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Abstract

We give a simple analytic model of coverage probability for CDMA cel-
lular phone systems under lognormally distributed shadow fading. Prior
analyses have generally considered the coverage probability of a single
antenna; here we consider the probability of coverage by an ensemble
of antennas, using some independence assumptions, but also modeling a
limited form of dependency among the antenna fades. We use the Fenton-
Wilkinson approach of approximating the external interference I0 as log-
normally distributed. We show that our model gives a coverage probability
that is generally within a few percent of Monte Carlo estimates, over a
wide regime of antenna strengths and other relevant parameters.

1 Introduction

In modeling a spread-spectrum cellular phone system, we are interested in the
conditions under which the quality of the radio link between the mobile (phone)
and the base station antenna is adequate. An important measure of that quality
is the Ec/I0 of the pilot signal, since important decisions in starting a call are
based on it. Here Ec/I0 for a given mobile m and antenna a is the ratio of
the signal strength Ec received by m from a to the interference I0 received by
m from all other sources; such interference is due to external noise, and to the
power received from all antennas. (As measured, the interference includes all
the power received from a itself, but this only approximates the fact that some
power received from a is interference for this mobile.)

If Ec/I0 is too low, then the call may not be carried by a, or only carried
with poor quality. If the Ec/I0 from a at a particular location is above a quality
threshold, then we say that the location is “covered” by a, and in a given cellular
market, it is important to know what the probability that locations are covered.

The situation is complicated by the phenomenon of fading, where motion of
the mobile results in variation of the received signal strength. We will ignore here
fast fading, the rapid variation due to constructive and destructive interference
of signals arriving via different paths to the phone, and concentrate on shadow
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fading, a slower variation due to obstructions. It is common to model shadow
fading as a lognormally distributed random variable[Gud91].

Such a model would imply that at a given location, we are interested in
the ratio of a lognormally distributed random variable Ec to an interference
term I0 that is the sum of such random variables, together with some noise.
The coverage probability is the probability that such a ratio is above a given
threshold. In particular, we are interested in the probability that there is some
antenna above threshold, which provides a certain “gain”: if fading increases
the Ec of some antenna, that not only reduces the chance that other antennas
are above threshold, by increasing I0, but it also, of course, increases the chance
that the given antenna is above threshold. We will derive an expression for
coverage probability that conservatively accounts for such gain.

Our analysis reduces the ensemble-coverage problem to the problem of es-
timating the probability that a given antenna is above threshold. Here there
is a substantial related literature, mostly concerned with approximating the
probability distribution of I0, the sum of lognormally-distributed random vari-
ables. See, for example, the paper of Abu-Dayya and Beaulieu for references in
the wireless literature[ADB94], the paper of Datey, Gauthier and Simonato for
references in the computational finance literature[DGS03], and the paper of Ras-
musson for further references and an application in network design.[Ras02] The
techniques applied to this problem include cumulant matching[JR82, Sch77], ap-
proximation using the Inverse Gamma distribution[MS98], upper bounds[Sli01],
and characteristic function or moment-generating function techniques[ATB01,
Zha99]. (Note that the lognormal distribution, alone, has no moment-generating
function, so the latter techniques are applied to fading models where the log-
normal is compounded with some other distribution.)

Here we will use the approximation due to Fenton[Fen60] and to Wilkinson[SY82],
where the sum is approximated as a single lognormal distribution, whose pa-
rameters are such that its mean and variance match those of the original sum.

We compare our overall coverage probability estimate to the results of Monte
Carlo experiments. By exploring the space of relevant parameters for such a
comparison, we show that our estimate is generally accurate within a few percent
absolute error. Therefore, a Monte Carlo coverage probability estimate can be
replaced with our analytic expression. This has the advantage of a very large
speedup in time needed for evaluation, and also that the resulting function of
the parameters is much smoother than a Monte Carlo estimate would be.

2 The model

First, we will define some notation, and give some simplifying assumptions. We
have signals Ej from antenna j to a location, for j = 1 . . .m, and additional
external interference term η. We will use the following assumptions:

1. The values lnEj are normally distributed with mean µj ;

2. The values lnEj all have the same variance σ2;
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3. The random variables Ej and η are all independent.

