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Since optical character recognition systems often require very large amounts of training data for
optimum performance, it is important to automate the process of finding ground truth character
identities for document images. This is done by finding a transformation that matches a scanned
image to the machine-readable document description that was used to print the original. Rather than
depend on finding feature points, a more robust procedure is to follow up by using an optimization
algorithm to refine the transformation. The function to optimize can be based on the character
bounding boxes—it is not necessary to have access to the actual character shapes used when printing
the original.

1 Introduction

Training and testing optical character recognition systems often requires large numbers of realistic
character and word images. If the correct “ground truth” character identities have to be entered
or corrected by hand, it is difficult to gather enough accurate data. Semiautomatic methods are
popular now, but they still require a lot of labor [8, 9, 10]. Much of this labor can be avoided
by automatic ground-truthing where a scanned page image is matched with the original document
description that was used to print the page. The procedure suggested by Kanungo [4] is to look
for certain feature points in the scanned image, transform the original page description to make the
feature points match, and then use template matching to look for character images near where the
original page description says they should be.

The goal of this work is primarily to find a more robust way of transforming the original page
description to match the image, and secondarily to see if we can avoid the need to have fonts available
for template matching.

The original page description identifies each character on the page and gives its bounding box
coordinates. Figure 1 shows how Kanungo uses this information to find feature points. The feature
points are the bounding box corners where z+y, z—y, —z+y and —z —y are maximized. Performing
a similar computation for connected components in the scanned page image yields another set of four
feature points. Kanungo then finds a geometric transformation that aligns the two sets of feature
points and hopefully aligns the character bounding boxes with the corresponding character images.

This can work, but it was not very reliable in our tests. Scanned images often have speckles and
other material not in the original page description, and this can cause the wrong feature points to be
found. Even when this does not happen, transformations based on just a few feature points can give
suboptimal matches. For these reasons, we attempt to find a transformation that makes the entire
page description fit the image as well as possible. We define a function that measures this fit, and
then use standard optimization techniques. Since it is still important to have a good starting point
for the optimization, the new approach does not replace feature point analysis, 1t complements it.

Section 2 defines the optimization problem and explains what standard techniques are best for
solving it. Section 3 explains how careful bucketing strategies can speed up the optimization enough
to make it practical. Section 4 investigates the problem of assigning ground truth to character and
word images without a priori knowledge of the character shapes or non-geometric distortions in
the printing and scanning process. Finally, Section 5 gives results and discusses applications, and
Section 6 gives some concluding results.
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Figure 1: The bounding boxes for all characters on a small sample page with Kanungo’s feature
points indicated. The feature points are chosen so that the 45° dashed lines are supporting lines.

2 Finding the Transformation

The task is to take character bounding boxes such as those in Figure 1, and find a geometric
transformation that matches them to a similar set of bounding boxes derived from the scanned
image. Specifically, we use the bounding boxes for 8-connected sets of black pixels in the image and
choose an affine transformation

=) (5) () 0

An initial estimate for 7' can be computed from the feature points illustrated in Figure 1. We need
to improve this estimate by minimizing a function that depends on the six parameters that appear
in (1), and measures the degree by which the character bounding boxes fail to match the image
when the transformation 7' is applied.

In order to have axis-aligned rectangles, it is best to start by applying T to each connected
component in the image and then compute bounding boxes as indicated by dashed lines in Fig-
ure 2a. Call these the image bozes and refer to the character bounding boxes from the original page
description as ideal bozes. Since characters can break up and/or merge together during printing and
scanning, there is not necessarily a one-to-one correspondence. In the example of Figure 2b, there

are two 1mage boxes for the ideal box “r,” and ideal boxes “a” and “l” both correspond to the same
image box.

2.1 The Mismatch Function

The above example suggests that we measure the degree of mismatch by developing a function d
that takes two boxes and measures how much they would have to be changed in order for one of
the boxes to contain the other. For each ideal box A, we can find the image box B that minimizes
d(A, B), and then apply a standard vector norm to the resulting list of d values. This approach
allows characters to break up or merge together and does not penalize for junk or non-text material
for which there are image boxes but no ideal boxes.
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Figure 2: (a) Portions of a slightly rotated 200dpi page image with bounding boxes; (b) the same
image boxes (dashed lines) superimposed on the ideal boxes from the original page description (solid
lines).

