
An Application for Semi-Automatic
Differentiation

John D. Hobby

Bell Laboratories, Lucent Technologies, 600 Mountain Ave., Murray Hill, NJ,
07974, USA. hobby@bell-labs.com

Summary. A large software project involving the optimization of cellular phone
systems required evaluating a complicated function and its derivatives. Due to strin-
gent limitations on run-time and memory consumption, all the derivatives were
hand-coded.

We discuss the time and memory costs for the hand-coded derivatives and com-
pare them with the costs of automatic differentiation. We also consider the soft-
ware development costs for hand-coded derivatives and suggest some approaches
for adding as much automation as possible subject to the constraint that overall
run time and memory consumption is similar to that of the hand-coded derivatives.
We also consider methods for partial automation while preserving the efficiency of
hand-coded derivatives, and we discuss some preliminary efforts in this direction.
There need to be more tools for partial automation so that applications such as this
one can get at least some of the benefits of automatic differentiation.

1 Introduction

Due to increases in problem size and software complexity, it is still common for
large applications to run into run-time and memory limitations. This paper
is based on experiences with a large project of this nature where derivatives
were hand-coded to achieve maximum efficiency. We argue that there need to
be more tools for partial automation so that applications such as ours can get
at least some of the benefits of automatic differentiation (henceforth referred
to as AD).

The application involves a complicated function written in C++ that mod-
els cellular phone system performance as a function of numerous parameters.
To facilitate optimization via snopt [4, 5], there are derivatives with respect
to four types of parameters. The total number of independent variables can
range from a few dozen to more than 1000, depending on the problem size.
Typical run times for a function evaluation (without derivatives) on a 1Ghz
PC range from 5 seconds for a small problem instance to about 15 minutes for
a very large one. This is a real application of significant business importance.



2 John D. Hobby

As explained in Section 2, long running times and large numbers of vari-
ables appeared to make existing techniques for AD impractical, hence the
derivatives were hand-coded. This decision allowed for large problem sizes
but limited the number of types of parameters for differentiation due to the
additional implementation and debugging effort required for new derivative
functions. Section 3 explains that it also led to significant additional software
development costs. The offsetting benefit is that the function with hand-coded
derivatives typically runs at most 3 times as long as the function without
derivatives and uses little additional memory. In order to achieve this with re-
duced software development costs, Section 4 investigates partial automation.

2 Time and Memory Comparison with Hand-Coded
Differentiation

Upgrading a function of n variables to compute the function and gradient
vector clearly must increase run time and memory consumption by factors
≥ 1. The hand-coded derivatives had a run time overhead factor near 3.0
with a memory overhead factor that is at most 2.0 and often much less.

With purely forward-mode AD, both factors are near n+ 1, which is pro-
hibitively expensive for our application where the number of variables n can
be 1000 or more.

A purely reverse-mode system such as ADOL-C’s reverse mode [7] gives a
time factor that does not grow with n, but memory consumption is propor-
tional to run time. C++ operator overloading is very convenient but involves a
substantial run-time overhead. Note that this overhead can be reduced signifi-
cantly if we can parse the input program and generate new code [2]. However,
it is impractical to store every elementary operation for a function that takes
15 minutes to evaluate, so the memory factor is prohibitive unless it can be
controlled in some way.

Systems such as ADIC provide mixtures of the forward and reverse modes
[1], but it is generally agreed that the efficiency of hand-coded derivatives is
very hard to get with automatic tools. Giering and Kaminski claim that TAF
can achieve this efficiency if used with enough care [3], but no equally-good
C++ version is available at this time. The fact that the cell-phone application
dates back to 1998 and is written in C++ made it especially difficult to find
suitable automatic tools.

2.1 Reasons for Better Performance with Hand-Coded Derivatives

It takes a great deal of data to describe how well a cell-phone user can com-
municate at all possible locations, so the function to be differentiated involves
vast numbers of intermediate results. There is also a great deal of combinato-
rial information to be computed, usually by computing spline functions and
checking whether they are nonzero in certain places.



