simplify them enough so that they can be stored compactly. What are these advantages? Consider
an electronic library project involving scanned document images as described by O’Gorman [14].
When a document is first scanned into the system, the resulting page images need to be processed
to remove noise and correct for the skew angle. The skew comes about because the lines of text are
not likely to be perfectly aligned with the scanner’s pixel grid. It is important to correct the skew
because small angle rotations lead to annoying image defects, especially when viewed on a computer
screen. Agazzi, Church, and Gale [1] have found that a good way to do the required rotations is to
use the algorithm from [7] to generate outlines, then rotate the outlines and scan-convert them to
get another binary image.

It would be much better to retain the outlines, since the page images need to be rescaled to
cope with a wide range of output devices as explained in [1]. In other words, we need simpler
outlines to avoid the destructive process of scan-converting and then later rescaling the resulting
bitmaps. Hence we want to retain most of the smoothness and accuracy of the outlines from [7], but
allow them to be stored in roughly the same space as is required by the best available compression
techniques for binary images.

We therefore refer to the algorithm from [7] as Stage 1, and add a Stage 2 that post-processes
the Stage 1 output to reduce the vertex count and restrict the vertex coordinates to an integer grid.
This creates a trade-off between the quality of the outlines produced and the space required to store
them. The entire process can be viewed as an attempt to find the most concise outlines possible
subject to constraints on the smoothness and quality of fit.

The Stage 1 algorithm achieves smoothness by minimizing the number of inflections in the
output [7]; i.e., vertices can be classified as left turns or right turns and the number of alternations
between the two is minimized subject to a bound on the approximation error. The only other
approach that minimizes inflections is Montanari’s idea of minimizing the perimeter subject to the
error bounds [13]. (See also the work of Sklansky [24, 25, 27].) Unfortunately, this tends to maximize
the error rather than minimize it, since minimizing the perimeter demands taking the extreme inside
track when going around a curve. Figure 2 illustrates this by comparing the minimum perimeter
curve with the result of the Stage 1 algorithm. Note that the Stage 1 output includes a sequence
of trapezoids that define a class of minimum-inflection curves that stay within a tolerance of the
original input.

Now consider the goal of minimizing the vertex count subject to some kind of pointwise er-
ror bound. Williams does this by keeping track of cones that intersect circular neighborhoods of
successive data points [30]. Kurozumi and Davis simplify the problem by allowing gaps between
segments so that a simple greedy algorithm based on convex hulls minimizes the number of output
segments [11]. Dunham uses dynamic programming to select a minimal subset of the input ver-
tices [2], and Tmai and Tri use a graph-based algorithm to accomplish essentially the same thing [8].
Guibas, Hershberger, et. al. use computational geometry techniques and dynamic programming to
minimize the vertex count under a variety of conditions [6]. The method of Sharaiha and Christofides
recognizes digitized straight line segments and uses a visibility graph to construct a minimum-vertex
approximation [23]. Pikaz and Dinstein use breadth-first search to select a minimal subset of the
input vertices, and use the Manhattan metric to measure pointwise error [19].

Kahan and Snoeyink give theoretical bounds on the vertex count for a polygonal path through a
simple polygon with vertices restricted to an integer grid [9], but their algorithms are not intended
to give good results for polygons like those in Figure 2b and the results presented later will bear
this out.
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(a)

Figure 2: (a) Part of an outline extracted from a binary image; (b) corresponding output from
the Stage 1 algorithm with the best polygonal approximation marked by a dashed line; (¢) the
superposition of (a) and (b); (d) the Stage 1 output with the minimum perimeter path shown as a
heavy line.

Instead of minimizing the vertex count, Pavlidas uses Newtonian iteration to minimize the total
squared error subject to a constraint on the number of output segments [15]. The segments are
not required to meet exactly. Such gaps can be avoided by settling for approximately minimum
error [17]. Another approach by Ray and Ray is to select each segment to minimize an objective
function based on the segment length minus a penalty term for the sum of the pointwise errors [21].

If the vertex count only needs to be approximately minimum, we can use a simple greedy algo-
rithm that runs in linear time. Tomek does this for functions of one variable by ensuring that a slab
centered on the new segment contains as many data points as possible [28]. Pavlidas extends this
algorithm to polygons on the plane [16]. Sklansky and Gonzalez achieve a similar result by main-
taining a cone that describes the set of allowable directions for the next segment [26]. Leung and
Yang do the same thing with a slightly different technique for maintaining the set of directions [12].

There are also a lot of polygonal approximation algorithms that do not try to minimize the vertex
count. Ramer’s recursive subdivision algorithm is a classic example [20]. Wall and Danielsson’s
method is fast and popular in application domains such as optical character recognition [29]. Tt
chooses the next output vertex by keeping track of the area between the segment and corresponding
part of the input polygon.

None of the algorithms cited above impose grid constraints except in a very theoretical context
or by restricting the output vertices to be a subset of the input vertices. In addition, none of them
try to maximize smoothness and quality of fit the way the Stage 1 algorithm does. Applications
that benefit from such high-quality polygonal approximations include optical character recognition
(OCR), understanding engineering drawings, robotics, and processing fingerprints. The more concise
output generated by the two stage algorithm could benefit any of these applications, since they all
involve processing the extracted outlines, and reducing the vertex count speeds up the processing.

A major area where vertex minimization and grid constraints are important is data compres-
sion. Virtually any image representation scheme that involves outlines could benefit from this. For
instance, the present algorithm has been considered for very low bit-rate video encoding [3].
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In the electronic library application, another possible benefit from storing documents in outline
format is to provide input for an OCR process. Intense commercial interest in optical character
recognition has lead to a wide variety of competing systems, and some of them do convert input
images into outline form. Since the large number of “typographical errors” introduced by typical
OCR systems are a major limitation, it is important to have the best possible outlines for those
systems that use outlines.

Would any of these applications benefit from spline approximations? We do not consider this
because the question is outside the scope of this paper and there is evidence that spline approxima-
tions would be of marginal utility for the application to scanned document images. The character
shapes in a 400 dot-per-inch image with 10 point text are only about 40 pixels high, and they do
not tend to have big sweeping curves. Figure 1b is an extreme case, but even there, it is hard to see
how a single curve segment could replace more than five or ten edges.

Section 2 discusses the interface between Stage 1 and Stage 2 and explains how Stage 1 simplifies
the application of grid constraints in Stage 2. The next three sections cover the Stage 2 algorithm:
Section 3 explains how to scan the grid points visible from a given view point and chose the one
that allows the best potential for further progress; Section 4 discusses how to handle the competing
demands of maximizing forward and backward visibility at an inflection; and Section 5 presents the
main algorithm for Stage 2. Next, Section 6 discusses an intermediate pipeline stage that provides
better control over the approximation error in Stage 2. Although dynamic programming techniques
could probably be used to minimize the vertex count, the experimental results in Section 7 suggest
that it is much better to settle for near minimum since this produces a reasonably fast algorithm.
Finally, Section 8 gives a few concluding remarks and the appendix gives proofs that the casual
reader may want to skip.

2 The Output of Stage 1

Since the Stage 1 algorithm is described in [7], we need only to explain how to interface to it. The
goal of Stage 1 is to take an input polygon and a “noise” tolerance €, and guess what original outline
might have produced the observed input. It does this by assuming that horizontal and vertical
deviations of less than ¢ may be due to noise and that the original outline has the minimum possible
number of inflections. For input like that in Figures la and 2a, € should typically be slightly more
% pixel unit.

The input for Stage 1 is the tolerance € and a polygon with vertices

(X11Y1)7 (X21Y2)1 (X37Y3)7 e

The tolerance is enforced by requiring the output to pass within co-norm distance € of each vertex.
Hence, the approximation must pass through squares of the form

{(y)|Xi—e<az<Xi+e Vi—e<y<Yite} (1)

as indicated by dashed lines in Figure 3a.

Figure 3b illustrates the corresponding output of Stage 1. It is a sequence of trapezoids of the
form

RiRoLoLy, RoR3LzLo, R3R4L4Ls3,. .., (2)

where the ith trapezoid has parallel edges R;R;4+1 and L;y1L;. (It is possible to have R; = R;41 or
L; = L;i41, in which case the trapezoid degenerates to a triangle.)
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Figure 3: (a) Part of an outline extracted from a binary image with the squares defined by (1)
indicated by dashed lines; (b) corresponding output from the Stage 1 algorithm; (¢) the superposition
of (a) and (b).

The polygonal approximation recommended in [7] is the one whose ith vertex is

Li+ R;
—

It obeys the input specifications in that it passes through the squares defined by (1) in order. In
fact, [7] shows that this holds for any polygonal approximation that passes through the trapezoids
defined by (2) in order and has no more inflections than the recommended one.

Part of the goal of Stage 2 will be to find a polygonal approximation that passes through the
trapezoids and has vertices confined to some kind of grid. Hence we must be careful to choose the
grid and the tolerance € so that such a grid-restricted polygonal approzimation is guaranteed to exist.

We can get an idea about how to do this by noting that most of the trapezoid vertices in Figure 3¢
lie at the corners of dashed squares. In particular, this holds for Ry, R3, R4, and R5. Comparing
Figure 3b with Figure 2d, we find that these are the vertices that occur on Montanari’s minimum-
perimeter path. Hence we arrange for the corners of the squares to lie at grid points, and hope that
this will make enough of the trapezoid vertices lie at grid points so that the minimum perimeter
path through the trapezoids will be a grid-restricted polygonal approximation.

If the initial outlines come from binary images, the X;, Y; coordinates are integer numbers of
pixel units. Then we can choose the grid for the output vertices to be some integer factor K times
finer than the pixel grid,! and choose ¢ to be a multiple of 1/K pixel units. This forces the corners
of the squares to lie at grid points.

Montanari’s minimum-perimeter path through (1) has vertices at the corners of the squares,
hence it is a grid-restricted polygonal approximation. In fact, these vertices are concave trapezoid
vertices, 1.e., they are like Ry, R3, and R4 in Figure 3b, not like the convez trapezoid vertices Lo,
L3, Ls. The critical property is that the concave trapezoid vertices must lie at grid points.