Hence we define

d(AaB) = min<df(Al‘1;A.r2:Bz‘1;Bl‘2) +df(Ay1aAy2:By1aBy2)a
df(B£1aBl‘27Al‘11Al‘2) +df(By1:By2aAy17Ay2))
+ dp(Ax2 - Al‘la Bx2 - B:cl) + dp(Ay2 - Ayla By2 - Byl)a

where x1 and 2 subscripts refer to a box’s minimum and maximum x coordinate, yl and y2
subscripts refer to the minimum and maximum y coordinate, d, is a penalty term that is nonzero
when the ratio of its arguments is too small or too large, and

0 if 23 < 21 and x5 < xy4;
di(z1, 9, x5, 24) =  min(|zz — 21|, [£4 — 22])
+ max(0, 22 — #1 — (x4 — 23)) otherwise.

Function dy is the amount of translation and stretching necessary to fit interval [zq, 5] within
interval [r3, z4]. The d, terms ensure that unreasonably large objects are not treated as run-
together characters and that broken characters are required to contain reasonably large connected
components. A generous choice is

dp(a,b) = max(0, max(a,b) — 8- min(a,b)).

We can now define the mismatch function as follows: take the six parameters that appear in (1);
use them to find bounding boxes of the connected components in the transformed image, chooses
among these transformed image boxes, an image box B that minimizes d(A, B) for each ideal box A;
and apply a vector norm to the resulting d(A, B) values. We choose the L4 norm (fourth root of
sum of fourth powers) since experiments suggested that the L, norm is too sensitive to noise and
the Ly norm causes the mismatch function to have too many local minima.

2.2 Minimizing the Mismatch

Most standard optimization methods do not work well on the mismatch function because it lacks
continuity and smoothness properties. Many comparisons are needed to evaluate the function and
it does not take much of a change in the transformation parameters (1) to reverse one of the
comparisons. This means that the mismatch function has an extremely large number of slope
discontinuities. As explained by Wright [13], optimization problems of this kind are best solved by
direct search methods such as Nelder-Mead [7] and Torczon’s algorithm [12].
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Torczon’s algorithm is well suited to parallel computation and it has guaranteed convergence
properties that Nelder-Mead lacks, but the results in Section 5 will show that it requires significantly
more function evaluations. In addition, it is hard to get enough information about the mismatch
function to make use of the convergence properties.

For these reasons, we concentrate on Nelder-Mead. For our six-dimensional problem, the Nelder-
Mead algorithm maintains a set of seven

tp 1
<txxatxyatyxatyy1 Wxa Ey)

values that are the vertices of a simplex in Euclidean 6-space, where W and H are constant scale
factors. (It suffices to let W and H be the width and height of the page). If 7% is the vertex where
the mismatch function is greatest and 7 is the average of the other six vertices, a Nelder-Mead step
consists of trying one or two points along the 7' 7% line and trying to update the simplex by replacing
one of the existing vertices. In the uncommon case where this gives no improvement, the simplex is
contracted by replacing each simplex vertex T; with (7; + 71)/2, where T} is the simplex vertex for
which the mismatch function is lowest.

The usual convergence test is to see if the simplex vertices or the function values at the vertices
are all close together. We modify this by defining a critical value for the mismatch function, and
using very tight tolerance in the other tests if the critical value has not been achieved. The purpose
of the critical mismatch value is to ensure that there is a good chance of assigning appropriate
ground truth. The critical value is what the mismatch function would return if each d(A, B) value
were half the median character width.

3 Efficient Implementation

The Nelder-Mead algorithm can require 300 function evaluations to find the transformation pa-
rameters that minimize the mismatch function. For a typical page containing 1800 characters and
1800 connected components, Section 2.1 apparently requires 1800? evaluations of d(A, B) for each
invocation of the mismatch function. The resulting 1 billion d(A, B) evaluations would probably
make the overall algorithm unacceptably slow.

Two strategies result in significant speed-ups:

1. Use a carefully chosen subset of the ideal boxes—the ones where d( A, B) is likely to be largest
if the transformation parameters are wrong.

2. Preprocess the transformed image boxes using a bucketing algorithm that allows d(A, B) to
be evaluated only for the most reasonable (A4, B) pairs.

Strategy 1 is simplest, but it needs to be used carefully since it involves changing the mismatch
function rather than just evaluating it more efficiently.