An Application for Semi-Automatic Differentiation 3

When a function to be differentiated computes both combinatorial data
and numerical results, the derivative code can often assume that the combina-
torial data has already been computed. Hence, what needs to be differentiated
is a completely different function that uses the combinatorial data to recom-
pute the numerical results.

For hand-coded derivatives, the programmer knows a lot about the con-
trol flow of the function being differentiated and hence can get many of the
advantages of the reverse-mode approach without recording an explicit exe-
cution trace. This leaves numeric quantities that do have to be propagated
backwards—we refer to them as adjoints as in [2, 6].

Hand-coding the derivatives allowed a complex mixture of the forward-
and reverse-mode approaches. In fact, there were several types of interme-
diate results for which it was advantageous to propagate derivatives with
respect to those quantities in forward mode, but in no case was there ever
any forward-mode propagation for derivatives with respect to the main input
variables since there can be up to n = 1000 of them as explained above. In
one case where the function involved dynamic programming, the adjoints for
the intermediate results required nontrivial data structures, and in another
case the adjoints could share storage with some of the intermediate results
from the non-derivative computation.

The hand-coded derivative routines also involved dramatic changes in con-
trol flow. Where the original function looped over large data structures, com-
puting O(n) quantities needed for subsequent computations, a vector v of
derivatives of the final result with respect to those O(n) quantities could only
be computed after the loop. To avoid excessive storage for adjoint vectors, the
entire loop was repeated, this time with derivative computations that depend
on v. Furthermore, whenever the original function contained a loop that adds
up a large number of quantities, the fact that addition is commutative and
associative made it unnecessary to propagate adjoints in reverse mode.

Another benefit was that when the original function used iterative methods
to solve a nonlinear system, the derivative routines could ignore the iteration
and do implicit differentiation based on the system of equations being solved.

Many of the issues mentioned above have come up in the literature, and
some of the automatic tools do allow the user to help in dealing efficiently
with such problems, but it is certainly difficult to do this well.

3 Software Development Costs for Hand-Coded
Derivatives

When hand-coding derivatives, it is often convenient to work on the function
and the derivative routines simultaneously and put them in a common source
file. Since this makes it hard to track development costs, we concentrate on a
subsystem where this was not done.



4 John D. Hobby

This subsystem computes a few dozen numeric quantities and makes a
fairly complex set of combinatorial decisions that are ultimately based on
whether certain spline functions are nonzero for certain inputs. It involves
transcendental functions, various computations based on the combinatorial
decisions, nonlinear extrapolation, and numerical integration.

The initial version of this subsystem was about 4000 lines of code, and
the non-derivative computations required 25 days of coding and 8 days of
debugging. The derivatives were about 55% of the code and they required 15
days of coding and 35 days of debugging. Thus derivatives required 38% of
the initial coding time but this rises to 60% when debugging is included. As
will be explained in Section 4.1, derivative debugging required a separate test
harness to determine whether derivative routines for intermediate results are
consistent with finite difference computations.

4 Doing as Much Automation as Possible

Is it possible to reduce the fraction of development time spent on derivatives to
much less than 60% with run time and memory consumption close to that of
hand-coded derivatives? Surely, some degree of automation should be possible
without giving up the efficiency of hand-coded derivatives.

We begin in Sections 4.1 and 4.2 with ideas for debugging tools since de-
bugging occupies so much of the development time for hand-coded derivatives.
Next, Section 4.3 discusses what properties a function has to have in order to
be “simple” enough for certain methods of efficient AD, and it also explains
how common such routines were. Actual techniques for partial automatic dif-
ferentiation based on these simple functions appear in Section 4.4. Finally,
Section 4.5 discusses the provision of special input to facilitate efficient auto-
matic differentiation in otherwise difficult cases.