It is clear from [7] that this minimum-perimeter path can be made to pass through the trapezoids
from Stage 1. Minor modifications are needed because [7] uses strict inequalities in (1) and treats
the trapezoid edges (solid lines in Figure 3b) as out of bounds. We have the following theorem:

1The choice of K is discussed in Section 7. It should probably be < 4 in order to reduce the number of bits needed
to store the output coordinates.
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Theorem 2.1 Suppose that the input for Stage 1 has integer vertex coordinates on a pizel grid and
that the oulput grid is finer by some integer factor K, where the tolerance ¢ is a multiple of 1/ K. If
the Stage 1 algorithm is modified as explained above, then there 1s a minimum-inflection polygonal
path through the trapezoid sequence with all vertices at output grid points.

3 The Best Visible Grid Point Subproblem

The Stage 2 algorithm takes a trapezoid sequence as described in Section 2 and tries to find a grid-
restricted polygonal path that passes through the trapezoids in order and has few vertices. Begin by
considering the simple case where there are no inflections, so we are given a sequence of trapezoids
whose outer and inner boundary make only right turns (or only left turns). If there are only right

turns, the vertices on the outer boundary are Li,..., Ly and the vertices on the inner boundary
are Ry,..., Ry as in Figure 3b. (In the left-turning case, Li,..., Ly are on the inner boundary
and Ry, ..., Ry are on the outer boundary). Refer to these inner and outer boundaries as the inner

chain and outer chain, respectively.

We also assume we are given a start point Psgart, which we assume lies in trapezoid RiRsLs Ly,
and a goal point Pgoa1, which we assume lies in the trapezoid Ry_1RpLyLi_1. Our goal is to find
a polygonal path Py, Py, ..., Py with Py = Pypary and P, = Pgoal that stays inside the trapezoids
and has a minimum number of vertices. Moreover, the vertices of the path are confined to lie on a
given grid.

Without the grid constraints, we would just start at Py, find an “optimal” visible point PlOpt as

shown in Figure 4, and use the same strategy to generate P;pt, P;pt, etc. until finding a PZ-OPt from
which Pgoq is visible. All such optimal points PZ-OPt lie on the outer chain as does PlOpt in the figure.

Figure 4: Input trapezoids for Stage 2 and part of the region to search when finding the best grid
point visible from FP;. All points on a single white stripe are equally desirable.

The region visible from P; is delimited by a tangent line from Py to the inner chain. (There
are two tangent tangent lines and we want the “forward” one). Since such tangent lines can be
ordered according to their point of tangency, points such as Py can be ranked according to the limit
of visibility from there. When two tangent lines have the same point of tangency, their direction
angles can be used to break the tie.

The same ranking scheme applies when points P; are restricted to be grid points, but it is
necessary to search for the best grid point visible from the previous P;. The region to search for the
next point P41 is determined the the forward tangent line from P; to the inner chain. Call this the
search polygon for P;. It 1s bounded by the tangent line and part of the outer chain. The shaded
region in Figure 4 is part of the search polygon for Py and the rankings are suggested by white
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stripes. Points Qq, @1, ..., ¢ are the possible points of tangency that determine the ranking for
points in the search polygon. They are vertices on the inner chain.

The simplest method for finding the best grid point visible from a point such as Py is to scan each
row of grid points in the search polygon and stop when the scanning process has covered all points
that are as good as the current best grid point. This turns out not to be the best way to find good
visible grid points, but it is an important subproblem that we will need later. Hence, Section 3.1
shows how suitable affine transformations can make this simple scanning process reasonably efficient.

Section 3.2 shows how to use continued fractions to find the best visible grid point, and Section 3.3
generalizes this to cover a subproblem that will be useful when dealing with inflections.

3.1 Scanning a Simple Polygon for Good Grid Points

Consider the problem of scanning the grid points in a closed convex polygon. Since the polygon
could be very long and narrow and rotated by any angle, we first transform the coordinate system
to reduce to simpler cases. The idea is to choose an affine transformation that maps grid points to
grid points and causes the polygon to occupy a significant fraction of its bounding box.

Start with a polygon P and a direction vector d in which scanning should proceed. In other words,
the definition of a “good” grid point is one where the dot product with d is as small as possible. (This
is not the ranking we get from the best visible grid point subproblem—it corresponds to pretending
that the white lines in Figure 4 are parallel).

We start by constructing supporting lines for P perpendicular to d and completing a circum-
scribing parallelogram as shown in Figure 5. This is done by taking the points of support A and C,
and finding a pair of supporting lines parallel to the dashed line AC. Since the resulting parallel-
ogram has twice the area of the convex quadrilateral ABC'D, it has at most twice the area of P.
(Somewhat better ratios could be obtained via the more sophisticated techniques of Schwarz et. al.

[22].)

Ve

Figure 5: The construction for a parallelogram that circumscribes P, has two edges perpendicular
to d, and has area no more than twice the area of P.

If the circumscribing parallelogram is VapVec VepVap as shown in Figure 5, the area of the
bounding box is

(lz2] + 2}l [ + 1y21), 3)

where (21,%1) = Vap—Vap and (22, y2) = Vep—Vap. Tofind a transformation matrix 7' that maps
grid points to grid points and minimizes (3), we can use a sequence of elementary transformations
that alternate between the goals of reducing |z1| + |z2| and |y1]| + |y2|-
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For example, suppose the construction in Figure 5 gives Vap — Vap = (—5.3,3.7) and Vep —
Vap = (—13.4,9.1). Initially, we have (z1,y1) = (—=5.3,3.7), (22,42) = (—13.4,9.1),and T'= (} 9).
Next, choose an integer k& and transform each (z,y) by replacing  with 4+ ky so as to minimize
|£1] + |za|. The best choice is & = 1, giving (z1,y1) = (—1.6,3.7), (z2,y2) = (—4.3,9.1), and
T =(}1). To minimize |y1| + |y2| via a transformation y «— y + lz, choose | = 2 so that (z1,11) =
(—1.6,0.5), (z2,y2) = (—4.3,0.5),and T'= (1 }). To minimize ||+ |z2| via a transform z — z+ky,
one of the optimal k values is k = 4. This gives (z1,y1) = (0.4,0.5), (z2,y2) = (—2.3,0.5), and
T = (5%Y). Subsequent transformations do not help, so the algorithm terminates. Algorithm 1
formalizes this process.

Algorithm 1 Construct a 2 x 2 transformation matrix 7' that maps the set of integer grid points 7?2
to itself and tries to map (21, 1) and (22, y2) so as to reduce the bounding box area (3) as much as
possible.

1. Set T11 = T55 = 1 and T3 = T51 = 0 so T is the 2 x 2 identity matrix.

2. Choose k € Z to minimize |z1+kyi| + |z2+kyz2|. In case of ties, prefer k& = 0 if possible. Then
set £y =21 + kyr, xo = 2o+ ky1, T11 =111 + k15, and 119 = Tio + k5.

3. Choose | € Z to minimize |y1+lz1| + |y2+{z2|. In case of ties, prefer [ = 0 if possible. Then
set y1 = y1 + 1z, y2 = y2 +lz1, To1 = To1 +{Th1, and Thy = Too + Ths.

4. Stop if £ =1 = 0; otherwise go to Step 2.

The purpose of Algorithm 1 is to find a transformation matrix 7' that reduces the problem of
scanning grid points the polygon P to the case when P occupies a significant fraction of its bounding
box.?2 Once this is achieved, an ordinary scan-conversion algorithm can find the grid points in the
transformed P without considering more than a small multiple of \/area(P) scan lines. Some
additional care is required to scan in d order, but the details are unimportant in practice.

Algorithm 1 is fast in practice because the time for each iteration of Steps 2 and 3 i1s a small
constant, and the number of iterations seldom exceeds two or three. (The running time can be
proven by noting that the bounding box area (3) gets reduced geometrically.?). Counting the cost
of scan-conversion, the time bound for finding & grid points in an n-vertex polygon P with the aid
of the transformation computed by Algorithm 1 is

O(n+k) (4)

plus some overhead that depends weakly on P.

3.2 Using Continued Fractions to Find the Best Visible Grid Point

The polygon searching algorithm in Section 3.1 is a useful tool, but it is not ideally suited to the
problem of finding the best visible grid point as illustrated in Figure 4. The figure contains clues
to the nature of the trouble: the shaded polygon has an arbitrary boundary, and the white stripes
are not parallel. More precisely, the search polygon for Py can be large and we would like to search
just a portion of it, but it is not clear how big a portion to search or what direction to use for d.
There is no unique d that is always consistent with the notion of ranking grid points according to
the tangent line they lie on.

?In fact, the transformed version of P occupies at least % of its bounding box. A proof of this result is available
on request.
3This proof is also available on request.
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We want to find the best grid point visible from the given point. Without loss of generality, we
assume that the given point is Py. Recall that PlOpt is the best visible point without grid constraint,
and let Qg be the vertex on the inner chain where the forward tangent line from prt touches the
inner chain as shown in Figure 4. Let 1, @2, ..., @; be the other inner chain vertices where the
forward tangent from a point in the search polygon for Py can touch the inner chain. We can assume
that the vertices @Q; are defined so that for any ¢ < ¢, the portion of the inner chain between ); and
Qi+1 1s a nontrivial straight line segment. Note that the vertices @); are concave trapezoid vertices,
and hence they are grid points.

For the moment we only consider the visible grid points whose tangent line to the inner chain
goes through Qg. If there is no such grid point, then we repeat the process for @1, @2, @3, etc., until
a visible grid point is found. Of all the visible grid points with a tangent line through Qq, which is
the best one? This must be the one such that the direction from Qg to that grid point is closest to
the direction from Qg to Plopt. Since @ is a grid point, we must approximate the direction from
Qo to PlOpt by a rational direction (from Qg), with the constraint that the grid point defining the
rational direction should lie in the search polygon of Py. This calls for continued fractions.

The idea of using continued fractions is that they allow us to find rational directions between a
direction Dy = PlOpt — Qo and Dg, = Py— Plopt. Our goal 1s to find a visible grid point for which the
direction from Qg is as close to D as possible. We will do this by starting from @ and stepping
from grid point to grid point, where each step is along a rational direction chosen to be as close to
Dg; as possible subject to the constraint that it must be possible to take a step in that direction
without crossing the outer chain. The chosen directions will get further and further from Dy, but
we need to keep them between Dy and Dg, in order to guarantee that we keep approaching the
search polygon of Fy.