3.1 Choosing a Subset of the Ideal Boxes

The mismatch function is designed to allow for material in the page image that does not correspond
to any characters in the original page description. Hence it is natural to try to simplify the problem
by basing the mismatch function’s ideal boxes on just a subset of the characters. The shaded boxes
in Figure 3 are an example of such a subset.
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Figure 3: The character boxes from a sample page with a subset shaded to indicate which of them
might be used as ideal boxes for the mismatch function.

The selected characters in Figure 3 are at the beginnings and ends of lines, around any other large
empty spaces, and around some of the word breaks. If a poorly chosen transform is applied to the
image, it is likely that many of the selected boxes will not match any of the resulting image boxes.
Hence the mismatch function will tend to return large values when given non-optimal transformation
parameters.

It is easy to choose such a subset of the characters if we assume that the original page description
lists boxes approximately in reading order. Suppose there are n characters numbered 0, 1, 2, ...,
n — 1, where each character ¢ has bounding box A;. Let o be a pseudorandom function that maps
0,1, ..., n— 1 into the interval [1,1.3], and consider the positive integers less than n in order of
decreasing

O'(Z) . d(AZ'_l, Az)

For each such integer 7, make 7 and 7z — 1 part of the chosen subset until the chosen subset reaches
some predetermined size. This predetermined size will typically be something like

min(max(300,0.15n), n).

The purpose of the function o is to ensure that if there are a lot of roughly equal d(A;_1, A;)
values, the chosen subset samples them in a roughly uniform manner with respect to the index z.

3.2 Bucketing Strategies

Transformed image boxes By, Bi, ..., Bp—1, must be preprocessed so that for any given box A,
we can quickly find the B; that minimizes d(A, B;). It is natural to use bucketing because the B;
are distributed in a fairly uniform fashion across the non-blank areas of the page, and we can find a
reasonable upper bound on the optimal d(A, B;). This is because the ideal boxes are easily ordered
so that if A’ follows A, the optimal B; for A is likely to produce a low value for d(A’, B;) as well.

Another way to guess a good B; is to use information from a previous invocation of the mismatch
function. If the transformation 7" has not changed much, the transformed image boxes By, By, ...,
By, —1 will not differ much from one invocation to the next. Hence we can try the B; that corresponds
to the one chosen last time for ideal box A. Thus we have two guesses for image boxes that are
supposed to give low d(A, B;) values and these provide an upper bound on the actual minimum
d value.
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There are many ways to set up buckets so that a good upper bound on the minimum d value and
a sufficiently uniform distribution of image boxes sharply limit the number of buckets and image
boxes to be examined. One method is to classify boxes according to (z1,31) and

max éL‘2—fE1’y2—y1 ’ (2)
w H

where W and H are the width and height of the page and (z1,y1) and (z3,y2) are the minimum
and maximum z,y coordinates for the box. The observed values of (2) are grouped so that one
group has the small values and each other group covers at most a factor of two. Within each group,
the bucket is determined by (z1,¥1) in the natural fashion. Each time we go from one group to the
next, values of (2) double and we reduce the number of (21, y1) buckets by a factor of four.

4 Assigning Ground Truth

We have seen how to find a transformation (1) that makes the image boxes approximately match
the ideal boxes that carry ground truth character identities from the original document description.
If this were an exact one-to-one correspondence, it would be trivial to assign ground truth to the
image boxes. When the correspondence is far from one-to-one, the most reliable approach is probably
Kanungo’s procedure of comparing against the expected character shapes with a small range of z and
y displacements. The purpose of this section is to consider what can be done if the ideal character
shapes are not available.

This pleasant situation of a one-to-one correspondence is most relevant to the problem of assign-
ing ground truth on a word-by-word basis, so we start with this problem. We then use information
from the word-by-word problem to attack the more difficult problem of assigning character-level
ground truth.

4.1 Ground Truth at the Word Level

Consider the problem of identifying words in the original document description with the correspond-
ing parts of the page image. We can assume that a word is described by consecutive records from the
document description, where each record gives a character identity and the corresponding bounding
box. Hence the task is to find word breaks in the document description, combine character bounding
boxes to get a bounding box for each word, and then expect the transformed image boxes for each
word to be approximately contained in the word’s bounding box.