4.1 Debugging with Finite Differences

The statistics from Section 3 suggest that a significant reduction could have
been achieved by a tool that merely simplifies debugging. Without such assis-
tance, a developer of hand-coded derivative routines must build his own tools
based on finite differences.

The most obvious way to use finite differences is the “black box” approach
of choosing an argument vector v and evaluating the overall function F (v) and
its gradient ∇F (v) as well as F (v− v̄i) and F (v+ v̄i) for various displacement
vectors v̄0, v̄1, . . . , v̄k. Since the cell phone application had 4 types of param-
eters appearing in v, this was done for with k = 4 and ‖v̄i‖2 ≈ 10−7 ‖v̄‖2 for
each i. Typically,

2v̄i · ∇F (v) ≈ F (v + v̄i)− F (v − v̄i)

to within about a few parts in 107, and the extent to which



An Application for Semi-Automatic Differentiation 5

F (v + v̄i)− F (v) and F (v)− F (v − v̄i)

agree gives some indication of the accuracy that can be expected. However, it
is sometimes hard to know if inaccuracies are due to bugs in the hand-coded
derivatives, and even when this is clear, the programmer can deduce little
more than that there is some kind of bug somewhere an a 40000 line program.

To help localize bugs, the “black box” finite difference checker for the cell
phone application also checked 10 types of intermediate results. Most of these
were scaler quantities with derivatives with respect to the argument vector v,
but two of them were vectors, each component of which depended on a few
other intermediate results in a manner for which derivatives were available.
This could often indicate which of a few major subsystems were responsible
for a bug, but it required 1200 lines of debugging code that was nontrivial
to set up and maintain, as well as additional data structures and code to
compute quantities and derivatives that were only useful for debugging.

More fine-grained finite-difference tests required a special test harness ca-
pable of taking subroutines meant to exist as part of a large program, finding
interesting input for them, and running them and the corresponding derivative
routines separately under controlled conditions. (See Figure 1.) Doing this for
19 subroutines, many of which involved derivatives of multiple quantities or
derivatives with respect to multiple parameters required more than 4000 lines
of debugging code.

parameter
values

init data
structs

radio pathlosses

misc. combin-
atoric data

traffic
pattern

data
structures

computation
using traffic
pattern

status

subproblem

look for
interesting
cases

tester

routines
under test

func val
& derivs

interesting
subproblems

Fig. 1. Major components of a test harness for using finite differences to verify
individual derivative routines.



6 John D. Hobby

In spite of the great effort to provide finite difference tests that could local-
ize bugs to specific subroutines, the 19 derivative routines tested represented
only a small fraction of the total: examination of the source code revealed 133
routines that compute derivatives of specific functions, and many more for
which the quantity being differentiated was only part of one or more larger
functions.

4.2 Debugging Tools

Although finite difference tests have been around for a long time, there should
be more tools for constructing and maintaining debugging code like that de-
scribed in Section 4.1.

For the “black box” approach, what required 1200 lines of debugging code
was making the 10 types of intermediate results and their purported deriva-
tives available for testing. There are plenty of tools for checking a function
against its gradient, but that only automates the easy part of the task. The
hard part seems problem-specific and hard to automate, so it may be best to
concentrate on automating the fine-grained, “white box” approach.

Automating the test harness illustrated in Figure 1 requires a program-
ming discipline whereby the programmer can specify which derivative routines
correspond to which original functions. Some kind of random sampling has to
be used to select specific invocations from the running program, then all the
input and data structures needed by the routine to be tested would have to
be checkpointed for use in the separate testbed. Issues that have to be dealt
with are the desire for “interesting subproblems,” and the difficulty in taking
subroutines from one program and guaranteeing that they will compile and
run in another program.

For the cell phone application, finding “interesting subproblems” required
classifying invocations of the routine being tested based on the combinatorial
properties of the input, and then making sure that all the combinatorial classes
were represented. In general, the programmer would probably have to provide
code for classifying invocations if there are rare but important cases that
simple random sampling might miss.