Continued fractions provide an efficient way to scan for short rational direction vectors between
Dyt and Dgy. The goal is to find a sequence of rational directions Dy, Dy, Ds, ..., Dy from which
the desired short rational direction vectors can be constructed. We assume that Dy is closest to
Dy and Dy, is closest to Dgay. Figure 6a shows an example for Dy = (—1,7) and D3 = (—11, 3).
The desired short rational directions are the vectors from (0,0) to the integer grid points that are
marked by dots along the DgD1, D1 D5, and Dy D3 segments. A key property of the construction is
that these rational direction vectors are “as short as possible” in the sense the shaded region in the
figure contains no grid points.

When using this construction, directions closest to Dy are considered “best.” We start at Qg
in Figure 6b and take one step in the best possible rational direction, and repeat this process until
reaching £(P{P*Py), where ¢(AB) is the line defined by segment AB and directed from A to B.
The first step goes to Ry because R} is out of bounds. The next step goes to Rs, and the process
terminates there because R is on the correct side of K(prtPo). The argument that R4 must be the
best grid point visible from Py is based on the fact that there are no grid points in the interior of

the shaded region.

The continued fraction algorithm can be thought of in terms of rational directions by writing
(¢,p) in place of each fraction p/q. Expressed in this form, the algorithm generates a sequence of
approximations Do, Dy, D, ..., Di to a rational direction D, where Dy = (1,0), D; = (0, 1),
and Dy = D. The algorithm also generates integer coefficients ¢;, where D; = D;—_9 4+ ¢;D;_1. The
approximation sequences

D01D21D41'~'aDQL(k—l)/ZJa Dk (5)
and

D17B31D51'~'1D2|_k/2_]—17 Dk (6)
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(0,0)

(a)

Figure 6: (a) Rational directions between Dy = (—1,7) and D3 = (—11,3) with a grid-point-free
region shaded. Dots mark the ends of the direction vectors. (b) How to use the rational directions
to find the best grid point R, that is visible from Pj. (Point Py should be some distance away in
the direction of the arrow.) (c) A close-up of the region near R; and Rj.

approach D from opposite sides. Adding intermediate directions

Di_s+ Di_1, Di—o+2D;_1, Di—o+3D;_1,..., Do+ (¢; —1)D;_q

between each D;_s and D; where 2 < i < k refines (5) and (6) so that consecutive approximates D'
and D' are CF-neighbors. Any rational rational direction between D’ and D" can be written as

mD' + nD”,

where m and n are positive integers. We say that rational directions D;, D;y1 € Z? are connected
by CF-neighbors if there exists an integer ¢; such that

J(Di — Diy1)

Ci

D1 + for 0<j<¢ (7)

are rational directions in Z? and the directions for consecutive j values are CF-neighbors.

For instance, Ds = (1,3) and D3 = (3, 11) are connected by CF-neighbors because letting ¢ = 2
in (7) generates a sequence

(1,3), (2,7), (3,11),

where (1,3) and (2,7) are CF-neighbors and so are (2,7) and (3, 11). (The easiest way to see this is
to note that matrices (1 2) and (3 ;) have unit determinants.)

We need an algorithm for finding a sequence of directions connected by CF-neighbors, given
starting and ending directions Dy and Dg,. The idea is to start with the continued fraction ex-
pansion for Dg; and then use directions from (5) or (6). If Dgy lies in the first quadrant, there will
be some j for which Dgp is between D;_5 and D;. A suitable 2 by 2 transformation matrix allows
the remaining directions to be found by taking the continued fraction expansion for a transformed
version of Dg, and then applying the inverse transform to directions from (5) or (6).

Suppose Dy, = (7,1) and Dgn = (3, 11). Taking the continued fraction expansion for % gives

(1,0), (1,0), (7,1) and (0,1), (7,1)

for (5) and (6). In this case it is (6) that gives directions between Dy and Dgan. Using (7) with
Dy =(0,1) and D3 = (7,1), we find that the CF-neighbors around Dgy are (0,1) and (1,1). Next
we output (6) down to Dap, giving just (7, 1).
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The transformation T(z,y) = (z,y — ) maps directions between (0, 1) and (1, 1) into the first
quadrant. Since T'(Dgn) = (3, 8), we take the continued fraction expansion for %, obtaining

(1,0), (1,2), (3,8) and (0,1), (1,3), (3,8)
for (5) and (6). Applying T~ to (5) gives (1,1), (1,3), (3,11). Hence we output these directions
and terminate.

Algorithm 2 formalizes this process. It assumes that Dy belongs to the first quadrant. If not, it
suffices to rotate by a multiple of 90°. (Such a rotation reduces the situation shown in Figure 6a to
the example given above.)

Algorithm 2 Given initial and final directions Dg; and Dg, with Dg; in the first quadrant, output
a sequence of rational directions such that the first one agrees with Dy, the last one agrees with
Dap, and consecutive outputs are connected by CF-neighbors.

1. Use the continued fraction algorithm to approximate Ds;.

2. If Dgy is clockwise from Dg, output the entries of (5) in reverse order, stopping when some D;
is not clockwise from Dgy. This may require extending (5) by prepending (0, —1) or (—1,0),
(Oa _1)'

3. If Dgy is counter-clockwise from Dg;, output the entries of (6) in reverse order, stopping when
some D; is not counter-clockwise from Dg,. This may require extending (6) by prepending

(—1,0) or (0,—1), (=1,0).

4. Let D; be the last direction in the output so far, and find the CF-neighbors D', D" between
Dj and Dj+1 such that Dgp is between D’ and D”. Then find a, b such that Dg, = aD’ +bD".
and use the continued fraction algorithm to approximate (a,b). Output the entries of (5)
transformed by the matrix that maps (1,0) to D’ and (0, 1) to D".

The running time for Algorithm 2 is dominated by the continued fraction expansions of Dy and
Dagn. This 1s known to be
O (log(|| Dst 1) + log(|| Danl1))

where ||-|| denotes any standard vector norm [10].

The output of Algorithm 2 can be used as described above to make successive steps from a
starting point )y toward an initial goal Plopt7 turning as necessary to avoid crossing the outer chain.
Call the directed line from prt toward Py is the near line, and refer to the outer chain as the far
path. The near line defines a limit of visibility from Py that the stepping process must reach.

If we want the best grid point that can see g, the region to be searched is the dark-shaded
region in Figure 7. Initialize a boundary line #in to £(Qo@Q1) and use Algorithm 2 to find directions
Dq, Dy, ..., Dy, where Dy agrees with prt — Qo and D,, agrees with Py — Plopt. The main loop
maintains a current point P, (initially Qo) and tries to add some positive combination of D; and
Djy1, where ¢ is a loop variable that starts at zero and is incremented after each iteration.

The body of the main loop starts by trying to find a pair of CF-neighbors D, D’ between D;
and D;;1, where P. + D’ is on the wrong side of the far path and P, + D is not. If this cannot be
done, we go on to the next iteration. Otherwise, a positive integer multiple of D is added to P, so
as to approach the near line without crossing the far path. It may also be necessary to look for grid
points of the form P, + jD + kD’ with j, k > 1. If there are any such points on the correct sides of
the near line and the far path, we adjust #};,, to restrict future attention to the region where better
grid points could be found.
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Figure 7: Input trapezoids for Stage 2 and the regions searched by Algorithm 3 when it is started
at Qo (dark region) and @ (lighter region).

Algorithm 7 formalizes the above procedure. Tt requires a function test_pts() that takes a
uniformly-spaced sequence of integer vectors and finds the last vector V for which P, + V is not
outside of the far path, where P, is the current grid point. In order to do this with sequences of the
form (7) from the output of Algorithm 2, that algorithm should output the parameters cq, ¢1, ea,

., en—1 that appear in (7). Tt can easily do so because the continued fraction algorithm computes
these parameters.

Algorithm 3 Find the grid point that is visible from a given grid point Py and has the best visibility
in the direction of trapezoid vertex @y as shown in Figure 7.
1. Use Algorithm 2 with Dg = prt — Qo and Dg, = Py — prt to produce directions D; for
0 < j < n and integer parameters ¢; for 0 < j < n. Then set i =0, P. = Qo, lim = {(QoQ1),
and give Py a null value.

2. Apply the test_pts() function to (7). If it fails, increment ¢ and repeat this step; otherwise, let
D be the function result and let D' = D 4+ (D; — D;11)/¢;.

3. If P.+ D and PlOpt are on opposite sides of #in,, stop. The best visible grid point is P;.

4. If necessary, search for points P, + jD + kD’ that lie on or between the near line and the far
path and not on the wrong side of fj;,. If successful, let P, be the best point found and let

bim = Qo Ps).
5. Find the smallest integer [ for which P, 41D is across the near line. Then apply the test_pis()
function to the sequence D, 2D, 3D, ..., ID. Let the result be D" and set P. = P, + D".

6. If P, and PlOpt are on opposite sides of £}y, , stop. The best visible grid point is P;.
7. If D" = 1D, halt—the best visible grid point is P.. Otherwise, go back to Step 2

Since Algorithm 3 starts with £, = £(Qo@1), the search is restricted to the region where Qg
is the point of tangency for the tangent lines that determine which grid point is best. (This is the
dark-shaded region in Figure 7). If there are no grid points in this region, Algorithm 3 will return
a null value and it will have to be restarted with )1 playing the role of @Jy so as to search the
lightly-shaded region in Figure 7. The algorithm could be generalized to avoid starting over from
scratch in such cases, but this turns out to be relatively unimportant in practice.

Note that Step 4 says to search a certain polygon “if necessary.” Figure 8a shows an example

where such a search is necessary. In this case, a D’ step from P, takes one across the far path but
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a D+ D' step goes to P’ which is on the far path and hence “in bounds”. If the far path is not
directed into the D, D' sector when it crosses the D' ray from P,., points such as P’ in Figure 8b
must be across the far path. There are two reasons for this: Step 2 of the algorithm guarantees
that P, 4+ D' is across the far path; and the far path direction at the D’ ray from P, and the lack
of inflections prevent the far path from crossing the D-directed ray from P. + D’'. Hence the “if
necessary” test in Step 4 should be a test of the far path direction at the as it crosses the D’ ray
from P..