One way to decide if there should be a word break between two records in the document de-
scription is just to measure the distance between the character bounding boxes and test it against
a threshold as Chen et. al. do [1]. In our case, the original document description was derived from
TEX output so we use a version of Knuth’s rule for finding word breaks in TgX output [5, 6]. Insert
a word break between document description records A and B if

Bo1 — Agy > 5 or B —zI< 2 or |Bys — Ays| > 5—5,
6 3 6
where z1 and 22 subscripts refer to the minimum and maximum z coordinates, y2 subscripts refer
to the bottom y coordinate, s the average of A’s font size and B’s font size, and z is the maximum
of Az9 and the Cy5 values for all records C' that precede A and follow the last word break. Another
way to say this is that we break the document description into words by checking for horizontal
spaces of more than é of the font size or vertical spaces of more than % of this size, while allowing
% of this size for backspacing when building up accented characters.
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Refer to the bounding box of all the ideal boxes in a given word as the word boz. We can assign
transformed image boxes to words by just testing for approximate containment. An image box B is
approximately contained in word box W if

df(Bl‘17B£‘21 lea Wx2) + df(Byh By2a Wyla Wy2) S €, (3)

where dy is as given in Section 2.1 and ¢ is a suitable threshold. This test is fast enough that we can
try each transformed image box against each word box until finding a word box that approximately
contains the image box.

4.2 Character Level Ground Truth

If we want to find the portion of the page image that corresponds to each character in the original
document description, the word-level ground truth allows the problem to be solved separately for
each word. The correspondence between ideal boxes and transformed image boxes may be imprecise
as shown in Figure 4a, but the situation can by improved by doing an additional transformation
specific to the current word. The bounding boxes of the transformed image boxes assigned to the
word (dashed lines in Figure 4b) will not precisely match the word box (solid lines in Figure 4b),
but a transformation of the form

T(z,y) = ({MCU + 1z, {yyi‘/ +{y) (4)

can fix this. The result is a better correspondence between ideal boxes and image boxes as shown
in Figure 4c.

—
|

Figure 4: (a) Transformed image boxes (dashed lines) superimposed on the corresponding ideal
boxes (solid lines); (b) the word box (solid lines) and the bounding box of the transformed image
boxes (dashed lines); (¢) The boxes from (a) with the image boxes transformed so that the bounding
boxes from (b) coincide to form the dotted box.

The remaining task is to use this correspondence to map image boxes and the associated artwork
to the ideal boxes. If this cannot be done by comparing the observed images against the expected
character shapes as Kanungo suggests, Algorithm 1 shows how to do it by using an approximate
containment test like (3), but with a tighter tolerance. We omit the details in Step 3 where run-
together character images get cut up since this cannot be done reliably without knowledge of the
character shapes. See [3] for an example of an application where Algorithm 1 was used successfully.

5 Results

The algorithm was implemented in C+4 and tested on 28 pages from six different documents.
Each page was printed at 600 dots per inch, photocopied once, and scanned or faxed at various
resolutions. Table 1 gives basic information about the documents and the scanned images. The



Matching Document Images with Ground Truth 8

Algorithm 1 How to use an approximate containment test to take the character images assigned
to a word and assign them to ideal boxes within the word, cutting up images if necessary.

1. Test each transformed image box for approximate containment in each of the word’s ideal
boxes and assign the image boxes accordingly. If a transformed image box is approximately
contained in more than one ideal box, choose the one where d; is smallest.

2. For each unassigned image box B, find the set Sp of ideal boxes that intersect the transformed
version of B. Label B as a conglomeration of material from members of Sp.

3. If desired, try to cut up each image for box B from Step 2 cookie-cutter fashion, and assign
the pieces to the appropriate ideal boxes.

4. Use the character identity and font labels from each ideal box to give ground truth labels for
the images assigned that ideal box.

original document descriptions consisted of IXTEX output that was post processed to produce ASCII
files listing character identities and bounding boxes for use by the program. This ASCII format was
not specific to TEX or ETEX and could have been generated from a PostScript document description
if a suitable conversion program were available.