4. We can regard the value ln η as normally distributed, with mean µη and
variance ση;

As noted above, assumption (1) is common in the literature. It is based on
experimental evidence, and is suggested by the Central Limit Theorem, as ap-
plied to the sequence of semi-independent obstructions and terrain variations
between the location and the antenna.

Assumptions (2) and (3) are due to ignorance: there may be some correla-
tions among the signals, and each signal will have a different variance, but often
we will not have such data.

Assumption (4) is non-physical, but simply reflects per-location, “correlated”
fading: it is equivalent to such fading since we are interested in Ec/I0 ratios
Ek/(η +

∑
j Ej). Such correlations are treated with greater generality by some

authors, using a general covariance matrix A. Note, however, that a model often
tested is one where the off-diagonal entries of A have a single common value,
and the diagonal entries of A have another common value. (For example, the
distributions tested by Abu-Dayya and Beaulieu all have this property[ADB94])
Our model satisfies those conditions.

The means µj are due to the path loss from the antenna to the location, and
also the antenna pattern and the antenna power level.

3 Estimating the coverage probability

We are interested in the probability that a location is uncovered, so that

I

Ek
> tk for all k,

where I ≡ η+
∑

j Ej . (We write I0 as just I here.) To simplify the discussion we
will assume that all tk = t for some t, but it is easy to remove this assumption.
The desired probability is equal to∏

k

Prob
{

I > tEk | I ≥ t max
j<k

Ej

}
. (1)

Let
Ik ≡ η +

∑
j>k

Ej .

The conditions for given k imply that

tI = t
∑
j<k

Ej + tEk + tIk ≤ (k − 1)I + tEk + tIk,

so that
I ≤ t

t− k + 1
(Ek + Ik).
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We will use the estimate

Prob
{

I > tEk | I ≥ t max
j<k

Ej

}
≤ Prob

{
t

t− k + 1
(Ek + Ik) > tEk | I ≥ t max

j<k
Ej

}
≈ Prob

{
t

t− k + 1
(Ek + Ik) > tEk

}
= Prob

{
Ik

Ek
> t− k

}
.

Here we have approximated in two ways: the upper bound on non-coverage
in one step, and the more questionable approximation in the next step, where
we assume the condition I ≥ t maxj<k Ej does not affect our revised condi-
tion too much. We will use Monte Carlo simulation to check our severe these
approximations were.

It seems to be better, based on our Monte Carlo experiments, as discussed
below, to use t− tdk in place of t− k in the above, where the best value of td,
found experimentally, is 0.4.

We can estimate the probabilities Prob {Ik/Ek > t− tdk}, under the as-
sumption that each Ik is lognormal. Let µ̂k and σ̂2

k denote the mean and variance
of ln Ik; these values can be readily determined.[ADB94] The mean of ln( Ik

Ek
)

is then µ̂k − µk, while the variance of ln( Ik

Ek
) is σ̂2

k + σ2, since Ik and Ek are
independent. We use these quantities, and the error function, to estimate the
coverage probability.

3.1 Handling ση

This method of estimating the coverage probability heuristically and experi-
mentally accurate when ση = 0. It is not accurate when ση is large, but it can
be extended for ση 6= 0 by using numerical integration: take a weighted combi-
nation of probability estimates for trial values µt

η and trial assumption ση = 0,
for values of µt

η = µη − mση/2, . . . µη + mση/2, where m is ten or so. Plainly
this integration can be refined and extended to be as accurate as desired, up to
the accuracy of the underlying estimates.

4 Experimental results

While the derivation of the coverage probability estimate was rigorous “most of
the time,” it used several approximations, beyond the assumptions mentioned
in Section 2. We can, however, check its accuracy by means of comparison
to Monte Carlo computations. Here we do many such computations, over a
broad range of values of the relevant parameters: µj , σ, µη, and the threshold
t. Note that, for the purpose of checking the usability of our estimate, that
these are the relevant input values. In all the experiments the noise variation
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ση 0 dB
µη -1 dB
M 1000
t 2, 7 dB
td 0.4
σ 3, 5, 7 dB

∆µ0 0 to 12 step 1 dB
∆µ1 0 to 12 step 1 dB
∆µ2 0, 3, 6, 9 dB
∆µ3 0, 3, 6, 9 dB
∆µ4 0, 5, 10 dB
∆µ5 0, 5, 10 dB
∆µ6 0, 8, 16 dB
∆µ7 0, 8, 16 dB

Figure 1: Range of experimental parameters, Study 1

ση = 0 because, as noted in S 3.1, a non-zero ση can be handled using a single
numerical integration.