Figure 8: (a) A case where the far path direction crosses the D' ray from P, with a direction in the
D, D' sector, allowing the shaded region to contain a grid point P’. (b) a case where the far path
direction avoids the D, D' sector and grid points such as P’ need not be considered.

Since experimental evidence shows it is very seldom necessary to search the convex polygon
described in Step 4, it is not worth developing a special algorithm for this purpose. It suffices to
use Algorithm 1 in combination with an ordinary polygon scan-conversion algorithm as explained
in Section 3.1.

Run time bounds for Algorithm 3 would not be particularly informative because of unlikely but
theoretically expensive operations such as the search in Step 4. Refer to Theorem A.1 in Appendix A
for a proof that Algorithm 3 finds the correct grid point.

3.3 The Trade-off between Forward and Backward Visibility

The previous discussion has centered on finding a grid point P; that is visible from P, and allows
the next point P, to be placed as far from Py as possible. We now generalize this situation to make
the above algorithms work in the presence of inflections. The problem is to search for grid points
in a region defined by a tangent line such as the line K(QtPlopt) that is tangent at @; in Figure 9.
Since Algorithm 3 does not allow inflections in the far path, it may be necessary to trim the search
region by extending the inflection edge as indicated by the heavy dashed line in Figure 9. (It is
seldom necessary to extend the edge very far, hence only a tiny portion of the dashed line is above

£(Q:P{P") in the figure).

This time, two sets of tangent lines are used for ranking the grid points. The white stripes
roughly parallel to E(Qtprt) are tangent lines with points of tangency at @; or at its predecessor
Q:+1. Such tangent lines measure visibility back towards @41, and they are ranked according to
the direction of the tangent line. The other white stripes in the figure are tangent lines with points
of tangency at successors of ;. The successor point marked (g is the point of tangency for Plopt.
Tangent lines through points such as Q¢ correspond to the best visibility in the forward direction.
They are also ranked according to their direction. As the tangent line direction moves away from
that of E(Plotho), the point of tangency moves back to @¢’s predecessors ()1, @2, ... and the
forward visibility gets worse.

We can find the trade-off between forward and backward visibility by simply running Algorithm 3
more than once. Each subsequent call to Algorithm 3 uses a near line based on the previous result
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Figure 9: Input trapezoids for Stage 2 and the region to search when finding the trade-off between
forward and backward visibility. All points on a single white stripe are equally desirable for the one
direction or the other.

as shown in Figure 10. First, Algorithm 3 finds a grid point P; that has best forward vision in the
region delimited by the line K(Qtplopt). Next we restrict the region by using €(Q:P;) as the near
line, and use Algorithm 3 to find a grid point P, that has the best forward vision in the restricted
region. We could then find another grid point by using £(Q:41P2) as the near line. In order for
Algorithm 3 to choose P;, the dark shaded region in Figure 10 must be free of grid points since any
grid points there would have better forward vision than P;. Similarly, the light shaded region must
be free of grid points in order for P; to be chosen.

Figure 10: (a) Input trapezoids for Stage 2 and the near lines to use when finding the first two
points P; and Py on trade-off between forward and backward visibility. (b) A close-up of the area
near P; and P,. The interiors of the shaded regions are free of grid points.

Each P; has the best possible forward vision subject to the constraint that it be outside of the
tangent line through P;_;. This is exactly the same as requiring P; to have better backward vision
than P;_;. This generates the trade-off between forward and backward vision if we are careful to
require P; to be strictly outside of the tangent line through P;_;. The following theorem summarizes
the above argument:

Theorem 3.1 Suppose Algorithm 3 has found the grid point Py that has best forward visibility
and lies in the region defined by a tangent line K(Qtprt) as shown wn Figure 10. Then running

4In practice, it would be best to modify Algorithm 3 to take advantage of the grid point P; on the near line.
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Algorithm 3 j — 1 more times as explained above generates a sequence of grid points Py, P53, Pa,
..., P;, where each P; has the best possible forward vision subject to the condition that it have better
backward vision than P;_q.

4 Finding Mutually-Visible Grid Points at an Inflection

When there is inflection in the sequence of trapezoid directions, the first step is to find an inner
common tangent line such as the line £(Q;Q:) in Figure 11. There is a unique inner common tangent
line for each inflection. It has one point of tangency @Q; at a trapezoid vertex following the inflection
trapezoid and another point of tangency @} at a preceding trapezoid vertex. The common tangent
line divides the region covered by the trapezoids near inflection into a forward region R and a
backward region R’. The object is to find a pair of mutually-visible grid points P € R and P’ € R'.

Figure 11: How to use the techniques of Section 3.3 to find a good pair of mutually visible points
at an inflection. The £(Q}Q:) line is the inner common tangent, and the shaded regions are free of
grid points.

Points in P; € R are ranked according to their forward visibility by finding for each F;, a tangent
line through that point and some successor of @); and rating F; according to the direction of the
tangent line as explained in Section 3. A similar ranking scheme rates points in R’ according to
their backward vision by finding tangent lines through some predecessor of @}. In Figure 11, P; is
the best grid point in R and P is the best grid point in R'.

If the best grid point P; € R can see the best grid point P{ € R, then it is natural to consider
segment P/ P; to be the best way for a grid-restricted polygonal path to get past the inflection.
Unfortunately, P; and P{ might not be able to see each other, in which case more work is required
to find an optimal pair of mutually-visible grid points P € R and P’ € R’. There can then be a
trade-off between the best forward visibility from P and the best backward visibility from P’. The
purpose of this section is to see how to find at least one point on this trade-off.

In order to search for pairs of mutually-visible points, we need to know what can prevent a point
P € R from seeing a point P’ € R’: segment P'P could cross a trapezoid edge near Q}; or it could
cross an edge near ();. The former case involves E(Q}, Q%), where Q7 is the last concave trapezoid
vertex among the immediate successors of @}, and function E gives the trapezoid edges between
two specified vertices together with the edge into the first vertex and the edge out of the last vertex.
The other way P can fail to see P’ is for P'P to cross E(Qr,Q+), where Qg is the first of the concave
trapezoid vertices immediately preceding Q. Tt is not possible for P'P to cross both the E(Q%, QF)
obstacle and the F(Qr, @:) obstacle.

Figure 11 suggests using the techniques of Section 3.3 to find the best few grid points in R, and
then find a similar list of points P{, P4, ... in R’. In a situation similar to Figure 11, we might
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proceed as follows.®

First, find a grid point P; € R with best forward visibility and a grid point P € R’ with best
backward visibility. Suppose P{P; crosses the E(Q}, Q7) obstacle and P;P; crosses the E(Qr, Q+)
obstacle, where Pj is chosen to have the best backward visibility among all grid points whose visibility
around the E(Q}, QF) obstacle is sufficient to allow any hope of seeing P;. Thus no grid point in
Ur/(Pj) can see Py, where Wg:() is the function that finds the region of R’ where the backward
visibility is at least as good as a given point. Since P is the only grid point in the region ¥ (P;)
of points in R with forward visibility at least as good as Pi, no grid point in ¥z:(Pj) can see any
grid point in ¥ (Py).

The logical next step i1s to examine P, Ps, ..., looking for a grid point with enough visibility
around the E(Qr, Q:) obstacle to make it possible to see Pj. Suppose P does not satisfy this
condition, but Ps does. At this point P and Ps; might be mutually visible, or there might be some
other pair of mutually-visible points P’ € Wr/(P3) and P € W (Ps).

If the above procedures fail to find any mutually-visible grid points, we have a situation very
similar that before the examination of P, and Pj, except that R and R’ play opposite roles. The
two situations are as follows, where k and k' are integer parameters to be determined later:

1. Either & = 0 or the following hold: no grid point in ¥ (Py) can see any grid point in Wr/(P},);
point Py cannot see P/, because of the E(Q}, Q) obstacle; and other grid points in ¥ (Py)
cannot see P}, because of the E(Qr, Q+) obstacle.

2. Either k = 0 or the following hold: no grid point in U (Py) can see any grid point in Ur: (P}, );
point P}, cannot see Pj because of the E(Qr, Q) obstacle; and other grid points in ¥r/(P],)
cannot see Py, because of the F(Q}, QF) obstacle.

Before examining P; and Ps, we have Situation 2 with £ = 1 and k' = 2; after searching ¥ (P})
and ¥r(Ps), we have Situation 1 with & = 3 and &' = 2. This suggests an algorithm where k
and k' start at 0 or 1 and we alternate between Situations 1 and 2 while k& and %’ increase as we use
Algorithm 3 to find more and more grid points in R and R’. Algorithm 4 gives the details.

The algorithm works by letting regions ¥z:(P},) and ¥r(Py) expand until reaching a pair of
mutually visible grid points. Tt assumes that ¥z (Pj) and ¥ (P;) are defined to be the empty set.
The following theorem is easily proved by using the invariants that Situation 1 holds at the start of
Step 2 and Situation 2 holds at the start of Step 5.

Theorem 4.1 Let Py and Py, be as explained above. Algorithm [ finds mutually-visible points
P' € Ugri(P},) and P € Ur(Py) such that no other mutually-visible points P’ € Wg/(P},) and
P € Ur(Py) can have P’ better than P’ and P better than P.

Before going on, we need to clarify Steps 3 and 6 of Algorithm 4. In Step 3, requiring that the
E(Qr, @) obstacle not block vision to Pj_; is equivalent to restricting to a half plane defined by
the tangent line from Pj_; to the E(Qr, Q:) obstacle. The hard part is searching for a grid point
Pe U (Pg) that can see P

The tangent lines from P’ to the E(Q}, Q%) and E(Qr, Q:) obstacles define a cone in which P
must lie in order to see P’. Call this the wvisibility cone for P’. Either the visibility cone contains
some P, Piyq, Piga, ..., Pj—1 for 1 <@ < j <k as shown in Figure 12, or it falls between P;_;
and P; for some j < k as shown in Figure 13. In the former case, the best grid point visible from P’
must be P; because Theorem 3.1 guarantees that P; is the best grid point in R whose visibility
around the F(Qr, Q:) obstacle exceeds that of P;_;.