Document Average characters or components
Id Font | Language | Pages || Truth | 200 x 100 | 200dpi | 400dpi
A cmr 10pt | English 5 1715 2100 1819 1838
B | Times 10pt | English 6 2371 2655 2453 2519
C cmr 12pt | English 5 1272 1839 1423 1379
E cmr 10pt | English 4 1879 2533 2026 2016
G cmr 11pt | German 4 1643 2257 1831 1821
S cmr 11lpt | Spanish 4 1453 1916 1564 1540

Table 1: Statistics about the test pages and the character images extracted by page layout analysis.
Documents A-C' are preprints of journal articles and documents E-G are software manuals. The
“Truth” column lists the average characters per page from the original document description and
the last three columns count connected components in the scanned images.

In order to test the optimization procedures as thoroughly as possible, we start with a simple
estimate for the transformation that matches the image to the document description, and then use
all available means to reduce the mismatch. The goal is to get the mismatch below a critical value
based on half the width of a typical character as suggested in Section 2.2.

The simple estimate for the transformation differs from Kanungo’s approach due to a crude
attempt to cope with bad feature points from speckles and miscellaneous junk in the page images.
We find the four feature points illustrated in Figure 1 for both the ideal boxes and the image boxes,
then try to transform any three of the image box features into the corresponding ideal box features.
This gives four possible transformations from which we can select the one closest to the identity
transform. If none of these appear reasonable, we try again using additional constraints with pairs
of feature points instead of triples. An additional heuristic attempts to cope with fax header lines
that appear in the images but not in the document description.

Once the initial transformation is chosen, we can pick a subset of the ideal boxes as explained
in Section 3.1 and then use the Nelder-Mead algorithm to minimize the mismatch as explained in
Section 2.2. If the mismatch remains above the critical value, a second round of minimization uses
the same starting point, but bases the mismatch on all the ideal boxes instead of just a subset of
them. If this fails to reach the critical mismatch value, it may be that certain ideal boxes cannot be
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matched.! These ideal boxes can be found by examining the last function evaluation in Round 2,
and finding the ideal boxes that contribute the most to the mismatch. For instance one 200 x 100 dpi
page image from Document A had mismatch contributions of 15.2 and 14.9 for the 85th and 84th
ideal boxes, while no other ideal box had a mismatch contribution of more than 3.9. Round 3 consists
of dropping up to three such high-contributing boxes from the mismatch function and repeating the
minimization process.

Figure 5 shows how this three-round minimization process performs on the test pages. Since the
mismatch function is the L4 norm of the contributions for the ideal boxes, the mismatch values used
in the figure are normalized by dividing by the fourth root of the number of ideal boxes. This means
that the coordinates in the figure are essentially in pixel units, so the higher “after minimization”
values for the 400 dpi test pages just mean that the actual distances involved in the mismatch
computation are staying fairly constant.
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Normalized mismatch before minimization

Figure 5: A scatter plot of the normalized mismatch before and after the three-round minimization
process for pages from the test documents. Each label gives a document id from Table 1 followed by
a digit that gives the resolution: 1 means 200 x 100 dpi; 2 means 200 dpi; 4 means 400 dpi. Boxes
identify pages where the critical mismatch value could not be achieved. All data is for Nelder-Mead
minimization.

The three labels above the labels for the 400 dpi test pages are for 200 x 100 dpi test pages
where Nelder-Mead minimization failed to reach the critical mismatch value. Since all other test
pages led to less than critical mismatch values, the 200 x 100 dpi resolution images appear to be the
primary trouble spot for Nelder-Mead. This is relatively encouraging in view of the high mismatch
values before minimization. Except for the small group of 100 x 200 and 200 dpi labels at horizontal
positions < 3.5 and the small group of 400 dpi labels at horizontal positions < 7, it was apparently
not possible to find three appropriate feature points on which to base the initial transformation.
Note that minimization often reduced the normalized mismatch by a factor of two even when the
initial mismatch value was good enough to suggest that the feature points were appropriate.

If the mismatch values after minimization scale with resolution, is there some underlying cause?

1This can happen when character images merge with large connected components such as rule lines in a table.
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We test this by viewing the mismatch graphically using the transformation from (4) for each word.
Figure 6 shows how the center of each word in the 200 dpi scanned image gets shifted for the two
pages from Document A; i.e.; it displays the additional transformations needed after the best affine
transformation has been applied. These transformations are complicated but they do not look like
random noise. If the considerable similarities between parts @ and b of the figure are due to the
fact that they both originated from the same copier and fax machine, it may be possible to measure
the nonlinearities and compensate for them in future experiments as Kanungo suggests [4]. On the
other hand, Section 4.2 explained how to find the transformations (4) without such prior calibration
if the mismatch is not too great.