Our first results show the range of errors in using our estimate. In Figure 2,
we show a histogram of the differences between Monte Carlo calculations and
our estimates, for all the combinations of values shown in Table 1.

Here for given values of the ∆µi, we have µi set to µi−1 − ∆µi, for i > 0.
We also restrict the evaluations to values of µi that are not too small: if some
µj is less than 20 dB below µ0, we only consider µj′ = µj for j′ ≥ j.

In Figure 3, we show the range of probabilities associated with the combi-
nations of values in Table 1. We want to make sure that we are not considering
combinations of conditions for which the coverage probability is “easily” zero or
one, and indeed, while the probabilities are skewed a bit toward the high end,
a broad range of probabilities is found.

Table 4 shows the combinations of conditions for a second round of com-
parisons. Here we are trying to more closely monitor the effect of variations in
antennas that are closer together in power levels. The histograms in Figures 5
and 6 show the general pattern of results.

In Table 7 are the combinations of conditions for a set of experiments in-
tended to help find the best value of td, the amount by which the threshold is
reduced in the uncoverage calculation, as discussed in §3. Figure 8 shows the
distribution of errors for different values of td, and shows that td = 0.4 seems,
by a narrow margin, to be the best.

The conditions explored in experiment 4 are the same as for experiment 1,
but only σ = 0.5 is considered. Here the errors are typically larger, and the
limits of the applicability of our estimates may be visible. The parameters
considered are shown in FigureTable 9, the errors in Figure 10, and the range
of probabilities in Figure 11.
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Figure 2: Error of our analytic estimate vs. Monte Carlo, Study 1
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Figure 3: Distribution of Monte Carlo Probabilities, Study 1
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ση 0 dB
µη -1 dB
M 1000
t 2, 7 dB
td 0.4
σ 2, 4 dB

∆µ0 0 to 4 step 1 dB
∆µ1 0 to 4 step 1 dB
∆µ2 0 to 4 step 1 dB
∆µ3 0 to 4 step 1 dB
∆µ4 0 to 4 step 1 dB
∆µ5 0 to 4 step 1 dB
∆µ6 0 dB
∆µ7 0 dB

Figure 4: Range of experimental parameters, Study 2
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Figure 5: Error of our analytic estimate vs. Monte Carlo, Study 2
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Figure 6: Distribution of Monte Carlo Probabilities, Study 2

ση 0 dB
µη -1 dB
M 1000
t 12 dB
td 0.2 to 1.2 step 0.2
σ 4 dB

∆µ0 0 to 12 step 1 dB
∆µ1 0 to 12 step 1 dB
∆µ2 0, 3, 6, 9 dB
∆µ3 0, 3, 6, 9 dB
∆µ4 0, 5, 10 dB
∆µ5 0, 5, 10 dB
∆µ6 0, 8, 16 dB
∆µ7 0, 8, 16 dB

Figure 7: Range of experimental parameters, Study 3
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Figure 8: Distribution of probability errors vs. td, Study 3

ση 0 dB
µη -1 dB
M 1000
t 2, 7 dB
td 0.4
σ 0.5 dB

∆µ0 0 to 12 step 1 dB
∆µ1 0 to 12 step 1 dB
∆µ2 0, 3, 6, 9 dB
∆µ3 0, 3, 6, 9 dB
∆µ4 0, 5, 10 dB
∆µ5 0, 5, 10 dB
∆µ6 0, 8, 16 dB
∆µ7 0, 8, 16 dB

Figure 9: Range of experimental parameters, Study 4
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Figure 10: Error of our analytic estimate vs. Monte Carlo, Study 4
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Figure 11: Distribution of Monte Carlo Probabilities, Study 4
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