5Figure 11 has Points Py, P5, P and Pl’ repositioned to make the grid-point-free regions more visible. They would
have to be much closer to the £(Q,Q:) line in order for the F(Q},Q%) and E(Qr,Q:) obstacles to interfere with
mutual visibility as supposed in the following discussion.
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Algorithm 4 Find a pair of mutually-visible grid points P’ € R' and 7P € R so as to try to
maximize the backward visibility from P’ and the forward visibility from P.

1.
2.

Use Algorithm 3 to find the best grid point P; € R. Then set £k = 1 and k¥’ = 0.

Use Algorithm 3 to find the next best grid points P, ,, Pl ,, Piiy3 in R' as explained in
Section 3.3, stopping at the first P}, for which P}, P does not cross the E(Qj}, Q}) obstacle.

. If & > 1, use Algorithm 1 and polygon scan-conversion to find grid points in the portion of

Vr/(Py) \ Yri(Py,) for which the E(Qr, Q:) obstacle does not block vision to Py_;. Let P’
be the best such grid point that can see grid points in Wz (Py); let P be the best grid point in
U (Pg) that can see P'. (If P’ and/or P fail to exist, go on to Step 4.)

If Step 3 has found a pair (P’, P), halt and return (P’, P). If P/ can see P, halt and return
(P}, Py). Otherwise set k' =1'.

. Use Algorithm 3 to find the next best grid points Pr41, Pry2, Prys in R as explained in

Section 3.3, stopping at the first P; for which P/, P; does not cross the E(Qr, Q) obstacle.

. If k' > 1, use Algorithm 1 and polygon scan-conversion to find grid points in the portion of

UR(F)\ ¥r(Py) for which the E(Q}, Q) obstacle does not block vision to P[,_,. Let P be
the best such grid point that can see grid points in Wz (Py,); let P’ be the best grid point in
Ur:(P),) that can see P. (If P and/or P’ fail to exist, go on to Step 7.)

If Step 6 has found a pair (P’, P), halt and return (P’, P). If P; can see P/,, halt and return
(P{:, P). Otherwise set £ =1 and go to Step 2.

Figure 12: (a) The search area for P in Step 3 of Algorithm 4 (shaded) with grid-point-free regions
shaded lightly; (b) A close-up showing that P; is the best grid point in the cone.
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The other case is when the visibility cone for P’ falls between P;_; and P;. There is then a
convex quadrilateral that needs to be searched for grid points. In the example of Figure 13, j = 2
and the quadrilateral is the dark shaded region. In general, it is the intersection of the visibility
cone with

VR (Pr) \ YR(F;). (8)

Algorithm 5 summarizes this process of finding the best grid point in ¥ (Py) that can see p’.fAn
almost identical algorithm can be used to find the best grid point in ¥x/(P},) that can see P as
required by Step 6 of Algorithm 4.

Figure 13: (a) The search area for P in Step 3 of Algorithm 4 (shaded) with grid-point-free regions
shaded lightly; (b) A close-up showing how the visibility cone falls between P; and Ps.

Algorithm 5 Find the best grid point in W (P;) that can see P’. This is needed to implement
Step 3 of Algorithm 4.
1. Locate the visibility cone for P’ relative to P, Py, Ps, ..., Py. Let i be the smallest index
for which does not hit P'P; the E(Qr, Q:) obstacle, and let j be the smallest index for which
P’ P; hits the E(Q}, Q) obstacle.

2. If i < j return P;. Otherwise, use Algorithm 1 and polygon scan-conversion to search for grid
points in the intersection of (8) with the visibility cone and return the best such grid point.

The contribution of Algorithm 5 and its variant to the run time of Algorithm 4 depends on the
distribution of k£ and / values during Steps 3 and 6 of the algorithm and on the number of grid points
in the parallelograms from which apexes of the visibility cones are chosen. A theoretical analysis of
these quantities would probably be uninformative since it is difficult to get tight upper bounds and
Section 7.2 will show that they are small in practice.

The rest of the run time for Algorithm 4 is dominated by the calls to Algorithm 3 in Steps 1, 2
and 5. This is also difficult to bound theoretically, but the average number of calls to Algorithm 3
per invocation of Algorithm 4 typically ranges from 3 to 4.8 in practice. (See Section 7.2 for details.)

5 The Main Algorithm for Stage 2

The main algorithm for Stage 2 depends on handling inflections as explained in Section 4 and using
the ideas of Section 3 to find minimum-vertex grid-restricted polygonal paths between inflections.
The major complication is that inflections cannot always be considered in isolation. We say that
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common tangents £(Q;-1Q;) and £(Q;4+1Qj42) interfere if they cross each other inside a trapezoid
that is bounded by a segment of the path from @; to ;41 as shown in Figure 14.

In Figure 14, interfering tangent lines £(Q1Q2) and 4(Q3Q4) cross each other to form the light
shaded region and interfering tangent lines £(Q3Q4) and £(Q5Q¢) delimit the dark shaded region.
Considering the inflections in isolation would lead to an output path with two vertices per inflection,
even though i1t would be better to find a polygonal path of the form P, P, P3P, where Py Py crosses
£(Q1Q2), P2Ps crosses £(Q3Q4), and P3Py crosses £(Q5Q¢). In other words, the goal is to find grid
points P; € R’, P in the light shaded region, P5 in the dark region, and P4 € R so that Py has the
best possible backward visibility, Py has the best possible forward visibility, and P; can see P4 for
1<i<4.

Figure 14: Regions to search when common tangents at successive inflections interfere.

A dynamic programming approach could probably be used in the case of Figure 14 to find the
trade-off between backward visibility from P; € R’ and forward visibility from P4 € R. This turns
out not to be worthwhile because the simple greedy approach explained below performs almost as
well in practice.

How should the greedy algorithm handle the situation shown in Figure 147 Start by using
Algorithm 1 and polygon scan-conversion to find a grid point Ps in the light shaded region near the
intersection of £(Q1Q2) and £(Q3Q4). Then use the same algorithms to scan the dark shaded region
for a grid point Ps that can see Py and lies close to £(Q5Qs). Finally, Algorithm 3 can be used to
find grid points P, and P, such that P, can see P3 and has the best possible forward visibility and
P; can see Py and has optimal backward visibility.

In general, there could be any number of inflections where the ith common tangent line £(Q2;-1Q2;)
interferes with its successor £(Q2;4+1@2i+2). This produces a whole series of regions like the shaded
regions in Figure 14. The greedy algorithm handles this case by finding a grid point Ps in the first
such region, then finding P;41 in the ith region for 7 = 2,3,4,.... It is greedy in the sense that it
never backtracks and it selects each point in a manner intended to maximize the chance of finding
a visible grid point in the next region.

When searching for some P; 41, the algorithm might find that no grid points in the appropriate
region can see P;. This can be handled by simply ignoring the fact that £(Q2;_1Q2;) interferes with
U(Q2;41Q2i+2). For instance, this happens for i = 2 in the case of Figure 14 if no grid point in the
dark shaded region can see P;. Ignoring the interference between £(Q3Q4) and £(Q5Qs) involves
using Algorithm 3 to select the best grid point visible from P and then using the techniques of
Section 4 to find a pair of mutually-visible grid points that span the @Q5@Q¢ inflection.

The overall algorithm begins by testing whether there are any inflections. If not, repeated calls to
Algorithm 3 can generate a sequence of grid points, each visible from the previous one. If there are
inflections, we examine all the interfering common tangents and find grid points as explained above.
For inflections where there is no interference, Algorithm 4 can select grid points. The remaining
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task is to connect the chosen grid points with grid-restricted polygonal paths. This can be done by
repeated calls to Algorithm 3 as in the inflection-free case.

The above ideas lead to Algorithm 6. It uses the term interference region to refer to convex
regions such as the shaded regions in Figure 14 where the cone defined by the interfering tangent
lines intersects the trapezoids. Function incg(7) is the function that returns ¢ + 1 if ¢ < k£ and 1 if
t = k. The notation P refers to a dummy point that cannot occur in the input.

Algorithm 6 Find a grid-restricted polygonal path that passes through the sequence of trapezoids
produced by Stage 1.
1. Let k be the number of inflections and find points @1, @2, @3, ..., Qsx that define the inner
common tangents. Also initialize M[i] = Py for i < i < k.

2. If £ > 0, go on to Step 3. Otherwise, let Py be any concave trapezoid vertex and use Algo-
rithm 3 to find and output grid points Py, Ps, Ps, ..., each visible from its predecessor. Halt
after the first ¢ > 2 for which P; can see P;.

3. Try to find the first [ for which £(Q2i—1Q21) does not interfere with £(Qar—1Q2r), where
' = incg(l).

4. Tf there is such an [, set P = Py; otherwise set [ =k, I' = 1, and use Algorithm 1 and polygon
scan-conversion to find a grid point P in the interference region for £(Q2r—1Q2z) and £(Q1Q2).
Then set M[k] = P and i = 1.

5. Set i = inc(i) and check whether £(Q2;—1,Q2:) and £(Q2i/—1, Q2:r) interfere. If so, use
Algorithm 1 and polygon scan-conversion to find a grid point P’ in the interference region
that 1s as close to £(Q2;7—1,Q2;) as possible and satisfies the folloyving: either P = Py or P’

can see P. If successful set P = P’ and M[i] = P'; otherwise, set P = Pj4.
6. If & # 1, set i =1’ and go back to Step 5. Otherwise, set ¢ = 1.

7. Let ¢ = inc(). If M[i'] = Pa and Mi] # Pa, use Algorithm 3 to make M ~[i] the grid
point visible from M[i] with best forward visibility. If M[i]] = Py and M[i'] # Pa, use
Algorithm 3 to make M *[i] the grid point visible behind M[i'] with best backward visibility.
If M[i] = M[i'] = Pa, use Algorithm 4 to set M*[i] and M~ [i'].

8. If i # k, set i = i’ and go back to Step 7. Otherwise, set 7 = 1.

9. If M[i] # Pa, output M[i]. Otherwise use Algorithm 3 to find and output a minimal sequence
of grid points starting at M ~[i] and ending at MT[i] where each point is visible from its
predecessor.