' . / N
.- -~ ' ’ - e~ . <y [N
- - v e . - . AN
~ e .- - AN
o r'd N L N - - - . , PRI
(A A . o e e
L V2 N ~
IR Ya; v ‘ ~ N / // 7 \ | \ .
- VA A Vo
' A A AN .
N / | N R A A \
R o - O N N
» - - - v t
; ° 4 N 4 L - - o~ A~
. - PR v - c e - g
- oy . ‘ i /1 \ - . =
- ’ / \ VN
- S o d, ‘
’ i~ w o e T e = F t
st N R - 3 + 4
/ « ot PR - 7 Pt - TN ' A VIR
! t [ t VAN VIV / t X =L,
1 v ” /P TN ’ .
P / [ . rr s\
1 [T A A te, s 1
X ) /A T SR st 7'l
B e S ' tr oy st e,
RN P ~ TR - . -/
R .
- P ” N ~ > ~
' N -~ .
RN
- - v N - - - cee e e <
- -~ .e , -
' r < - s [ ' v \
t - - e _ . A
- - s - PR v Vv
- ’ e ’ o o o« 4
ST Ly /b J Vo e Ty THay
ool TLtlr -
B / < NT S P I N A A B
oL C - 74 %
LN N s~ - ' - - . - - - / v/ P A {/k

(a) (b)

Figure 6: Displacements for the center of each word’s bounding box due to the transformation (4)
when matching 200 dpi images to the original document descriptions for two pages of Document A.
The displacement vectors are exaggerated by a factor of 20.

In view of the importance of getting the mismatch below the critical value, it is worth checking if
alternative minimization strategies can reduce or eliminate instances of failure to reach the critical
value. One approach is to try other initial transformations. For instance, the failures in Figure 5
can be eliminated by starting at the transformation that turned out to be optimal for the previous
page of the document in question. Of course it would be better to find an optimization strategy
that outperforms Nelder-Mead on the 200 x 100 dpi pages.

The guaranteed convergence properties of Torczon’s algorithm make it a prime candidate for these
difficult, low-resolution test pages. Figure 7 compares the effectiveness of Nelder-Mead minimization
with three versions of Torczon’s algorithm. The three versions differ in the setting of a parameter
that controls the number of function evaluations per iteration of the optimization routine. Torczon
refers to this parameter as “the number of search directions.” The minimum allowable value of 12
gives rise to the solid round dots in Figure 7; the small open circles are for 24 search directions; and
the large open circles are for 96 search directions. The Nelder-Mead data indicated by + signs in
the figure do not show a dramatically different distribution.

Figure 7 shows that the mismatch after minimization was always either less 1.5 or more than 4.
This separates the data points into those where the mismatch was successfully reduced to the
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Figure 7: A scatter plot of the normalized mismatch before and after the three-round minimization
process for 200 x 100 dpi pages from the test documents. The + signs are for Nelder-Mead mini-
mization, and the dots, small circles, and large circles are for Torczon’s algorithm with 12, 24, and
96 search directions, respectively.

critical value, and those where the minimization process should be considered unsuccessful. Since
the most notable feature of this latter group is that dots (Torczon’s with 12 search directions)
are overrepresented, we tentatively conclude that it is probably best to use more than 12 search
directions.

Table 2 shows how Torczon’s algorithm compares with Nelder-Mead in terms of the number
of function evaluations needed to reach the minimum. The “Overall” row shows that the overall
average number of function evaluations is much less for Nelder-Mead. Torczon’s algorithm performs
best with 24 search directions, but even in that case, Nelder-Mead does fewer than half as many
function evaluations. It also helps to increase the resolution. The overall averages are reduced at
200 and 400 dpi because it is seldom necessary to resort to more than one round of minimization.