It might also be possible to avoid some of these difficulties by using
theorem-proving techniques to verify hand-coded derivatives. This may have
the potential for providing assurances that the derivative routines are fully
debugged.

4.3 Routines that are Simple Enough for Efficient Automatic
Differentiation

In order for a function to be simple enough for efficient AD, it is desirable to
be able to use reverse mode with no memory. A function that calls no user-
defined functions relevant to differentiation and has “if” statements but no



An Application for Semi-Automatic Differentiation 7

loops surely qualifies, and it is also not be too hard to handle function calls
and loops that are not order dependent.

The cell phone application had 77 functions for which there were corre-
sponding derivative routines, and 50 of them met this definition of “simple
enough”: the function and its derivative had the same if tests and executed
the same loops in the same order (but 6 of the 50 routines functions had extra
if tests to handle degeneracies).

Of the 27 non-simple derivative routines, 17 required control flow reversals
and 10 required two or more different types of derivatives in separate routines
with major changes in control flow. Six of the control flow reversals were due
to loops where each iteration depended on the previous one, and 11 were due
calling various other user-defined functions in a manner that required control
flow reversal.

4.4 Automatic Differentiation of Sufficiently Simple Routines

We have seen that many functions can be differentiated efficiently with no
significant changes in control flow. Automating just those derivatives would
significantly speed software development and allow the user to handle high-
level decisions such as adding another pass over the data structures so that the
automatically-generated could achieve low time and memory costs. A rough
prototype has been developed for the purpose of experimenting with these
ideas. It requires the user to insert special comments before each routine to
be differentiated, saying what to differentiate with respect to what. Then the
system parses the input program and outputs a new version with generated
derivative routines added.

The first stage of processing is a C++ parser that preserves comments and
white space. It uses a proprietary C/C++ grammar for the SGLR parser [9]
that was developed by D. Waddington as part of a research project on software
transformation. Then it looks at the type declarations to build up a hash table
containing type information, and passes function definitions preceded by the
special comments to the AD package. The result of AD is a generated parse
tree for the derivative routine’s function declaration. After merging this with
the original parse tree, the merged parse tree can be converted back into C++.

The prototype handles AD for a single function by proceeding as follows:

1. Construct a control-flow graph, and decide which basic blocks must pre-
cede or follow which others.

2. Within each basic block, convert the parse tree into a series of expression
trees with variables replaced by expression trees for their values. (This
generates common subexpressions so that the expression trees become a
DAG.)

3. For each basic block where there are expression trees that represent the
final values of quantities to be differentiated, convert each such expression
tree into an expression tree for the derivative as follows:



8 John D. Hobby

a) Mark the root node with an adjoint of 1 since we need 1 times its
derivative with respect to the independent variable x.

b) Find a node that is marked with adjoints for each of its parents,
generate expression trees that multiply by its partial derivatives, and
use them as the adjoints with which its children must be marked.

c) Repeat the previous step until all nodes have been processed. When-
ever an instance of the variable x is encountered, add its adjoint to
the expression tree for the the derivative result.

4. Convert all the expression trees back into parse trees, creating temporary
variables for common subexpressions.

Note that there is no control flow reversal, so it only works if loop iterations
do not depend on previous ones and the loops can thus be thought of as
parallelizable. The order of execution of basic blocks must also be predictable
enough in order to know what other basic blocks to refer to in order to find
the expression tree for a variable’s value at the start of a basic block. The
advantages are that this procedure gives the full benefits of reverse mode
AD while generating a full set of expression trees that can be simplified via
common subexpression elimination and other techniques.

4.5 Special Input for Automatic Differentiation

Under some circumstances, it may be necessary for the user to provide special
routines as input for AD. For instance, the hand-coded derivative routines for
the subsystem described in Section 3 take the combinatorial decisions from
the data structures produced by a previous call to the non-derivative version.
Hence, what was differentiated was a special version that assumes all the
combinatorial decisions have already been made.