10. If ¢ # k, set ¢ =i+ 1 and go back to Step 9. Otherwise, halt.

Step 2 handles the case where there are no inflections; Steps 4-6 scan for interfering inflections
and set up an array M whose ith entry gives a suitable grid point in the interference region that
follows the ith inflection. Null values in this array mean that the final output will have at least two
vertices between the inflections 7 and incy (7). Next, Steps 7 and 8 choose output vertices before and
after each inflection and set up arrays M~ and M T to store output vertices not already in the M
array. Finally, Steps 9 and 10 output the vertices stored in the M, M~ and Mt arrays, adding
intermediate vertices if necessary.

In Step 4, the scan for a grid point P should be designed to favor points close to where
UQ2r-1Q2r) and £(Q1Q2) intersect. Step 5 also uses Algorithm 1 to scan a polygon for grid
points. It is best to precompute the tangent lines that delimit the cone where P is visible so that
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the interference region can be intersected with the cone before starting Algorithm 1 and doing the
scan-conversion.

Note that Algorithm 6 invokes Algorithms 1 and 4 at most once per inflection, and it invokes
Algorithm 3 at most once per output vertex. Section 3.1 explains that the time for Algorithm 1 is
likely to be dominated by (4) in practice. Sections 3.2 and 4 explain that worst case bounds for
Algorithms 3 and 4 would not be very useful, but that they take nearly constant time in practice.

Adding up all these contributions and letting & = 1 in (4), it seems reasonable to expect the
overall running time to be linear in the number of trapezoids produced by Stage 1. Since [7] gives a
linear time bound for Stage 1 this gives linear time overall. The results in Section 7.3 will support
the claim that the running time is linear in practice.

6 Refinements to the Trapezoid Sequence

A problem with the interface between Stage 1 and Stage 2 is that the error tolerance is playing
two roles: in Stage 1, it allows for noise introduced during the printing and scanning process; while
Stage 2 uses the error tolerance to decide how much the outlines can be altered in order to achieve
simplicity and compactness. The purpose of this section is to provide separate control over these
two types of error.

The idea behind Stage 1 error tolerance is that a relatively smooth underlying shape gives rise
to jagged outlines, and then the algorithm attempts to reconstruct the original shape by assuming
it has the minimum number of inflections allowed by the error tolerance. For example, there is an
underlying ampersand shape that gave rise to Figure la, and the output of Stage 1 in Figure 1b is
much closer to that underlying shape. We call this approximation Stage I midline approzimation
because it is formed by taking the midline through each trapezoid as shown in Figure 2.

There needs to be a secondary error tolerance €3 that limits how far the output of Stage 2 can
deviate from the Stage 1 midline approximation. This tolerance applies to the co-norm distance
doo between parallel lines. Imposing it requires modifying the trapezoid sequence before running

Stage 2. The new trapezoid sequence should be based on lines ¢, ¢5 . and ¢& ¢£ . chosen
so that
doo(¢f, ((Ri Ri1)) = doo(tf, €(LiLi1))
doo (65, £F) = min(2es, deo (U(Ri Rig1), £(LiLiz1))), (9)

where ¢(AB) is the directed line containing segment AB. Figure 15 illustrates how this can be
done. Replacing trapezoids RiRsLsL1, ReRsLsLy, and R3R4L4L3 with modified versions involves
replacing the solid lines with the heavy dashed lines so as to eliminate the shaded parts of the of
the original trapezoids.

Trapezoids like Ry RsLyLq in Figure 15 are little changed because ¢(R;Rs2) and #(LaLq) are
within co-norm distance €5 of the midline approximation. When this happens, parts of neighboring
trapezoids can be within co-norm distance €5 of the midline approximation even though they oth-
erwise would not be. For instance, the lightly shaded region in the figure is close to the Ry RoLs L4
midline but outside of the tolerance for RyR3L3Ls.

6.1 The Simple Inflection-Free Case

Let us see how to construct a refined trapezoid sequence in a simple case. (Since the trapezoids are
allowed to degenerate to triangles, we must write R;41 — R; + Li41 — L; for the direction of the
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Figure 15: Part of a trapezoid sequence with regions that violate the secondary tolerance e; shaded.
The heavy dashed lines are at co-norm distance €3 from the midline approximation (light dashed
line).

parallel edges of the ith trapezoid.) Suppose we can choose j and k so that the direction sequence
Ri+1_Ri+Li+1_Lia fOFin—l, .7:.7—1_1”](7 (10)

has no inflections and is confined to 180° sector. Thus as 7 increases, the directions always turn left
or always turn right. Either way L;_1, Lj, Lj41, ..., Ly41 and Rj_1, R, Rj41, ..., Rp4q define
the boundaries of two convex regions. Extending segments L;_1L;, Rj_1R;, Ly Lyy1, and Ry Rypqq
to infinity produces semi-infinite regions £;; and R;1, one of which is contained in the other. Region
L, is the intersection of half planes bounded by directed lines ¢(L; L;41) for j —1 < ¢ <k, and R
is the intersection of similar half planes bounded by £(R;R;41) for j — 1 < i < k.

The natural way to construct a refined trapezoid sequence is to find directed lines

oy (11)

and
oy, b (12)

satisfying (9), and use them to define half planes that intersect to form semi-infinite regions R;k
and [,}k analogous to R;; and L;;. The only problem is that there might not be a grid-restricted
path in the difference between R ;i and £ because crucial grid points might lie in excluded regions
such as the lightly-shaded parallelogram in Figure 15. Hence we need to alter R;k and/or L’,;»k SO
that their difference includes appropriate grid points.

If as in Figure 15, the directions (10) turn right as ¢ increases, R/, is contained in L%, and the
modified trapezoid sequence will have a left boundary based on [,;»k and a right boundary based on
the convex hull of the grid points in R}k The alternative when (10) turns right is to have the right
boundary based on R}k and the left boundary based on the convex hull of the grid points in ﬁ}k.

Tt is clear how to take a sequence of directed lines (11) or (12), construct the convex hull, and
output the vertices in order. This gives the boundary of E}k, but finding the inner boundary requires
a special algorithm that computes the convex hull of the grid points in R}k or E;k A routine of
this type appears in [9], but it is useful to have an alternative based on the algorithms presented in
previous sections.
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This requires a subroutine that takes directed lines ¢ and ¢; and a grid point P on ¢, and finds
the boundary of the convex hull of the set of grid points to the right of both directed lines. Call this
the grid hull subroutine. Figure 16 gives an example where grid points are marked by dots and the
desired convex hull boundary shown as a heavy line.

Figure 16: Directed lines £ and ¢ and the convex hull of the grid points in the region to the right
of both lines. The directed lines are shown as arrows and the convex hull boundary is marked by a
heavy line.

Algorithm 3 can be used to implement the grid hull subroutine if it is given special input data
structures and the algorithm is modified to output each new value of P, as a convex hull vertex.
Use P as Qo; use ¢; as both the near line and the far path; and place @1 anywhere so that £(QoQ1)
is parallel to £. This makes PlOpt the point where ¢ and ¢; cross. These inputs guarantee that Step 4
will never need to do a search.

Theorem 6.1 If the grid hull subroutine is implemented as described above, it successfully computes
the convexr hull of the grid points in the region bounded by £ and ¢;.

Proof. Refer to Corollary A.2 in Appendix A. O

To find the convex hull of the grid points R}k, we just apply the grid hull subroutine to each pair
of lines from (11) and intersect the resulting convex regions. (The requirement for a grid point P
on one of the lines ¢ is no problem since all the lines we are dealing with have rational directions
so it is easy to find a grid point as close to £ as possible.) Since we have seen that finding E}k is
easy, the entire refinement process for the right-turning, inflection-free case can be summarized by
Algorithm 7. If the directions (10) turn left as i increases, an identical algorithm works, except that
2 and ¢ have to play opposite roles and we need left halfplanes instead of right halfplanes.

Except for the time spent in the grid hull subroutine, Algorithm 7 takes time linear in the number
of input plus output trapezoids. This is because each step can consider the lines in order according
to their direction angles, and no backtracking is necessary except when removing segments that turn
out not to be part of the desired boundary. As for the grid hull subroutine, Section 3.2 argued that
this algorithm is almost linear in practice. If it 1s almost linear in the size of its output, the same

holds for Algorithm 7.

6.2 Finishing the Refined Trapezoid Sequence

In order to extend the techniques of the previous section to handle the entire trapezoid sequence,
we have to cope with inflections and deal with the restriction that the direction sequence (10) is
confined to a 180° sector. The overall approach is to break up the sequence of input trapezoids at
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Algorithm 7 Given a trapezoid sequence R;R;y1Liy1L; for j — 1 < i < k, and a tolerance eg,
construct an appropriate refined trapezoid sequence. The directions (10) are assumed to turn right
as 17 increases and remain confined to a 180° sector.

1. Find directed lines Ef_l, Ef, oo, MR and EJ»L_l, EJ»L, ..., PE satisfying (9).
2. Find the boundary of the region E}k formed by intersecting H(KJ»L_l), H(KJ»L), ooy H(EE), where

H(¢F) is the half plane to the right of EJ»L.

3. Use 14+ k — j calls to the grid hull subroutine to find the convex hull of the grid points inside
of H(¢E )N H(¢f) for j < i < k. Then find the boundary of the region R;k that is formed
by intersecting all these convex hulls.

4. Treat the boundaries of L%, and R;k as ordered lists of directed segments, and consider
interleaving the lists according to their direction angles. Insert null segments whenever one list
skips over a segment direction found in the other list. The resulting one-to-one correspondence
defines the desired trapezoid sequence.

inflections, run Algorithm 7 on the resulting inflection-free subsequences, and carefully merge the
results.

First, consider the 180° restriction. We have already noted that each step of Algorithm 7 can
consider the segments in order and do only limited backtracking. Such an implementation can be
applied to any inflection-free trapezoid sequence, even though the resulting actions may be hard to
describe in terms of operations on convex regions if the 180° restriction is violated. Rather than
burdening the reader with detailed descriptions of how and why this works, we will just assume
that Algorithm 7 “does the right thing” in the case of an inflection-free trapezoid subsequence that
violates the 180° restriction. (The Guibas-Ramshaw-Stolfi theory of polygonal tracings provides
useful background information [5].)

What about inflections? In the trapezoid sequence of Figure 17a, subdividing at RgR7L7Lg
yields inflection-free subsequences

RleLle, e ,R6R7L7L6 and R6R7L7L6, N ,R11R12L12L11.