200 x 100 dpi 200 dpi | 400 dpi

Scenario Torczonl2 | Torczon24 | Torczon96 | NM NM NM
Round 1 works 1596 899 2748 307 335 312
Round 2 works 4706 2566 6302 1229 1226 1366
Round 3 works 9525 2673 8853 1918 -
Round 2 fails 4485 2590 9134 1648 -
Round 3 fails 5361 4149 12405 - -

Overall 2924 1501 4457 657 399 387

Table 2: Average number of times the mismatch function had to be evaluated to process a test page
broken down by resolution, optimization strategy, number of rounds of optimization needed, and
success in reducing the mismatch below the critical value.
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Table 2 may be a little misleading because it weights iterations in Round 1 just like those in
Rounds 2 and 3 even though the later rounds make the mismatch function harder to evaluate by
basing it on all or almost all the ideal boxes instead of using just 15% of them. Hence, the actual
run times in Table 3 show an even bigger speed up at the higher resolutions. Torczon’s algorithm
still takes more than twice as long, but this could change if parallelism were enabled. (The test
machine was an SGI Challenge XL with 12 MIPS R4400 processors running at 150Mhz, but all tests

were done on a single processor).

200 x 100 dpi 200 dpi | 400 dpi

Scenario Torczonl2 | Torczon24 | Torczon96 | NM NM NM
Round 1 works 57.6 34.0 96.2 12.5 12.8 13.2
Round 2 works 285.9 169.6 631.7 128.1 77.0 89.9
Round 3 works 833.6 251.5 803.4 158.9 - -
Round 2 fails 275.3 203.6 568.4 124.5 - -
Round 3 fails 321.8 358.9 1145.2 - - -

Overall 169.5 93.9 281.4 44.3 17.3 18.7

Table 3: Average run time in seconds per test page as a function of resolution, optimization strategy,
number of rounds of optimization needed, and success in reducing the mismatch below the critical
value.

What about the accuracy of the ground truth produced by the algorithm? This was not tested
systematically since the main thrust of this paper is finding the best transformation, and Kanungo
has already shown that reliable ground truth can be obtained by template matching against the
expected character shapes, once the transformation is known. The test implementation was pro-
grammed to reject questionable words rather than risk producing bad output. No errors and very
few rejections were found when spot checking the results by hand.

6 Conclusion

When generating ground truth by matching a page image against the original document description,
it is of primary importance to find a geometric transformation that maps coordinates appropriately.
We have seen how standard optimization techniques can improve the accuracy of such a transfor-
mation, even if the initial approximation is way off. In those few cases where optimization does not
yield an appropriate transformation, the mismatch function reveals the problem, and restarting the
optimization with a different starting point can solve the problem.

A number of important questions remain to be more fully addressed in future work. Does
searching for an affine transformation (1) provide the right number of degrees of freedom? Three
degrees of freedom are sufficient to determine how a piece of paper is positioned on a scanner, yet
affine transformations provide six and Figure 6 suggests that it would help to allow much more
complicated transformations. Affine transformations were chosen as a compromise because direct
search optimization algorithms have a reputation for behaving poorly when the dimensionality of
the search space is too high.

Another question is what optimization algorithm is best. Since Torczon’s algorithm is designed
to run in parallel, its run times could be significantly better than Nelder-Mead if parallelism is
enabled. On the other hand, the mismatch function itself could be parallelized since each ideal
box can be considered separately. The tests reported in Section 5 are less than definitive, but the
difficulties that occasionally cause Nelder-Mead to fail to find the desired minimum do not seem to
be amenable to Torczon’s superior convergence properties. The mismatch function could well have
undesired local minima.
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A possible alternative to direct search methods such as Nelder-Mead and Torczon’s algorithm
is to try to use differential semblance optimization to construct a smoother or more continuous
function to minimize [11, 2].

It also seems promising to try a real segmentation algorithm in place of just connected component

analysis. The third round of optimization used in the trials in Section 5 was specifically designed to
cope with missed segmentations, but it would undoubtedly be better to improve the segmentation.

Finally, it would help to be able to extract symbol identities and bounding boxes from a
PostScript or PDF file, instead of depending on TEX or ETEX output. This would make it eas-
ier to generate a wide range of input for the ground truthing process and it would probably allow
for more accurate bounding boxes.
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ABSTRACT

Since optical character recognition systems often require very large amounts of training data for
optimum performance, it is important to automate the process of finding ground truth character
identities for document images. This is done by finding a transformation that matches a scanned
image to the machine-readable document description that was used to print the original. Rather than
depend on finding feature points, a more robust procedure is to follow up by using an optimization
algorithm to refine the transformation. The function to optimize can be based on the character
bounding boxes—it is not necessary to have access to the actual character shapes used when printing
the original.