In order to do efficient automation for the case where iterative methods
are used to solve a nonlinear system of equations, the special routine provided
by the user should be a computation of the residual. Then of there could
be an option for a redundant run-time check that verifies that the residual
is small at the computed solution. Although some AD tools cope with such
iterations by techniques such as ignoring all but the last few iterations, better
efficiency should be obtainable via the less automatic approach of requiring
the user to provide a residual function. For the iterations found in the cell
phone application, such residual functions would have been easy to write.

5 Conclusion

We have analyzed a large application where stringent limitations on run time
and memory consumption would have presented a difficult case for AD. Some
form of partial automation would probably have been useful, but a long series
of project deadlines allowed no time to develop this.



An Application for Semi-Automatic Differentiation 9

In order to prevent projects such as this one from missing out entirely
on the benefits of AD, there needs to be more of a range of approaches that
cover the full spectrum from completely manual and nearly automatic. While
almost all AD tool providers recommend significant manual intervention in
order to achieve good performance, it is easy for a practitioner to decide that
he cannot afford to go that far away from the manual approach.

The semiautomatic tool discussed in Section 4.4 is currently in a very
preliminary state. It is intended to do derivatives approximately the same
way a human programmer would, but it certainly has more limitations than a
human programmer. It should probably be extended so as to relax the control
flow restrictions in a manner consistent with this philosophy. Other problems
are that it does not cope well with C++ templates and exceptions and it
should probably be merged with existing tools, perhaps via OpenAD [8].

References

1. Christian H. Bischof, Lucas Roh, and Andrew Mauer. ADIC — An extensible
automatic differentiation tool for ANSI-C. Software–Practice and Experience,
27(12):1427–1456, 1997.

2. David M. Gay. Automatic differentiation of nonlinear AMPL models. In An-
dreas Griewank and George F. Corliss, editors, Automatic Differentiation of Algo-
rithms: Theory, Implementation, and Application, pages 61–73. SIAM, Philadel-
phia, PA, 1991.

3. Ralf Giering and Thomas Kaminski. Applying TAF to generate efficient deriva-
tive code of Fortran 77-95 programs. In Proceedings of GAMM 2002, Augsburg,
Germany, 2002.

4. Philip E. Gill, Walter Murray, and Michael A. Saunders. SNOPT: An SQP algo-
rithm for large-scale constrained optimization. SIAM Journal on Optimization,
12:979–1006, 2002.

5. Philip E. Gill, Walter Murray, and Michael A. Saunders. User’s guide for SNOPT
6.1: A Fortran package for large-scale nonlinear programming. Technical Report
NA 02–2, Dept. of Math., UC San Diego, 2002.

6. Andreas Griewank. A mathematical view of automatic differentiation. Acta
Numerica, pages 1–78, 2003.

7. Andreas Griewank, David Juedes, H. Mitev, Jean Utke, Olaf Vogel, and Andrea
Walther. ADOL-C: A package for the automatic differentiation of algorithms
written in C/C++. Technical report, Technical University of Dresden, Institute
of Scientific Computing and Institute of Geometry, 1999. Updated version of the
paper published in ACM Trans. Math. Software 22, 1996, 131–167.

8. Jean Utke. OpenAD: Algorithm implementation user guide. Technical Memo-
randum ANL/MCS–TM–274, Mathematics and Computer Science Division, Ar-
gonne National Laboratory, Argonne, Ill., 2004.

9. M. G. J. van den Brand, A. van Deursen, J. Heering, H. A. de Jong, M. de Jonge,
T. Kuipers, P. Klint, L. Moonen, P. Olivier, J. Scheerder, J. Vinju, E. Visser, and
J.Visser. The ASF+SDF meta-environment: A component-based language devel-
opment environment. In Compiler Construction 2001, pages 365–370. Springer
Verlag, 2001. LNCS 2027.



10 John D. Hobby