Using Algorithm 7 to refine each subsequence gives Figure 17b. The remaining task is to merge
separately refined subsequences such as those in Figure 17b.

Figure 18 illustrates the merging process. Figure 18a is based on the subsequence that ended
at RiR;41L;y1L;. As explained in Section 6.1, this trapezoid has been extended to infinity in the
direction implied by the arrows. The heavy dashed lines are the boundaries of the refined trapezoids.

Figure 18b is analogous to Figure 18a, except it shows the initial segments of the result of refining
the subsequence starting at R;R;41Liy1L;; 1.e., Figure 18a shows what happens before reaching the
inflection and Figure 18b shows what happens after passing the inflection. The idea behind the
merging process is to find a smooth way of connecting the heavy dashed lines in Figure 18a to the
corresponding ones in Figure 18b. This can be done by finding inner common tangents: the new
left-side boundary follows the heavy dashed boundaries of the lightly-shaded regions and passes
between them along their common tangent; the new right side boundary passes between the darker
regions along their common tangent.

First, we run Algorithm 7 on the sequence of trapezoids ending at R; R;41L;41L; and let B
and By are the left- and right-side boundaries of the refined trapezoid sequences. Then running
Algorithm 7 on the trapezoid sequence that starts at R;R;y1L;41L; produces left- and right-side
boundaries BZ and BE. The original trapezoids define a one-to-one correspondences between the
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(6)

Figure 17: (a) Part of a trapezoid sequence as produced by Stage 1; (b) The result of splitting
at RgR7L7Lg and computing separate refinements for each half. Heavy dashed lines show the
boundaries of the refined trapezoids and the shaded areas show the regions removed by the refinement
process.

Figure 18: (a) The last trapezoids from separately refining a subsequence ending at R; R;y1Liy1Ls;
(b) the first trapezoids resulting from separate refinement starting at R;R;+1Liy1Li; (¢) the two
refined subsequences just prior to merging.
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segments of By and By and between the segments of Bz' and BE, where each segment is paired with
the (possibly degenerate) parallel segment from the other side of its trapezoid. We must restore this
correspondence after using the common tangents to join B} to Bz' and By to BE. This completes

Algorithm 8.

Algorithm 8 Merge trapezoid sequences created by breaking at an inflection and refining separately.
Polygonal paths By and By are the left- and right-side boundaries for the refined trapezoid sequence
preceding the inflection, and BE and BE are the left- and right-side boundaries for the trapezoids
after the inflection.

1. Scan backward from the end of B; and forward from the beginning of BE’ until finding a
common tangent V;V3. Then replace everything after V7 in By and everything before V5
n BE with the segment V1 V5.

2. Scan backward from the end of By and forward from the beginning of BE until finding a
common tangent V3Vi. Then replace everything after V3 in By and everything before Vj
n BE with the segment V3V,

3. The following segments are now unpaired: V1 Vs, V3Vy, and the former partners of the segments
removed to make room for V1 V5 and V3V,. Pair them up by inserting null segments as necessary.
Make sure that the resulting sequence of directions has only one inflection.

6.3 Choosing the Secondary Tolerance

Sections 6.1 and 6.2 explain how to do refinement on inflection-free subsequences of the trapezoid
sequence and then merge them together to create a refined version of the original data. The purpose
of the refinement is to force the output of Stage 2 to stay within a specified tolerance of the Stage 1
midline approximation. Equation (9) limits the co-norm deviation to €3, but this is subsequently
relaxed by up to 1 grid unit so as to ensure the existence of an appropriate grid-restricted polygonal
approximation:

Theorem 6.2 If a refined trapezoid sequence is computed by Algorithms 7 and 8, the result will
have all concave trapezoid vertices at grid points. Hence there will be a grid-restricted polygonal path
through the refined trapezoids.

Proof. Section 6.1 introduces concave trapezoid vertices only via Algorithm 7, and that algorithm
forces all vertices to be at grid points. Algorithm 8 does not create any new concave trapezoid
vertices. Thus as explained in Section 2, the minimum-perimeter path through the trapezoids is the
grid-restricted polygonal path required by the theorem. O

Even though any value of €5 results in a usable trapezoid sequence, some values may be better
than others in practice. Since one grid unit can be important, we should try to choose €5 so that the
region R;k defined in Section 6.1 is not likely to differ much from the convex hull of the grid points
it contains. In other words, the lines % and ¢F should pass through grid points when positioned
according to (9). This can be done by running Stage 1 with a grid two times coarser than the target
grid and choosing €5 to be a multiple of the target grid spacing. This makes the trapezoid edges
from Stage 1 lie on lines that pass through the course grid so that their bisectors will pass through
points on the fine grid. Making ¢, a multiple of the fine grid spacing then forces £ and £/ to pass
through grid points.
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7 Experimental Results

The Stage 1 and Stage 2 algorithms have been implemented in C4++ and tested on binary images of
pages of scanned text from a standard database of test documents [18]. The images were converted
into outlines using the naive algorithm, then Stage 1 converted the outlines into trapezoid sequences
and Stage 2 finished the job. Section 7.1 analyzes the storage space and image quality for the
resulting grid-restricted outlines; Section 7.2 discusses which parts of Stage 2 are important in
practice and which are not; and Section 7.3 gives execution times.

7.1 The Trade-Off between Space-Efficiency and Image Quality

How well does Stage 2 achieve its goal of producing space-efficient outlines without compromising
too much on image quality? To answer this, we need ways of measuring space efficiency, and we
need to try out various choices of the grid spacing and tolerance parameters and examine images
created from the resulting outlines.

Table 1 gives statistics that show how the algorithms perform on a fairly typical sample image.®
The table shows that Stage 2 reduced the vertex count from the Stage 1 midline approximation by
a factor of 1.4 to 2.3, depending on the Stage 1 error tolerance, the secondary tolerance €3 and the
grid spacing. It achieved this result while simultaneously imposing grid constraints that the Stage 1
midline approximation does not satisfy.

A B C D E F G H
grid spacing 1 0.5 0.5 0.33 0.25 0.25 0.25 0.25
Stage 1 tolerance 1 1 1 0.67 0.75 0.75 0.75 0.5
secondary tolerance - - 0.5 0.33 - 0.5 0.25 0.25
input vertices 39438 40261 40261 45303 45444 45444 45444 43827
output vertices 17777 17417 19662 26265 21500 22508 28016 32401
lower bound 16961 16989 19106 25174 20929 21906 27344 31759
outline bytes 29100 33111 35661 47269 43578 44859 51965 5HT872
CCITT-g4 bytes 47072 47072 47072 47072 47072 47072 47072 47072

Table 1: Overall statistics for the Stage 2 algorithm on input from a 300 dpi binary image of a page
of text from [18]. Columns A-H give statistics for various settings of the grid spacing, the Stage 1
error tolerance, and the Section 6 secondary tolerance.

Table 1 lists a lower bound on the vertex count. This is the result of the Stage 2 algorithm in
the limiting case where the grid spacing approaches zero. In other words, it is the result of ignoring
the grid constraints. This greatly simplifies the Stage 2 algorithm and produces a situation where
the greedy approach of Algorithm 6 is clearly optimal. (The resulting algorithm is similar to that of
Goodrich [4].) Since the vertex counts in Table 1 are all within 4.8% of the lower bound, they must
be close to the best possible. This stands in sharp contrast to the theoretical algorithms from [9]
where imposing grid constraints increases the vertex count by a logarithmic factor.

In order to get a realistic estimate of the space required to store the outlines, a simple binary
file format was developed. In this format, each outline is encoded as a pair of starting coordinates
followed by a vertex count and a list of (Az, Ay) pairs. All numbers are encoded using a scheme
where small numbers require 4 to 8 bits, and roughly two additional bits are required each time
the magnitude doubles. Table 1 lists the number bytes for this scheme in the “outline bytes” row.

6The table is based on journal page image a002 from [18]. Tt is a fairly clean image scanned at 300 dots per inch.
It includes text and mathematical formulas, but no drawings or halftone images.
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It ranges from 62% to 123% of the size of the compressed binary image file that served as input
to Stage 1. This input was in TIFF format with the best compression scheme readily available for
binary images: CCITT Group 4 facsimile compression. A simple bitmap would have required more
than a megabyte.

The grid spacing and tolerance values in Table 1 represent a trade-off between image quality and
the compactness of the outline representation. The table shows how the outline byte count grows
when we reduce the Stage 1 tolerance, the secondary tolerance, or the grid spacing, and Figures
19b—d show how reducing the tolerances improves image quality. On the other hand, reducing the
Stage 1 tolerance below 0.5 pixels would prevent the “jaggies” in Figure 19a from being eliminated.

in the bore of the TF in the bore of the TF
ecessary, the space ¢ ecessary, the space ¢

s .

(a) (b)
in the bore of the TF in the bore of the TF
ecessary, the space ¢ ecessary, the space ¢

~ -

() (d)

Figure 19: A magnified portion of test document h047 reproduced by various methods. (a) pixel
replication from the raw image; (b) from outlines generated with grid spacing and tolerances as in
column C' of Table 1; (¢—d) the same for columns D and H, respectively.

Table 1 shows that the outline byte count generally compares favorably to TIFF image files with
CCITT-g4 compression when the Stage 1 tolerance is 1 pixel and the grid spacing and secondary
tolerance are each % pixel. Smaller tolerances would increase the ratio of outline bytes to bytes
in the TIFF files as suggested by Table 1. Refer to Figure 20 for a full accounting of how this
compression ratio depends on the complexity of the test pages with and without halftone pictures.
Since the database from [18] has separate flags for the presence of drawings and halftone images,
Figure 20 makes a similar distinction. The algorithm does particularly well on simple line drawings,

but drawings containing shaded areas are a difficult case.

We can conclude that Stage 2 does a good job of minimizing the vertex count, but the overall
space requirements are harder to judge. For a typical page image at 300 dots per inch in CCITT-
g4 format, the space required for the outlines ranges from a little less to a little more depending
on the quality desired. If we want the outlines to be more useful than the original bitmap image
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1.6 — with halftone
1.4 —
outline 1.2+
bytes per
CCITT-g4 1+
byte
0.8 — with drawing
0.6 —
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5000  10* 2x10* 5x10* 10° 2x10° 5x10°
CCITT-g4 bytes

Figure 20: Average ratio of outline bytes to length of the CCITT-g4-compressed TIFF file as a
function of the TTFF file size.

as suggested by the motivation in Section 1, we should probably choose the quality depicted in
Figure 19d. This entails a space penalty of about 23% relative to the CCITT-g4 bitmaps.

7.2 Appropriateness of Implementation Choices

Sections 3.2, 4 and 5 made compromises designed to keep the algorithms as simple as possible by
assuming that certain special cases are rare in practice. Let us see which parts of Stage 2 are most
important in practice and how the simplifying assumptions are born out by the statistics in Table 2.

A B C D E F G H
grid spacing 1 0.5 0.5 0.33 0.25 0.25 0.25 0.25
Stage 1 tolerance 1 1 1 0.67 0.75 0.75 0.75 0.5
secondary tolerance - - 0.5 0.33 - 0.5 0.25 0.25
input vertices 39438 40261 40261 45303 45444 45444 45444 43827
output vertices 17777 17417 19662 26265 21500 22508 28016 32401
lower bound 16961 16989 19106 25174 20929 21906 27344 31759
inflections 3461 3466 3466 5691 5233 5233 5233 6325
interfering inflections 1607 1628 1362 2306 2394 2272 1880 2260
M entries in Alg. 6 1600 1620 1360 2291 2370 2254 1867 2259
Alg. 3 invocations 17194 17167 19477 25830 23951 24063 28742 31478
number from Alg. 4 7553 7874 8199 11678 13541 12761 12319 12522
restarts 1218 532 837 1024 554 654 698 418
polygon searches 513 423 408 368 610 546 400 46
visibility cone searches 14 14 7 20 39 12 10 20

Table 2: Statistics for the detailed behavior of the Stage 2 algorithm on the input image used by
Table 1. Columns A-H give statistics for various settings of the grid spacing, the Stage 1 error
tolerance, and the Section 6 secondary tolerance.

Section 3.2 simplified Algorithm 3 by designing it so that it has to be started over from scratch
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with a new Qg vertex if it fails to find a grid point. This is relatively harmless in the tabulated cases
because the number of such restarts was never more than 7.1% of the total invocations.

Another compromise in Algorithm 3 is to use a relatively crude procedure in Step 4 when
searching polygons such as the one shown in Figure 8a. This is also safe because the number of
polygon searches was never more than 3% of the total invocations for Algorithm 3.

The last major compromise is designing Algorithm 6 to use a greedy approach rather than the
dynamic programming process alluded to at the beginning of Section 5. Since Algorithm 6 creates
one M entry each time it is able to use a single grid point between a pair of interfering inflections,
the close relationship between M entries and interfering inflections means that the algorithm seldom
uses two vertices where one might do. Hence dynamic programming could not help very much at

all.

Now consider the relative importance of Algorithm 4. Tt accounts for 40% to 57% of the Al-
gorithm 3 invocations that are listed in Table 2. The number calls to Algorithm 4 is essentially
the number of non-interfering inflections. More precisely, it is the number of inflections minus the
number of M entries in Algorithm 6. This is 3461 — 1600 = 1861 in Column A and it ranges up
to 6325 — 2259 = 4066 in Column H. Dividing this into the number of times Algorithm 4 invoked
Algorithm 3, we find that the number of Algorithm 3 invocations per invocation of Algorithm 4
ranges from 3.1 for Column H to 4.8 for Column E.

Another potentially time-consuming step in Algorithm 4 1s the visibility cone searches used in
Steps 3 and 6 of Algorithm 4 and defined in Algorithm 5. Since Table 2 shows that these searches
are rare, the real inner loop for Stage 2 is Algorithm 3.

7.3 Execution Speed

Testing the whole process on all 979 journal page images from [18] produced the timing and data
compression statistics in Table 3. All of the test images had the same scanning resolution and similar
page dimensions, but some pages were much more complicated than others. Hence, all the statistics
were normalized by dividing by the number of input vertices vy produced by the Stage 1 algorithm.
This number tends to be high for images with large dark smears or halftone pictures. The table
attempts to list statistics for such images separately, since they are particularly difficult cases for
outline-based algorithms.

The run time was consistently proportional to vy, except that it increased slightly when vy was
high or halftone pictures were present. Stage 2 was approximately twice as expensive as Stage 1
and combining Stage 2 with the refinement process from Section 6 increased this to a factor of 3.
These ratios may be somewhat higher than necessary because no effort has been made to optimize
the Stage 2 implementation.

8 Conclusion

While most of the algorithms presented here are not extremely complicated, their implementations
do add up to about 5600 lines of C++, not including Stage 1. In spite of this, the results in
Section 7 show that the algorithm is fast enough to be quite practical. There are numerous potential
applications where it useful to extract good outlines from image data and represent the outlines
compactly. The two-stage approach allows separate control over the Stage 1 noise tolerance and
the output grid and auxiliary error tolerance from Section 6. By using the trapezoid sequence data
from Stage 1, it avoids complications that Guibas, et. al. [6] encountered in deciding what order the
output path hits the input data points.



Space-Efficient Outlines from Image Data via Vertex Minimization and Grid Constraints

without halftones with halftones
input vertices vy <20k 20-60k 60-200k >200k | <60k 60-200k >200k
pages 24 227 608 8 16 84 12
output vertices /vy 0.489  0.487 0.492  0.522 | 0.502 0.510  0.526
lower bound /vy 0.475  0.473 0.479  0.516 | 0.491 0.499  0.521
Stage 1 psec/vr 68 64 63 47 62 56 45
refinement psec/vy 65 68 69 81 73 75 87
Stage 2 psec/vr 136 135 136 153 136 144 151
total psec/vr 290 286 288 307 294 300 311
outline bytes /vy 0.893  0.867 0876  0.978 | 0.924 0.924 0.974
CCITT-g4 bytes /ur | 1.398  1.051 0.959  0.717 | 1.054 0.882  0.672

31

Table 3: Statistics for test runs on journal page images from [18]. All runs used tolerance 1 pixel,

grid spacing and secondary tolerance % pixel. Images were classified according to the number of
input vertices vy and whether or not they include halftone figures. (This information appears in

“page attribute files” that come with the test images.) Timings were made on a 150 megahertz
MIPS R4400 processor and normalized by dividing by v;. The total time includes some overhead
due to data structure conversions in the interface between Stages 1 and 2.
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Appendices

A Correctness of the Best Visible Grid Point Algorithm

Theorem A.1 Algorithm 3 finds the best grid point in the region bounded by the near line and the
far path, where “best” is measured in terms of the tangent line direction as described at the beginning

of Section 3.

Proof. Note that points on the £, line are equally “good” in terms of the tangent line direction
ordering. By testing against this line, the algorithm explicitly checks the ordering among points
found in Step 4 and between such points and the value of P, in Step 7.

The argument that this final P, value is the best grid point is based on excluding grid points
from potentially better regions such as the shaded areas in Figures 21a and 21b. The P, increments
in successive iterations of Step 5 define a polygonal line

POm = PYPLP P2

for some m. The segments of this line are directed along the D vectors chosen in successive iterations
of Step 2. Since Step 7 proceeds only if test_pts() rejected D" + D in Step 5, the subsequent call to
test_pts() in Step 2 will truncate (7) before reaching the old D. Thus the segment directions along

PY™ move monotonically away from the PlOpt — Qo direction.

s,
o Qo

c

(a)

Figure 21: (a) The successive P, values from Algorithm 3 (dashed line), with the grid-point-free
region shaded. (b) A close-up of the region near P3.

Let Py be the grid point closest to P? along ray through Plopt, and let Pj be the result of adding
D to the new P, value P! in Step 5. For j < m, all P; points are grid points rejected by test_pts() as
past the far path. (These points are marked by open circles in Figure 21b.) For any j < m, consider
the cone bounded by rays through Pj and Pj+1 from the apex PJ. We can use the sequence of
CF-neighbor directions between P; — P and Pj;; — P#*! to divide the cone into sectors by making
additional rays through the apex ch along each of the new directions. If Dj,k—l and Dj,k are a
two of these CF-neighbor directions, either Djyk = pj+1 — ch‘*‘l or test_pts() has determined that
ch + Dj,k—l and ch + Djyk are both across the far path. In the former case, Step 4 scans the sector
for grid points; in the latter case, all grid points in the sector must be across the far path. Hence
we can conclude that all cones Pj P! Pj;; contain no interior grid points, except those considered in

Step 4.
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We have shown that the lightly-shaded region in Figures 21a and 21b is free of unconsidered grid
points. More precisely, if P?™ is the result of extending the last segment of P%™ until it hits the
far path, then the closed region bounded by QoPlopt, the far path, and P%™ contains no grid points
except those on P%™ which are considered in Step 4. Thus, the only grid points across the near
line and better than P™ are those between Qo P™ (the dotted line in Figure 21a), P2™ (the dashed

c

line), and the near line (the ray from P{P" directed toward Pp). Call this region R.

The darker region in Figures 21a and 21b corresponds to Figure 6a. It is a union of triangles of
the form

c

pm=t pmelap; PPTIAD; . (13)

These contain no interior grid points, because such a grid point would have to be a weighted average
of Pcm_l, Pcm_1 + Dj -1, and Pcm_1 + Dj 1, where Dj ;_1 and Dj  are CF-neighbors between D;
and Dj41. Since P™~! must be short of the near line and the last triangle (13) had Dj41 equal to
the near line direction, the triangles must cover the entire region R.

Hence if the algorithm returns P[”, there are no grid points between the near line and the far

path better than P*. The only other possibility is to return the best Pj point, but this is only done
when a comparison against £j;, shows that P is better than P*. O

The following corollary is simply a restatement of some the intermediate results in the above
proof. It is needed to prove that Section 6.1 implements the grid hull subroutine correctly.

Corollary A.2 Let PO™ be the polygonal line determined by the successive P, values computed by
Algorithm 3 as in the proof of Theorem A.1. If no grid points are found in Step 4, then all grid points
wn the closed region bounded by segment QOprt, the far path, and P%™ lie on P9™. Purthermore,
the wvertices of PO™ lie on grid points, and PY™ has no inflection segments.
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